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A B S T R A C T   
 

Automatic in-field pest detection and recognition using mobile vision technique is a hot topic in modern in- 

telligent agriculture, but suffers from serious challenges including complexity of wild environment, detection of 

tiny size pest and classification of multiple classes of pests. While recent deep learning based mobile vision 

techniques have shown some success in overcoming above issues, one key problem is that towards large-scale 

multiple species of pest data, imbalanced classes significantly reduce their detection and recognition accuracy. In 

this paper, we propose a novel two-stages mobile vision based cascading pest detection approach (DeepPest) 

towards large-scale multiple species of pest data. This approach firstly extracts multi-scale contextual in- 

formation of the images as prior knowledge to build up a context-aware attention network for initial classifi- 

cation of pest images into crop categories. Then, a multi-projection pest detection model (MDM) is proposed and 

trained by crop-related pest images. The role of MDM can combine pest contextual information from low-level 

convolutional layers with these in high-level convolutional layers for generating the super-resolved feature. 

Finally, we utilize the attention mechanism and data augmentation to improve the effectiveness of in-field pest 

detection. We evaluate our method on our newly established large-scale dataset In-Field Pest in Food Crop (IPFC) 

and sufficient experimental results show that DeepPest proposed in this paper outperforms state-of-the-art object 

detection methods in detecting in-field pest. 

 
 

 

1. Introduction 

Specialized pest control and prevention is always a highly-priority 

agricultural issue over all the world (Santangelo, 2018; Liu et al., 2017; 

Berenstein and Edan, 2018). Due to cost-effectiveness and efficient 

automation, pest monitoring approaches are widely utilized in practical 

crop monitoring systems. Its applications need to use either fixed sta- 

tionary camera or mobile camera to observe the in-field pest images, 

then employ some advanced image processing algorithms (Ding and 

Taylor, 2016; Wang et al., 2013; Wu et al., 2014; Yan et al., 2017) to 

identify and analysis pest associated data for decision-making and 

prediction. While the application of above advanced techniques (Ding 

and Taylor, 2016; Wang et al., 2013) enables great success in effective 

recognition and classification of certain type of insect, one key problem 

appears that most researchers focus on increasing the recognition ac- 

curacy of certain type of insect by either introducing new features or 

employing new machine learning algorithms, yet paying more atten- 

tions on developing practical useful automatic pest monitoring systems 

towards Large-scale Multi-class Pest dataset in the Wild (LMPW). 

As shown in Fig. 1, LMPW contains many challenging issues af- 

fecting the accuracy of pest detection approaches, such as shadow and 

sky influence, tiny size of pest objects, imbalanced data of multi-class 

pest, dense or sparse distribution of pests, etc. Traditional pest detection 

methods work well in lab-based small-scale pest dataset with few types, 

but achieve low accuracy and poor robustness in processing practical 

large-scale multi-class pest dataset. Their performance is strongly lim- 

ited by many issues, like lighting illuminates, dense or overlapping 

distribution of tiny objects, etc. 

Recently, the advances in deep learning techniques (Bulat and 

Tzimiropoulos, 2018; Zhou et al., 2018; Sermanet et al., 2013) have led 

to significantly promising progress in the field of object detection, with 

the majority of study focuses on designing more complex object de- 

tection networks for improved accuracy, such as Super-FAN (Bulat and 

Tzimiropoulos, 2018), Scale- Transferrable Object  Detection  (Zhou  

et al., 2018), unsupervised multi-stage feature learning (Sermanet et al., 

2013) and other extended variants of these networks (He et al., 2016; Li 
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Fig. 1. Some typical challenges in the in-field pest detection. (a) shadow influence; (b) crop disease; (c) branch barrier; (d) leaf barrier; (e) sky interference; (f) water 

interference; (g) leaf specular reflection; (h) uneven distribution; (i) object size comparison between MS COCO dataset and in-field pest dataset; (j) demonstration of 

imbalanced in-field pest data. 

et al., 2018; Lin et al., 2017). Despite the fact that above CNN based 

object detection networks have showed great accuracies in general 

object detection applications, their applications in LMPW still suffer 

from two key limitations: (1) Large variance of density distribution and 

sizes of tiny pests make the activation of some objects even smaller and 

insensitive with each pooling layer through a deep learning archi- 

tecture. (2) The data volume of different types of pests is imbalanced, 

which make the deep learning approach difficult to achieve high ac- 

curacy over all types of pests. 

If we train a specific detection model for each pest, and then in- 

ference different pests successively in the practical application, it will 

undoubtedly take several times as long as the single model. Compared 

with the state-of-the-art methods, it is more time-consuming and affect 

the user experience. On the other hand, if one single model is used to 

detect all of the pests, its accuracy cannot meet the requirements of 

actual use. Actually, certain categories of pests only appear on specific 

crops, it is necessary to use a two-stage mobile vision based deep 

learning approach to address this issue. 

In this paper, we attempt to explore one new two-stage mobile vision 

based deep learning approach with fusion of multi-scale context-aware 

information for improving the recognition accuracy over large-scale multi- 

class pest in the wild. As shown in Fig. 2, the foundation of our idea is that 

most of mobile devices are able to record large-scale contextual informa- 

tion of pest images in the wild, like temporal information, geographic 

information and ambient information, also including exact time, long- 

itude, latitude, air temperature, air humidity, soil temperature as well as 

soil humidity. We extract different contextual information of the images as 

prior knowledge to build up a context-aware attention network for initial 

classification of these pest images into crop categories. The imbalanced 

data challenge in the crop images is addressed as different crop images are 

separated according to crop species. 

Then, a multi-projection pest detection model (MDM) is designed 

for training these crop-associated pest images. The role of MDM is to 

combine small-scale contextual information from low-level convolu- 

tional layers with these in high-level convolutional layers for generating 

the super-resolved feature. Note that the multi-projection detection 

model is trained on model pretrained on the context-aware attention 

network, i.e., the crop classification model is used as the pre-trained 

model to train the pest detection model. Finally, we utilize the attention 

mechanism and data augmentation to improve their effectiveness of in- 

field pest detection. 

Inspired by ResNet (He et al., 2016) and DetNet (Li et al., 2018), we 

optimize the structure and parameters of the in-field pest detection model 

by short-cut and projection convolution so as to overcome the difficulty of 

pest feature vanishing under the high-level convolutional layer. In addi- 

tion, we fine-tune pest detection models on a single crop using other in- 

field pest datasets to prevent the serious consequences of classification 

errors in certain cases. Through the synthesis of different scale features 

embedded in Feature Pyramid Networks (Lin et al., 2017), the network is 

effectively trained to detect the super-resolved pest feature representation, 

which enhance the performance of in-field pest detection. 

We evaluate the proposed method on newly established large-scale 

dataset In-field Pest in Food Crop (IPFC), containing over 17 K photo- 

graphed and labeled independently images over five years. The ex- 

perimental results demonstrate our method achieves better perfor- 

mance comparable to the other state-of-the-art methods on the IPFC. 

The major contributions of this paper are as follows: 

(1) A novel two-stages mobile vision based cascading pest detection 

approach (DeepPest) towards large-scale multiple species of pest 

data is proposed, which is feasible to apply for practical tiny pest 

detection in the field. 

(2) This approach has explored the possibility of fusing extensive multi- 

scale contextual information into CNN for extracting super-resolved 

feature representation. It shows some success to overcome the dif- 

ficulty of pest feature vanishing in the high-level convolutional 

layer. 

(3) A comprehensive and in-depth experimental evaluation on practical 

industry level large-scale in-field pest dataset is provided for ver- 

ifying the usefulness and robustness of proposed approaches. The 

results show that our proposed method could deliver better per- 

formance comparable to the state-of-the-art methods. 

 
2. Related work 

2.1. SMALL object detection 

Small object detection is a hot topic in computer vision community. 
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Fig. 2. Technical pipeline of our system architecture. The left part indicates the data acquisition process in which in-field pests can be photographed and uploaded by 

the pest data intelligent collection equipment. The part in green dotted box shows that the classification result is given by  comparing the confidence in different 

crops. All of the pests are detected by multi-projection detection model which is embed in the top purple dotted box. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

 

Many deep learning based approaches have been working in this field. 

Keshari et al. (2018) optimize the structure of the filter by a dictionary- 

based filter learning algorithm and provides the weight representation 

in convolutional neural network via small samples, which obtains great 

mean average precision even with small samples. Zhu et al. (2018) 

indicate the biggest challenge in face recognition is recent anchor boxes 

cannot well match with tiny faces and present a novel evaluation me- 

trics Expected Max Overlapping score (EMO) for low overlapping issue. 

Bai et al. (2018) propose a generative adversarial network (GAN) to 

estimate the confidence of a high-resolution face generated from cor- 

responding blurry tiny face respectively. Li et al. (2017) attempt to 

solve the small object detection problem by present a Perceptual Gen- 

erative Adversarial Network (PGAN), which generate high resolution 

image by low resolution ones and obtain similar features and hence 

improve the detection rate. While above deep learning approaches 

achieve some great access in general object detection, they suffer from 

some typical inherited problems of deep learning, such as imbalanced 

data. Towards large-scale multi-class dataset, this issue will sig- 

nificantly reduce the performance of deep learning approaches. 

2.2. Object detection with IMBALANCED DATA 

Some scientists solve the problem by re-sampling (Chawla et al., 

2002; Maciejewski and Stefanowski, 2011; Oquab et al., 2014; Dong 

et al., 2017) and others believe that this question could be work out via 

cost-sensitive weighting (Tang et al., 2009; Ting, 2000; Huang et al., 

2016). Maciejewski and Stefanowski (2011) focus on the resampling 

techniques and exploits more precisely information about the local 

neighborhood of the considered examples. Dong et al. (2017) formulate 

a novel pipeline for batch incremental hard example mining of minority 

attribute classes from imbalanced large-scale training data. Ting (2000) 

also tries re-sampling as well as cost-sensitive weighting in multiple 

SVM variations and then presents novel granular SVMs-repetitive 

down-sampling algorithm as the appropriate method. Huang et al. 

(2016) indicate the restriction of class-level triplet loss and replace with 

cluster-level and class-level quintuple loss, which effectively mitigates 

the risk of class imbalance inherent in the dataset. While these re- 

sampling methods achieve some success in imbalanced data, their 

performance in practical application is usually constrained by the 

quality and diversity of collected data. 

2.3. Context AWARE scheme 

In mobile vision field, the mobile device can retrieve and record 

some contextual information associated images, which will be poten- 

tially used and improve the tasks of applications. For instance, semantic 

context achieves a great deal in 3D point matching, high-speed visual 

tracking, video frame interpolation, generative image inpainting, scene 

segmentation and object detection (Deng et al., 2018; Choi et al., 2018; 

Niklaus and Liu, 2018; Yu et al., 2018; Ding et al., 2018; Huang et al., 

2018). Local descriptors learned (Deng et al., 2018) is highly aware of 

the global context, which enhance the local feature representation and 

improve the robustness and invariance in 3D descriptor extraction 

performance. Context-aware scheme with numerous auto-encoders 

make a great progress on deep feature compression, which provide high 

computational speed for visual tracking (Choi et al., 2018). Niklaus and 

Liu (2018) present a context-aware synthesis method that warps the 

input frames as well as their pixel-wise contextual information so as to 

interpolate a high-quality intermediate frame. Yu et al. (2018) propose 

a novel architecture which employ image features around the gap as the 

references to generative inpainting. Ding et al. (2018) come up with a 

dramatic context contrasted local feature that not only leverages the 

informative context but also spotlights the local information in contrast 

to the context. Huang et al. (2018) combine visual cues with instance- 

dependent weights and achieves state-of-the-art performance on face 

recognition task. Hu and Ramanan (2017) present multiple scale-spe- 

cific detector for images of different scale and utilizes the features in- 

volving contextual information to address the small object detection 

problem, which reduce error of face recognition and show the im- 

portance of the context. In this paper, we demonstrate that the context 

is useful for solving small object detection issue. 

3. Proposed approach: Deeppest 

3.1. MOTIVATED IDEA of Deeppest ARCHITECTURE 

Due to the occurrence time and damaged crops of different pests 

vary greatly, not all of the in-field pest data are easy to collected, which 

leads to the imbalanced data in most pest dataset. The current object 

detection method is difficult to deal with imbalanced data problem and 

always ignore the category that don't have enough pest data. By 



4 

 

 

collecting and analyzing our dataset IPFC, we found different pests 

appear on different crops, different schedule as well as a variety of 

environment and location (Dyrmann et al., 2016; Ebrahimi et al., 

2017). 

It is important to introduce the geographic information, environ- 

mental parameters and temporal information of pest images into pest 

detection. A straightforward method is to classify the vulnerable crops 

in the pest images according to the contextual information, and then 

train the corresponding pest detection models for different crops. A 

context-aware attention network (CAN) could classify in-field pest 

images automatically according to the prior knowledge about plant 

category. Thus, the imbalanced pest data are classified into the several 

balanced pest data by the damage crop category. 

Also, we observe that the in-field pests on images are mostly small 

and individual. Using state-of-the-art object detection approaches into 

these images will make in-field pest features are prone to lose after 

high-level convolution, and it is difficult to extract the in-field pest 

features in shallow network. Hence, a novel multi-projection detection 

model (MDM) can combine the delicate features in high-level con- 

volutional layer and integral structure of pest come from low-level 

convolutional layer. Then we could fuse the contextual information 

around pests from low-level convolutional layer and address the issue of 

feature vanishing of small object in the deep convolution layer. 

In the later section, we will present the alternative optimization for 

in-field pest detection from internal structure of convolutional neural 

network, and give details of the DeepPest, i.e., context-aware attention 

network and multi-projection detection model. 

 
3.2. CONTEXT-AWARE Attention Network (CAN) 

The overview of context-aware attention network is shown in Fig. 3, 

in-field pest images which photographed by CCD have some contextual 

information including geographic information, temporal information as 

well as ambient information. It is always unsatisfactory to use raw 

image alone for crop classification while some of the supportive in- 

formation of raw images is exactly helpful for image classification. 

Motivated by this, we construct a multi-task learning paradigm to ex- 

tract different contextual feature, then concatenate all of the contextual 

information and the final classification result is obtained by the deci- 

sion net. In this paper, given the trade-off between efficiency and ac- 

curacy, ResNet-50 is employed as the backbone for extracting con- 

textual information and two fully connected layers are used to output 

the crop category to which the pest image belongs. In this way, we have 

better used the supplementary information and  accurately separated 

the different crop images. 

Our dataset was collected in Anhui and Hunan provinces in China, 

the longitude and latitude of collection areas range from 110°E to 120°E 

and from 25°N to 35°N, respectively. Obviously, the geographic in- 

formation can be divided into 10 categories according to longitude or 

latitude. Thus, 20 labels are used in one-hot coding to describe the 

geographic information. In terms of temporal information, each month 

corresponds to a temporal category, and the whole year is divided into 

12 categories. From the perspective of ambient information, most of the 

pest images in IPFC are collected with the temperature range of 20 °C to 

35 °C and the humidity range of 0–100%. The temperature range is 

divided every 3°as well as contributes 5 classes, while the humidity 

information contains 10 categories. Similarly, the ambient information 

contributes 15 labels to the decision net. The aforementioned con- 

textual information is outputted and concatenated by multi-task 

learning paradigm in CAN and indicates the crop category by decision 

net. 

Training: The training process consists of both contextual in- 

formation extraction and decision net optimization. Firstly, different 

contextual information is encoded into different category labels in each 

task, thus the contextual information extraction can be parsed into 

numerous classification task. Obviously, the contextual information 

should have a basic correlation between them, therefore, the shared 

feature extraction layer can effectively improve the effect of the clas- 

sification of different contextual information. Then, the decision net is 

trained by a given crop category with specific contextual information. 

In particular, the output of the contextual information extraction net- 

work and the input of the decision net are the same paradigm, thus we 

can integrate them into one model in the inference stage. By this means, 

the internal relations between contextual information and crop cate- 

gory are learned by decision net, which constrained false positive and 

false negative misclassifications. 

Inference: Other than the training process, the contextual in- 

formation extraction network and decision net are integrated to one 

model in the inference stage. Therefore, the input of the CAN is the pest 

image and the output is the category of crop suffered from pests, which 

subject to the contextual information extracted by CNN. Hence, we can 

select the specific pest detection model to detect the pest species and 

locations in the pest images. 

 
3.3. Multi-projection Detection Model (MDM) 

Architecture: After determining the crop category in the in-field 

pest images, we need calculate the location and the number of pests. 

Unfortunately, for most of the CNN models such as ResNet and 

Inception-v4, due to the resolution of feature map is reduced to 1/32 or 

 

 

Fig. 3. Details of the proposed context-aware attention network. We encode different contextual information into image annotation. Different contextual codes are 

labelled for one image, therefore we employ corresponding multi-task CNN model to extract the specific contextual information in the training stage. The red branch 

is used to roughly classify pest images and the other branches in different color are utilized to recognize the geographic information, temporal information as well as 

ambient information, respectively. The final classification result is obtained by concatenating different contextual information extracted from each CNN model into 

feature vector and putting them into decision net. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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1/64 of the original image in the high-level convolutional layer, small 

objects are not visible on it (32*32 or 64*64 object takes up only one 

pixel in the feature map). In fact, the scene around the pest can also 

serve as contextual information for the pest detection task. (Pests, for 

example, tend to stick to food crop instead of appearing in the sky for 

no reason). Obviously, it is a good idea to integrate the small-scale 

context information in the shallow layers into the semantic information 

in the deep layers, which restricts the influence of the features van- 

ishing in deep layers and ensures the size of the receptive field. Inspired 

by the research of ResNet and DetNet, we propose multi-projection 

detection model to increase the performance of the in-field pest de- 

tection which decrease the consequence of features vanishing. Different 

from conventional method like ResNet, Inception-v4 (Szegedy et al., 

2017) and VGG (Simonyan and Zisserman, 2015), in our case, we in- 

troduce the multiple projection convolution block to increase the 

weight of low-level convolution which is illustrated in Fig. 4. We in- 

troduce the several projection convolutional layers to extract the small- 

scale contextual information such as texture, color and shape. Noted 

that small-scale contextual information is relative to the large-scale 

contextual information extracted from CAN. 

In this paper, ResNet-50 is used as the backbone for extracting pest 

feature. Different from the residual block, each projection convolution 

block has only one downsampling operation directly by convolutional 

layers that have a 3*3 kernel and stride of 2, instead of the convolu- 

tional layer with stride of 1 which used to extract the image semantic 

information. This approach maximizes the retention of small-scale 

contextual information such as color, shape, and texture of the pest 

image. Considering the feature in projection convolution blocks need to 

be merged with that in residual blocks, therefore, the projection con- 

volution blocks and residual blocks have the same amount of con- 

volutional layer that have a stride of 2. Basically, batch normalization 

and ReLU are used to greatly accelerate the convergence process as well 

as avoid the risk of exploding gradient. The final layer of projection 

convolution blocks will have the same scale as the last layer of the 

backbone from which the image information is extracted. Thus, the 

output of the projection convolution blocks and backbone are con- 

catenated and fed into FPN, which combines the small-scale context- 

aware information from shallow layers. After that, RPN (Ren et al., 

2015) generates a number of region proposals for in-field pest detec- 

tion. The accurate classification and regression results of the region 

proposals can be obtained by the finetuning of RoI Pooling and fully 

connected layer. 

Fine-tuning: Generally, multi-projection detection model is used to 

detect in-field pest on the species-specific crop which means there are 

greatly different between in-field pest detection models applied to dif- 

ferent crops. Notice that context-aware attention network cannot make 

sure that each in-field pest image can be classified accurately. We need 

to fine-tune specific multi-projection detection model on all of the in- 

field pest images in order to reduce the impact of image misclassifica- 

tion and improve the system performance and robustness. 

 
3.4. ALTERNATIVE OPTIMIZATION 

Attentional Mechanism: DeepPest also integrates an attentional 

mechanism to modify feature map in low-level convolutional layer by 

image information in high-level convolutional layer which prevent the 

background noises and refine the in-field pest features. We introduce 

channel attention mechanism to obtain the weights for each channel 

and multiply with the raw feature map. Different from SENet (Hu et al., 

2018) which put attentional mechanism behind each convolutional 

layer, in this paper, we set this module at each projection convolution 

block and residual block so as to regulate the feature map which fed 

into next block. 

Data Augmentation: Before training our model, we utilize some data 

augmentation methods to expand data amount. Firstly, considering the 

variability of the shooting angle and the rotation invariability of the in- 

field pest, we rotate and flip the original images with unchanging image 

resolution. We horizontal and vertical flip the raw images so that obtain 

the other 2-fold images as well as the use of image rotation results in 7-fold 

increase at data amount (image is rotated by 45° at each time). Therefore, 

a total of 24-fold pest data can be obtained. Additionally, all of the pest 

images should be cropped into different scale which enlarge the data 

amount as well as enrich the pest knowledge in a single image. 

4. Dataset collection and experiment setting 

4.1. In-field Pest in Food Crop (IPFC) 

While there are some available insect datasets containing images 

captured in the laboratory environment such as butterfly dataset (Kang 

et al., 2014) and bee dataset (Bozek et al., 2018). Intuitively, the models 

trained by these single pest image in laboratory cannot effectively re- 

cognize the pest. 

Based on the cascading model proposed in this paper, we establish a 

task-specific in-field pest dataset In-Field Pest in Food Crop (IPFC), 

which is used to address the challenge of in-field pest detection and 

counting. IPFC is generated by data acquisition from the past three 

years, which contains 17,192 in-field pest images with 76,595 pest 

annotations. Note the fact that IPFC has been randomly divided into 10 

folds, where nine-tenths are used as training set while the residual part 

is used as validation set. The statistical for IPFC dataset are shown in 

Table 1. The in-field pest images analyzed in this paper are collected in 

 

 

Fig. 4. Details of the proposed multi-projection detection model. The purple network is ResNet-50 including plentiful convolutional layers and shortcut connections. 

We introduce the shortcut connections with several projection detection layers which is yellow block in the figure. Results o f multi-projection convolution are 

combined with the Res5 in ResNet-50 to generate super-resolved feature, which trained by FPN together with that of other residual blocks. RPN extracts the region 

proposals from the feature map, and the classification and regression results of the bounding boxes can be obtained after ROI  pooling and finetune. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Details of in-field pest data in IPFC. For a class-specific pest, the endangered crop, the number of pests in training set and the number of pests in validation set are 

shown in this  table. Some crops suffer from multiple pests at the same time (such as wheat), so that multiple species of pests maybe appear in one pest image,  

therefore the total number of pest images is not always equal to the sum of the various pest images. The column ‘size’ represents the percentage of the area of pest in 

the  whole image.  

Sticky worm Wheat 1.512 2901 2980 1.02 303 320 1.05 3204 3300 1.02 

Rice planthopper Rice 0.148 1084 11,352 10.47 121 1425 11.77 1205 12,777 10.6 

Total / / 15,490 68,755 4.44 1702 7840 4.61 17,192 76,595 4.46 

 

Fig. 5. Some pest image samples in IPFC. The pest in each sample are zoomed in on the right. (a) sticky worm on wheat crops in eastern China (117°4′N, 32°86′E), 
photographed at April 2018. The air temperature is 27 °C and air humidity is 55%. (b) rice planthopper on rice crops in southern China (111°47′N, 27°25′E), 
photographed at July 2017. The air temperature is 36 °C and air humidity is 76%. (c) wheat mite on wheat crops in northern Ch ina (114°77′N, 34°56′E), photo- 

graphed at March 2018. The air temperature is 13 °C and air humidity is 34%. 

 

Table 2 

Experimental results of DeepPest with state-of-the-art architectures. The bold 

values indicate the best results.  

Methods Sticky worm Rice planthopper Wheat mite mAP 

Scale-specific detection 90.6 66.8 59.9 72.4 

DeepPest 90.7 69.2 61.7 73.9 

VGG-16 + FPN 49.3 54.5 43.8 49.2 

ResNet-50 + FPN 90.2 67.3 59.4 72.3 

China. All the images were captured by independent research and de- 

velopment device called pest intelligent collection equipment. As for 

image acquisition, Sony CX-10 CCD camera whose parameters are set to 

4 mm focal length with an aperture of f/3.3. It should be noted that 

only one RGB color image (1440*1080) from each time series is la- 

belled and used in this paper, therefore the labelled pest image is un- 

ique. Through the utilization of pest intelligent collection equipment, 

we not only collect numerous pest images, but also record the tem- 

perature, humidity and geographic information of pest images. The pest 

image samples are shown in Fig. 5. Particularly, the geographic in- 

formation, ambient information, temporal information and food crop 

background of each pest image are described in detail. 

Note that we employ few human labels (approximately 1 k-2 k) first 

in the process of labelling data, and then train these images by multi- 

scale context-aware information representation method. Next, we au- 

tomatically label more pest images using the trained model and artifi- 

cially justified the results of automatic annotation. So that the con- 

stantly iteration and correction improve the performance of the model 

 

 

Fig. 6. Comparisons of pest detection performance with the state-of-the-arts methods on the IPFC. 

Insect Name Endangered crop Size (%) Training   Validation   All  

   
Images Pests Avg. Images Pests Avg. Images Pests Avg. 

Wheat mite Wheat 0.089 11,505 54,423 4.73 1278 6095 4.76 12,783 60,518 4.73 
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Fig. 7. Qualitative results on different challenging environment in IPFC. 
 

proposed in this paper and also save the human resources and cost 

compared to completely human label. 

 
4.2. Experiment setting 

In order to verify that our method could be used in IPFC for de- 

tecting pests, we establish some experiments to compare the perfor- 

mance of DeepPest with that of other state-of-the-art CNN architectures 

on IPFC. Our codes are based on Caffe2 (Jia et al., 2014) with Python 

API and run on 12 GB Tesla P40 GPU. Some experiment details are 

given in this section. ResNet-50 is used for extracting contextual in- 

formation from in-field pest images in CAN. The RMSprop is chosen as 

our optimizer with momentum equals to 0.9, which updates parameters 

based on one mini-batch at each iteration. This optimizer could partly 

keep the update gradient at previous iteration and fine-tune the final 

gradient considering the current mini-batch. In order to avoid over- 

fitting problem, we utilize dropout method as well as early-stopping 

strategy to select the best training iteration. 

As to learning rate policy, 'step' strategy is applied in gradient descent, 

in which we initialize learning rate to 0.001 and the learning rate will be 

divided by 10 per 15,000 iterations. In addition, mini-batch size is set to 2 

and the number of region proposals of every training example is at least 

128. Code and high-resolution demo are available at: http://t.cn/ 

E2qcTYZ. 

 
5. Experimental results 

5.1. PERFORMANCE COMPARISON 

Table 2 presents the comparison of DeepPest with other state-of-the- 

http://t.cn/E2qcTYZ
http://t.cn/E2qcTYZ
http://t.cn/E2qcTYZ
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Fig. 8. Feature visualization. (a) raw image; (b) super-resolved feature from DeepPest; (c) feature from Scale-specific detection; (d) feature from ResNet-50 + FPN; 

(e) feature from VGG-16 + FPN. 

 

Table 3 

Experimental results of CAN on IPFC. The bold values indicate the best results. 

Model CAN Top-1 error 

Table 5 

Comparisons of detection performance with or without CAN based on DeepPest 

and the state-of-the-art architectures. The bold values indicate the best results. 

ResNet-50 √ 0.01% 

0.56% 

Methods CAN Sticky 

worm 

Rice 

planthopper 

Wheat mite mAP 

Inception-v4 √ 0.13% 

0.82% 

VGG-16 √ 0.19% 

1.52% 
 

 

 
Table 4 

Ablation studies of contextual information in CAN. The bold values indicate the 

best results.  

Model CAN Top-1 
 

 

Scale-specific detection     √ 90.6 66.8 59.9 72.4 

90 63.9 58.3 70.7 

DeepPest √ 90.7 69.2 61.7 73.9 

90.4 65.4 61.1 72.3 

VGG-16 + FPN √ 49.3 54.5 43.8 49.2 

39.1 37 44.7 40.3 

ResNet-50 + FPN √ 90.2 67.3 59.4 72.3 

90.7 60.3 59.7 70.2 

Table 6 

Geographic 

information 

Temporal 

information 

Ambient 

information 

error Comparisons of detection performance with contextual information extracted 

from different residual blocks. The bold values indicate the best results.  

 
planthopper 

 

 
√ √ 

√ √ 

√ √ √ √ √ 

0.34% 

0.06% 

0.11% 

0.08% 

Res2 90.6 68.7 60.8 73.4 

Res3 90.5 67.7 60.5 72.9 

Res4 90.2 67.3 60.6 72.7 
ResNet-50 + FPN   / 90 63.9 58.3 70.7 

0.01%    

illustrate the advantage of DeepPest in automatically and accurately 

arts CNN models in terms of mean average precision on each pest ca- 

tegory. We firstly observe the results of DeepPest and other conven- 

tional CNN models. Our method could improve the mAP by 1.5%, 

24.7% as well as 1.6% respectively compared to Scale-specific detec- 

tion, VGG-16 with FPN and ResNet-50 with FPN on the IPFC, which 

detecting pests. Our method achieves the best performance in all of the 

pest categories. DeepPest clearly improves the detection performance of 

rice planthopper and wheat mite. However, in terms of larger size pests 

such as sticky worm, since state-of-the-art methods can obtain sufficient 

and effective pest features after multiple convolutional layers, the 

ResNet-50 0.56% 
√ 0.41% 

 Methods Different 

sources 

Sticky 

worm 

Rice Wheat mi te mAP 

√ 0.29% 
√ 

 
Deep-Pest Res1 90.7 69.2 61.7 73.9 
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Table 7 

Comparisons of detection performance with or without fine-tuning strategy. 

The bold values indicate the best results.  

We further present visualization of super-resolved feature generated 

by combining contextual information. The learned general representa- 

tion and the multi-scale context-aware information representation by 

Methods Fine- 

tuning 

Sticky 

worm 

Rice 

planthopper 

Wheat mite mAP the DeepPest for in-field pests are shown in Fig. 8. The second and the 

third row respectively demonstrate the details of local features from the 

Scale-specific detection     √ 90.6 66.8 59.9 72.4 

90.3 64.5 58.7 71.2 

DeepPest √ 90.7 69.2 61.7 73.9 

90.4 65.8 61 72.4 

ResNet-50 + FPN √ 90.6 67.4 58.5 72.2 

90.2 63.3 58.1 70.5 
 

 

 
Table 8 

Comparisons of detection performance with or without alternative optimiza- 

tion. AM and DA represent attentional mechanism and data augmentation, 

respectively. The bold values indicate the best results.  
 

Methods Alternative 

Optimization 

Sticky 

worm 

Rice plant- 

hopper 

Wheat mite mAP 

DeepPest AM and DA 90.8 70.0 62.1 74.3 

\ 90.4 65.4 59.2 71.7 

AM 90.6 65.3 61.8 72.6 

DA 90.7 69.2 61.7 73.9 
 

 

 
Table 9 

Comparisons of efficiency of different modules proposed in this paper with the 

state-of-the-arts  methods.  

Methods CAN MDM Time cost on one image (ms) 
 

 

Scale-specific detection 65 

√ 93 

√ 74 

√ √ 114 

DeepPest 60 

convolutional layer. Pest features caught by DeepPest are shown in red 

or yellow in the feature map, while the background is shown in blue or 

green. We can observe that our architecture successfully extracts the in- 

field pest features easily lost in the deep convolutional layers, proving 

the effectiveness and feasibility of DeepPest. 

 
5.2. ABLATION experiments 

5.2.1. CONTEXT-AWARE Attention Network (CAN) 

Table 3 indicate the top-1 error of the state-of-the-art deep learning 

classification methods. It can be seen that ResNet-50 with CAN achieves the 

best performance with the lowest top-1 error. CAN could reduce the top-1 

error by 0.55%, 0.69% as well as 1.33% respectively compared to ResNet- 

50, Inception-v4 and VGG-16 on the IPFC, which illustrate the effectiveness 

of our method in automatic and accurate pest image classification. 

Besides, an ablation study is attempted to further recognize the influ- 

ence of each part of the contextual information in CAN. The effect of dif- 

ferent contextual information on food crop classification  is  shown  in 

Table 4. One can observe that the more contextual information adopted, the 

better classification accuracy of CAN will be. In contrast with other con- 

textual information, the temporal information has a great impact on the 

classification result due to the specific temperature condition of pest activity 

(Such as wheat spider damages wheat between 10 °C and 20 °C). 

In order to verify the superiority of the crop recognition with CAN 

on in-field pest detection, we apply our method to some state-of-the-art 

CNN models. As shown in Table 5, CNN models with CAN outperforms 

the Scale-specific detection, VGG-16 with FPN and ResNet-50 with FPN 
by 1.6%, 8.9%, 2.1% in mAP respectively and also improve the accu- 

√ 78 √ 
racy of DeepPest with 1.6%, which verifies the effectiveness of CAN. 

 
VGG-16 + FPN 

67 

√ √ 98 

68 

√ 105 

We find that the IPFC has a relatively small number of rice image in 

Table 1. If we directly detect in-field pest with no crop recognition 

(without CAN), rice images will be submerged in a flood of wheat 
√ 77 

√ √ 116 

images, so that not all rice planthoppers could be recognized. Multi- 

scale contextual information contained in the pest image can reason- 

ably separate the small-amount rice images from the wheat images and 

approach employing contextual information has little effect on the 

detection performance. More comparisons of precision-recall curves in 

terms of different categories are provided in Fig. 6, which can further 

illustrate the feasibility and effectiveness of DeepPest. 

Several instances of the DeepPest for in-field pests are visualized in 

Fig. 7. We compare our visual results with those from scale-specific 

detection. Different from other state-of-the-art methods, CAN and MDM 

applied in DeepPest address the issue of in-field pest detection. As 

shown in Fig. 7, obviously, DeepPest can effectively detect tiny-size 

pests in small scales, which outperforms scale-specific detection at 

precision and misdetection due to small object detection challenge. 

alleviate the issue of class imbalance problem between the rice images 

and the wheat images, thus improving the robustness of CNN model. 

 
5.2.2. CONTEXTUAL INFORMATION from different RESIDUAL block 

The MDM proposed in this paper learns contextual information 

about pest from the low-level convolutional layer of ResNet-50. Aiming 

to verify the effectiveness of contextual information in different con- 

volutional layers, we establish a set of parallel experiments in which 

introduce MDM from four different residual blocks, since ResNet-50 has 

only five residual blocks. 

As  shown  in  Table  6,  MDM  at  different  scales  can  improve  its 

Fig. 9. Wild pest image acquisition 

equipment and its usage. (1) CCD 

camera; (2) carbon fiber telescopic rod; 

(3) mobile client. The parameters of 

CCD camera are set to 4 mm focal 

length with an aperture of f/3.3. CCD 

camera is used to collect pest images 

and is controlled by mobile client. The 

position of field would be located by 

global positioning system. 
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performance in detecting in-field pest like sticky worm, rice planthopper 

and wheat mite, which demonstrate that recursively employ contextual 

information in low-level convolutional layer is of great significance to detect 

in-field pests. Another issue is that the contextual information from shal- 

lower convolutional layer is more useful than that from deeper convolu- 

tional layer and the pest feature has been destroyed by several residual 

blocks if MDM is introduced at the third or fourth residual block. Besides, 

when ResNet-50 with FPN algorithm is used to calculate the category and 

location of pests which means we do not use any small-scale contextual 

information to assist pest detection, experimental result shown that its 

performance is lower than any approaches using MDM, which proves that 

the algorithm proposed in this paper is feasible and effective. 

5.2.3. Fine-tuning 

Particularly, in order to verify the necessity of fine-tuning strategy, 

we present the experimental results of DeepPest, Scale-specific detec- 

tion and ResNet-50 with FPN in Table 7. “Fine-tuning” indicates the 
network is fine-tuned by the other crop images after training the model 

on the given crop, otherwise the pest detection model only trained on 

the specific crop outputted by CAN. 

As shown in Table 7, DeepPest with fine-tuning performs better than 

that without fine-tuning, and the similar result emerge from the other 

two methods. By comparing the results of fine-tuning with non-fine- 

tuning, our strategy shows a clear advantage over the approach without 

any justification. Specifically, fine-tuning performs well on the category 

with fewer pictures like rice, which can be attributed the ability of fine- 

tuning in minimizing the impact of misclassification improving the 

robustness of the system. 

5.2.4. ALTERNATIVE OPTIMIZATION 

DeepPest optimizes the training process of CAN and MDM with alter- 

native optimization. In order to illustrate the necessity of the alternative 

optimization, we present the experimental results of DeepPest with or 

without optimization method during CAN and MDM. We simultaneously 

attempt attentional mechanism block and data augmentation strategy. 

Comparing the method with or without attentional mechanism 

block in Table 8, we can observe that DeepPest with attentional me- 

chanism outperforms that with non-attentional mechanism by 0.9% in 

mAP, and data augmentation enhance the effect of DeepPest for about 

2.1%. This shows remarkable improvements in mAP on in-field pests 

can be obtained when employ these two alternatives. 

5.2.5. Inference time 

Since the method proposed in this paper operates in the mobile 

camera or other mobile phone, the inference efficiency (Time cost on 

one image) of our approaches is shown in Table 9. It should be noted 

that we use iPhone X as the mobile device. 

One can observe that our method decreases the inference efficiency 

of each state-of-the-art detection algorithm. However, the whole algo- 

rithm is able to output the better pest detection result less than 120 ms 

for the slowest model (VGG-16 + FPN + CAN + MDM), which meet 

the requirement of actual use. 

5.3. APPLICATION in REAL-WORLD conditions 

We have deployed the algorithm proposed in this paper to mobile de- 

vices, which can classify crop disease and estimate the disease severity in 

real orchard/field. The structure and usage of whole equipment and system 

are illustrated in Fig. 9. Specifically, whenever the CCD camera captures the 

plant images, mobile client employs proposed method and output the plant 

disease as well as disease severity in real-time. According to the classifica- 

tion result of our method, agricultural personnel is able to decide whether to 

spray or not in this region and provide the guidance for variable dosing/ 

curative treatment. Furthermore, they can analyze the current crop growth 

and forecast the crop yield in this region, which is of great significance to 

the development of agriculture. 

6. Conclusion 

We propose DeepPest, a new cascading convolutional neural network 

architecture in this paper, to solve the problem of small object detection and 

imbalance data. DeepPest employ CAN to integrate prior knowledge as 

contextual information on the basis of results outputted by image rough 

classification. Additionally, MDM introduces multiple projection convolu- 

tion blocks and learns the in-field pest context from the low-level con- 

volutional layer, which generates the super-resolved feature for in-field pest. 

Furthermore, we have shown that appropriate attentional mechanism and 

data augmentation strategy are advantageous in detecting imbalanced data. 

Our experiments have shown the superiority of DeepPest in this paper 

compared with other state-of-the-art methods. 
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