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a b s t r a c t 

S. aureus is a leading cause of bacterial infection. Macrophages, the first line of defence in the human 

immune response, phagocytose and kill S. aureus but the pathogen can evade these responses. Therefore, 

the exact role of macrophages is incompletely defined. We develop a mathematical model of macrophage 

- S. aureus dynamics, built on recent experimental data. We demonstrate that, while macrophages may 

not clear infection, they significantly delay its growth and potentially buy time for recruitment of further 

cells. We find that macrophage killing is a major obstacle to controlling infection and ingestion capacity 

also limits the response. We find bistability such that the infection can be limited at low doses. Our 

combination of experimental data, mathematical analysis and model fitting provide important insights in 

to the early stages of S. aureus infections, showing macrophages play an important role limiting bacterial 

replication but can be overwhelmed with large inocula. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

S. aureus is a major cause of both community-acquired and 

hospital-acquired infections, causing a broad spectrum of disease 

ranging from skin and soft tissue infections to bacteraemia and 

infection of prosthetic devices ( Cole et al., 2014 ). The pathogen 

contributes significantly to infection-related mortality and health- 

associated costs ( de Kraker et al., 2011 ). Part of its success stems 

from a range of pathogen adaptations that subvert host defence 

( Cole et al., 2014 ). In addition it is resistant to a range of an- 

timicrobials and virulent methicillin resistant strains of S. aureus 

(MRSA) have become a major health problem in many settings 

( DeLeo et al., 2010 ). 

Macrophages are the resident phagocytes in tissues and play 

critical roles in host defense as the first professional phagocyte 

to encounter bacteria at sites of infection ( Dockrell et al., 2003 ). 

Traditionally S. aureus has been classified as an extracellular bac- 
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terium that is readily phagocytosed and killed by phagocytes. Tis- 

sue macrophages are sufficient to clear S. aureus in murine mod- 

els of pulmonary infection where mice are rendered neutropenic 

( Rehm et al., 1980 ), illustrating the potential role they can play in 

initial pathogen control at sites of infection. S. aureus is efficiently 

phagocytosed by macrophages ( Jonsson et al., 1985 ). It is well es- 

tablished that S. aureus can avoid a range of innate immune re- 

sponses from recognition to intracellular killing ( Rooijakkers et al., 

2006 , Richardson et al., 2008 ) and this aids pathogenicity. In 

particular S. aureus employs several adaptations to resist oxida- 

tive stress and other microbicidal strategies utilised by phagocytes 

( Cole et al., 2014 ). We have recently demonstrated that differen- 

tiated macrophages, that model tissue macrophages such as the 

alveolar macrophage resident in the lung, although competent for 

bacterial clearance, have a finite capacity for intracellular killing, 

which is the rate limiting step in pathogen clearance ( Jubrail et al., 

2015 ). 

Mechanistic mathematical models can be a vital tool in in- 

forming our understanding of complex biological systems. A num- 

ber of mathematical models of the interactions between pathogens 

and host immune responses have been developed in recent years, 

https://doi.org/10.1016/j.jtbi.2020.110256 
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with bacterial pathogens studied including Mycobacterium tuber- 

culosis ( Marino and Kirschner, 2004 , Kischner and Marino, 2005 , 

Warrender et al., 2006 ), Bacillus anthracis ( Kumar et al., 2008 , 

Day et al., 2011 ) and Streptococcus pneumoniae ( Smith et al. , 

Mochan et al. ). In the context of macrophage function TB mod- 

els are particularly relevant. TB is an intracellular pathogen that 

requires a competent macrophage-mediated immunological re- 

sponse for effective control of mycobacterial growth. Modelling ap- 

proaches have shown that critical factors that influence pathogen 

growth include the recruitment and activation of macrophages, 

regulation of macrophage responses by cytokine signalling, and the 

recruitment of additional levels of the immune response that com- 

plement macrophage microbicidal strategies, such as T-cells and 

neutrophils ( Kischner and Marino, 2005 , Warrender et al., 2006 , 

Tattevin et al., 2009 ). This has further refined understanding of the 

important roles macrophages play in this infection. 

While there are a number of mathematical models address- 

ing the dynamics of other bacterial and viral infections there is 

not currently a mathematical model describing the macrophage 

response to S. aureus . In part, this is because there has never 

been an extensive study exploring the kinetics of phagocytosis 

or intracellular killing of S. aureus by differentiated macrophages 

that could be used to develop a model for S. aureus infection. 

We have recently performed this kinetic analysis using differen- 

tiated macrophages, with key findings validated in primary hu- 

man cells ( Jubrail et al., 2015 ), and now use this data to develop 

a novel mathematical model. The model describes the extracellu- 

lar and intracellular phases of S. aureus and their interaction with 

macrophages. These results provide important insights into how 

macrophages respond to S. aureus . 

2. Methods 

2.1. Experimental methods 

2.1.1. Macrophage phagocytosis 

Experimental data was obtained using a differentiated tissue 

macrophage cell line THP-1 exposed to the Newman strain of S. 

aureus ( Jubrail et al., 2015 ). Importantly the model uses a cell line 

whose differentiation status has been confirmed as replicating that 

of primary differentiated tissue macrophages ( Daigneault et al., 

2010 ) and findings have been validated in vitro with primary 

human monocyte-derived macrophages (hMDMs) and in vivo in 

murine alveolar macrophages. They have also been confirmed for 

the SH10 0 0 strain and for the USA300 JE2 strain, a representa- 

tive strain of community acquired MRSA, thus enhancing confi- 

dence in the broad relevance of the findings ( Jubrail et al., 2015 ). 

Live THP-1 differentiated macrophages and paraformaldehyde fixed 

macrophages were cultured with S aureus Newman strain at a 

range of MOIs (multiplicity of infection) for up to 9 hours. Alter- 

natively S. aureus Newman strain was cultured in the absence of 

macrophages for the same time course. At each time point, super- 

natants were plated onto blood agar for estimation of extracellular 

bacterial numbers using surface viability counts to determine the 

colony forming units (CFU). Extracellular bacteria were then killed 

with lysostaphin and cells lysed using 1% saponin to allow estima- 

tion of intracellular CFU ( Jubrail et al., 2015 ). 

2.1.2. Macrophage killing 

Macrophages were cultured with S aureus Newman strain at 

an MOI 5 for 6 hours and killing assays were performed as pre- 

viously described ( Jubrail et al., 2015 ). Extracellular bacteria were 

then killed with lysostaphin and some cultures treated with 1% 

saponin and lysed for intracellular CFU quantification. Remaining 

cultures were maintained in low dose lysostaphin for 0.5-4 hours 

and lysed at each time point for estimation of intracellular CFU. 

Results obtained with the high dose lysostaphin ‘pulse’ followed by 

the low dose lysostaphin ‘chase’ were verified using a similar ap- 

proach with antimicrobials that selectively target the extracellular 

population but not intracellular bacteria, using a protocol employ- 

ing gentamicin ‘pulse’ and vancomycin ‘chase’ to kill extracellular 

bacteria, to exclude any artefacts inherent in the use of lysostaphin 

( Jubrail et al., 2015 ). This data informs our selection of killing func- 

tions in the model, as described below. 

Data for extracellular and intracellular bacteria density is pre- 

sented for four different MOIs (0.05, 0.5, 1 and 5) with three repli- 

cates in each case. Active macrophage numbers (i.e. macrophages 

containing bacteria) are also plotted. These can be seen as the dots 

in Fig. 3 . Here, we note two key elements of the data that the 

model will need to capture. Firstly, the extracellular bacteria den- 

sities remain low at low MOIs for much longer than at high MOIs 

(note these plots show logged numbers, so this is not merely an 

artefact of exponential growth). Secondly, the intracellular num- 

bers appear to take-off at later time points at the higher MOIs but 

not the lower MOIs. 

2.2. Mathematical model 

We model the interaction between macrophages (with densi- 

ties, M i ) and S. aureus (with densities, S i ) using a set of ordinary 

differential equations as described below. We base the model on 

observations from the in vitro experiments and use this data to 

fit the model. We describe the model in detail below. There are 

similarities between our model and those of previous bacteria- 

cell studies (for example those of M. tuberculosis ( Marino and 

Kirschner, 2004 , Kischner and Marino, 2005 )), but here our model 

is set up to intentionally mimic our experimental results, since im- 

portant biological differences between M. tuberculosis and S. aureus 

are known, and as such there are a number of key differences to 

previous models. 

2.3. Macrophage cell dynamics 

We assume that initially all macrophages are in a resting state, 

M 0 , and that to become competent for phagocytosis they need to 

become activated. The rate at which these cells reach this thresh- 

old for activation is an increasing, saturating function of extracel- 

lular bacteria, S e , 

f ( S e ) = α
S p αe 

S p αe + c α p α
(1) 

where c α is a threshold density at which the activation rate is α/2, 

and the power p α controls the shape of the function (c.f. Fig. 1 a). In 

particular, if p α = 1 then for low bacterial densities the increase in 

ingestion is linear (solid line, Fig. 1 a, inset), while for p α > 1 at low 

densities there is very little ingestion (dashed line, Fig. 1 a, inset) 

and for p α < 1 at low densities there is very high ingestion (dot- 

ted line, Fig. 1 a, inset). We refer to those functions where p α ≤ 1 

as ‘non-sigmoidal’, and those where p α > 1 as ‘sigmoidal’, due to 

their shapes (see Fig. 1 a). 

Activated cells become primed cells, M P , which are then able 

to ingest. The rate of ingestion is similarly given by an increasing, 

saturating function of extracellular bacteria, S e , 

g ( S e ) = β
S 
p β
e 

S 
p β
e + c β

p β
(2) 

where c β gives the density of S e at which the ingestion rate is 
β
2 , and the power p β controls the shape of the function, in much 

the same way as the activation function above ( Fig. 1 a). Such a 

function has been used in the ecological literature for many years 

to represent predation, which is a similar process to ingestion 

here, as well as in previous bacteria-cell models (though these 

tend to assume p β = 1 ( Marino and Kirschner, 2004 , Kischner and 



A. Best, J. Jubrail and M. Boots et al. / Journal of Theoretical Biology 497 (2020) 110256 3 

Fig. 1. Examples of the ingestion (A) and killing (B) functions for different values of p β and p k . In each case solid lines are for p i = 1 , dashed lines p i = 4 and dotted lines 

p i = 0 . 4 . The inset in panel A shows the shape of the ingestion functions at low bacterial densities (here the horizontal axis is on a linear scale). 

Marino, 2005 )) . Once cells have ingested bacteria we define them 

as active cells, M a , where they can continue to ingest. We do not 

differentiate between cells that have ingested but killed all of their 

bacteria and those that still contain viable bacteria. Functionally 

these cells behave the same, since we assume that once a cell in- 

gests it will continue to do so as long as there are extracellular 

bacteria. (As the experimental in vitro data is derived from a situa- 

tion where the extracellular bacteria out-compete the macrophage 

the situation where all bacteria are cleared is unlikely to arise.) In- 

deed, functionally the primed ( M p ) and active ( M a ) are very similar, 

but we require this differentiation both for the data fitting (since 

we only have data for active macrophages) and for certain imple- 

mentations of killing (see below). We note that since we assume 

no production or decay of macrophages, verified from the experi- 

mental data, the total cell population M̄ = 
∑ 

jǫ{ 0 ,p,a } M j is constant, 

meaning one of the equations can be neglected from the model. 

2.4. S . aureus dynamics 

Initially all bacteria are extracellular, S e , with replication rate r . 

We assume that there is some maximum density (carrying capac- 

ity), K , for the bacteria in the medium, with classical logistic (loga- 

rithmic) growth in the absence of macrophages. During model fit- 

ting, below, a generalized logistic model was also tested but the 

power was always predicted to be near to 1, suggesting the stan- 

dard logistic model is a reasonable parsimonious choice. Extracel- 

lular bacteria can be ingested by both primed and active cells. 

When first ingested the intra-cellular S. aureus are still vi- 

able as S i bacteria. The active cells then kill the bacteria through 

phagocytosis-associated killing mechanisms and the bacteria be- 

come killed, S k . However, based on observations with neutrophils 

that phagocytosis activates the nicotinamide adenine dinucleotide 

phosphate oxidase (NADPH oxidase/ NOX2) system which is linked 

to a number of microbicidal mechanisms of rapid bacterial killing 

( DeLeo et al., 1999 ), and our own observations of the kinetics of 

intracellular S. aureus killing in macrophages, which suggest there 

is a phase of rapid killing immediately after phagocytosis followed 

by a gradual rate of later decline in bacterial viability ( Jubrail et al., 

2015 ), we assume that the ability of cells to kill the intra-cellular 

bacteria is lost over time. The cause of this loss in killing is not 

clear, but is likely due to exhausting a combination of bioenergetic 

demands (phagocytosis, killing, etc). Here we compare three dif- 

ferent model assumptions. In model 1 we assume that the loss is 

strictly due to macrophages using up key resources during phago- 

cytosis. In this case the rate of killing is a decreasing function of 

the average number of both viable and non-viable intra-cellular 

bacteria per active cell, ( S i + S k ) / M a . In model 2 we assume that 

the loss is due to using up resources during killing, meaning the 

rate of killing is a decreasing function of the average number of 

only non-viable intra-cellular bacteria per active cell (i.e., those 

killed), S k / M a . Finally in model 3 we assume that the loss is due 

to the down-regulation of killing by macrophages as the infection 

density increases (for example, to maintain resources for phago- 

cytosis). In this case we assume that killing is a decreasing func- 

tion of the extra-cellular bacteria density, S e . As we say, in reality 

we expect a combination of these processes is involved, but these 

model assumptions may guide us in which processes are key. For 

each assumption, this equation can be given by, 

h ( X ) = k 

(

1 −
X p k 

X p k + c k 
p k 

)

(3) 

where X ∈ [ ( S i + S k ) / M a , 
S k 
M a 

, S e ] depending on the model ( Fig. 1 b). 

If p k = 1 , the initial drop in killing is linear with S. aureus density. 

If p k > 1, killing initially remains high before a threshold effect 

and a sharp drop in killing. If p k < 1, then killing drops off quickly 

before saturating. 

The full system of equations is given below. See Table 2 for a 

list of parameter definitions and a schematic of the model in ESM. 

d M P 

dt 
= αM 0 

(

S p αe 

S p αe + c α p α

)

− βM P 

(

S 
p β
e 

S 
p β
e + c β

p β

)

(4) 

dM a 

dt 
= βM P 

(

S 
p β
e 

S 
p β
e + c β

p β

)

(5) 

d S e 

dt 
= r S e 

(

1 −
S e 

K 

)

− β( M P + M a ) 

(

S 
p β
e 

S 
p β
e + c β

p β

)

(6) 

d S i 
dt 

= β( M P + M a ) 

(

S 
p β
e 

S 
p β
e + c β

p β

)

− k S i 

(

1 −
X p k 

X p k + c k 
p k 

)

(7) 

d S k 
dt 

= k S i 

(

1 −
X p k 

X p k + c k 
p k 

)

(8) 

2.5. Model Fitting 

The model is fitted to the experimental data using a 

rejection Approximate Bayesian Computation (ABC) approach 
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Table 1 

Details of model fitting from 10,0 0 0 runs with parameter values chosen from uniform distribu- 

tions with maximum and minimum values as shown by the histograms in Fig. 2 . This shows 

the minimum sum-of-squared error returned under each killing assumption, and the numbers 

of runs under certain error thresholds. 

Killing assumption Min. ǫ Runs with ǫ < 8 Runs with ǫ < 9 Runs with ǫ < 10 

Model 3 S e 6.639 27 141 388 

Model 2 S k / M a 7.761 4 85 284 

Model 1 ( S i + S k ) / M a 8.388 0 3 11 

Table 2 

Parameter descriptions, their mean values from model fitting with ε = 9 and the range of values in 

the uniform prior distribution. 

Parameter Definition Mean posterior value Prior range 

α Basic priming rate of M 0 cells 12.229 0.5-25 

c α Threshold density of priming function 2.223 × 10 4 10 2 − 10 6 

p α Power (slope) of priming function 4.708 0-10 

β Basic ingestion rate of cells 3.232 0.5-8.5 

c β Threshold density of ingestion function 3.776 × 10 8 10 2 . 5 − 10 9 . 5 

p β Power (slope) of ingestion function 0.557 0-2 

r Basic growth rate of S e bacteria 0.571 0.4-0.8 

k Basic killing rate of cells 13.685 0-20 

c k Threshold density of killing function 2.159 × 10 7 10 5 . 5 − 10 8 . 5 

p k Power (slope) of killing function 4.934 0-10 

Beaumont, 2010 , Csill éry et al., 2010 ). Such a Bayesian approach is 

advantageous since it incorporates variation/uncertainty in the pa- 

rameter estimates. Given that the experimental data itself reveals 

variation of as much as an order of 10, accounting for this varia- 

tion is clearly important. Values for each parameter in the model 

are randomly sampled from uniform prior distributions with de- 

fined upper and lower limits chosen after preliminary runs. The 

model is then run using the ode45 solver in MATLAB and the sum 

of squares error calculated between the logged model output and 

logged data, summed over the intra- and extra-cellular densities at 

the four MOIs. Macrophage data is not included in the model fit- 

ting as it was gathered from a separate experiment, but is used as 

a comparison of models at a later stage. If the error is less than 

some chosen value, ɛ , the parameter set is accepted and stored, 

if it is greater than the value it is rejected. As ɛ becomes smaller 

the parameters should approach the ‘true’ values. 10 0,0 0 0 runs are 

performed for each model. This results in posterior distributions 

for every parameter of those sets kept for each model. Compar- 

isons of the three models tested (where limitation in killing de- 

pends on ((1) average number of bacteria ingested, (2) average 

number of bacteria killed or (3) extracellular bacteria densities) are 

performed firstly by computing Bayes factors given by the ratio of 

acceptance rates for a given ɛ , and secondly by computing Akaike 

Information Criteria (AIC) for the (mean) least-squares error when 

fitted against the macrophage data. 

An additional model assumption was tested in which for the 

first half hour there is neither bacterial growth nor ingestion, but 

this was found to produce relatively poor model fits. 

3. Results 

Table 1 presents a comparison of the performance of the three 

model variants tested (see Table 2 for the maxima and minima of 

the uniform priors). It is immediately clear that the least success- 

ful model is model 1 (killing is a function of the average number 

of bacteria ingested, ( S i + S k ) / M a ), with both a much higher min- 

imum error and far fewer numbers of runs falling below arbitrar- 

ily chosen cut-offs than the other two models. Of the remaining 

assumptions, model 3 (killing is limited by extracellular density, 

S e ) receives the stronger support. Comparing model 3 with model 

2 (limitation through number of bacteria killed) the Bayes factor 

for the given values of epsilon are 6.75 ( ε = 8) , 1.66 ( ε = 9) and 

1.37 ( ε = 10) . This indicates some positive, but not strong, support 

for selecting the model with limitation due to extracellular bacte- 

ria over the model with limitation due to killed bacteria ( Kass and 

Raftery, 1995 ), with increasing support as the threshold for accep- 

tance is reduced. Further investigation revealed some sensitivity to 

the chosen bounds of the priors, in particular the rate of prim- 

ing, α. When this is constrained to a lower maximum the Bayes 

factor for model 3 vs model 2 improves dramatically due to re- 

duced success of model 2 (with a maximum of α= 10 the accep- 

tances for ε = 9 become 128 and 5 respectively, giving a Bayes fac- 

tor of 25.6, indicating strong support for model 3). Additionally we 

compared the performance of each of these two models at fitting 

the as-yet unfitted macrophage data. Running 100 simulations with 

all parameter values chosen from the accepted posterior distribu- 

tions ( ε = 9) of the two models, the average sum of squares er- 

ror for model 3 is 51.14 and for model 2 is 104.12. Treating these 

averages as model runs, this yields a relative AIC (7 data points 

and 10 parameters) for model 2 of 0.08, again indicating reason- 

able but not overwhelming support for model 3 as the better fit. 

We suggest this unintuitive result indicates that killing is limited 

by a combination of bioenergetic processes, and that the extracel- 

lular density is providing the best ‘snapshot’ of the demands on 

the macrophages, with the non-negligible support for the limita- 

tion by killing model suggesting this may be a key process. For 

the remainder of the study we focus on the model with limitation 

through extracellular density. 

Fig. 2 shows the posterior distributions of the parameter values 

for the model with killing linked to extracellular density where ε = 

9 . Note that the three threshold densities are plotted as logarithms. 

A number of the parameters present as normal distributions (par- 

ticularly p β , r , c k ), and others with clear indications that the param- 

eter is ‘low’ or ‘high’ (e.g. c α , β , c β , k ), giving us some confidence in 

the value of these parameters and their importance for the model. 

Other parameters yield rather uninformative posterior distribu- 

tions, for example the power in the killing function, p k , is likely 

to be greater than 1 (and is thus sigmoidal) but could take almost 

any positive value and still return good fits. In contrast it is notable 

that the power in the ingestion function, p β , is very likely to be 
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Fig. 2. Posterior distributions for parameters in Eqs. (4)–(8) from Approximate Bayesian Computation, with a sum of squares error threshold of 9 after 10 0,0 0 0 model runs. 

For each parameter 10 equally sized bins between the minimum and maximum of the uniform priors are used. 

less than one and thus non-sigmoidal. This provides a clear con- 

trast to many previous models of bacteria-cell dynamics that as- 

sume a power of unity ( Marino and Kirschner, 2004 , Kischner and 

Marino, 2005 ). Also, the threshold density for priming, c α , appears 

to be less than 10 5 , potentially with a high saturation constant, p α , 

suggesting that at very low MOIs few macrophages are primed at 

early time points, but at higher MOIs priming in response to bac- 

teria happens rapidly. 

Fig. 3 plots the experimental data (circles for fitted data, crosses 

for unfitted data) against 100 runs where two parameters – the 

threshold values for ingestion, c β , and killing, c k – were drawn at 

random from the posterior distribution (grey lines) and all other 

parameters took the mean posterior value (see Fig. 2 and Table 2 ). 

One run using the mean values for all parameters from the poste- 

rior distributions is also highlighted (black line) (we acknowledge 

that the mean value is not necessarily representative of certain 

parameter values, but is a parsimonious choice for producing in- 

dicative results). Focusing on the mean (black solid line), the fit 

against the data is reasonable with two clear discrepancies: under- 

prediction of the number of intracellular bacteria at the lowest 

MOI, and a later acceleration of intracellular bacteria at the highest 

MOI. However, varying just the two parameters appears to account 

for almost all of the variation in the data, and in particular demon- 

strates the relatively slow extracellular dynamics at low MOIs and 

the take-off of intracellular numbers at the highest MOI. These two 

parameters, c β and c k were chosen as parameters that are unlikely 

to have ‘pre-determined’ fixed values and variability should be ex- 

pected. Fig. 4 a again shows 100 simulation runs but now with all 

parameters drawn from the posterior distribution, and now cover- 

ing all variation in the data. Overall we suggest that there is some 

variability in many of the biological processes, and especially the 

ingestion and killing thresholds. Indeed, it is noticeable that we 

see variation within the three experimental data replicates in each 

MOI, especially at the higher doses. The existence of this variability 

lends weight to our selection of a Bayesian model fitting routine, 

which inherently captures the heterogeneity. 

We conduct predictive checks of the model under both the 

prior and posterior parameter distributions to consider how well 

the fitted model is capturing the data ( Maclaren et al., 2017 ). 

Fig. 4 b is identical in its production to Fig. 4 a except that here 

we have used the prior distributions for the parameter values. It is 

clear graphically that the fitted model performs significantly bet- 

ter at capturing the data. Moreover we can again use the unfitted 

macrophage data as an additional data set to measure the least- 

squares error as 100 full sets of parameter values are drawn at 

random from the posterior and prior distributions. Above we had 

found the posterior error had a mean of 51.14. For the prior distri- 

bution the mean error is 166.84, leading to a relative AIC of 0.016. 

Again, this gives a clear indication that the fitted model is better 

capturing the behavior of the data. 

3.1. Mathematical analysis 

We now perform a more formal mathematical analysis, in- 

formed by the model fitting above, to explore the system’s be- 

haviour. In particular, the behavior of the system (4) –(8) depends 

critically on the form of the ingestion function with different qual- 

itative outcomes for non-sigmoidal and sigmoidal functions. Given 

the clear prediction that ingestion is non-sigmoidal ( p β ≤ 1) from 

the model fitting, we focus only on this case. 

Eqs. (4) –(6) for the macrophage and extracellular bacteria den- 

sities form a closed system that can be solved. For non-sigmoidal 

ingestion there are two biologically-relevant (that can be both 

stable and positive) equilibria. The first is an infection-free case 

( S e = 0 , M p = Y − X, M a = X) where the macrophages have suc- 

cessfully eradicated the infection, taking X active cells to do so 

(with M 0 = M̄ − Y un-primed cells remaining). Since there are no 

extracellular bacteria we would also expect the intracellular num- 

bers to eventually decrease to zero, though this may be a very slow 

process if the intra-cellular densities had got too high before the 

infection was eradicated. For the special case of p β = 1 this equi- 
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Fig. 3. Experimental data (circles for bacteria data, crosses for macrophage data) and mathematical model fits for four MOIs. In each case the x-axis represents time in 

hours, and the y-axes are the log-10 densities. The black solid line gives the mean values from the posterior distributions in Fig. 2 . The grey lines show 100 runs with the 

threshold values for ingestion, c β , and killing, c k chosen from the respective posterior distributions. 

Fig. 4. Similarly to Fig. 3 , experimental data (circles for bacteria data, crosses for macrophage data) and mathematical model fits for four MOIs. In (a) all parameters are 

drawn from the posterior distributions in Fig. 2 . In (b) all parameters are drawn from the prior distributions as in Table 2 . 

librium is stable when, 

r < 
βM̄ 

c β
, 

in other words when the growth rate of the bacteria is lower than 

the ingestion rate of the macrophages at low bacteria densities. 

Based on the parameter estimates above this would require very 

high cell densities (~10 7 ) to be possible. More generally, for p β < 1, 

the infection-free equilibrium is always locally stable since at very 

low bacterial densities we always have d S e 
dt 

< 0 due to the relatively 

high ingestion rates at low bacterial densities, though the basin 

of attraction (in terms of S e densities) for this equilibrium shrinks 

rapidly as M̄ → 0 (see Fig. 6 below). 

The second case is an endemic quasi-equilibrium, 

which for the special case of p β = 1 occurs at ( S e = 

( K − c β + 

√ 

( K + c β ) 2 − 4 K M 
r ) / 2 , M p = 0 , M a = M̄ ). The case 

when p β < 1 will be qualitatively similar (as can be seen by 

plotting the two terms of equation (6) and considering how the 

two curves will cross). Here all macrophages contain bacteria and 

the extracellular numbers have settled to an equilibrium that is 

a small amount below their carrying capacity. The percentage 

reduction is proportional to 
√ 

M̄ /K , which would mean a very 

small reduction given the densities used in the accompanying 

experimental work ( 
√ 

10 5 / 10 9 = 1% reduction from K ). While this 

final reduction may be minimal, the impact of the macrophages 

on the initial growth is starkly illustrated by considering the 

per-capita growth rate of extracellular bacteria in equation (6) . 

This is given by, 

ρ = r 

(

1 −
S e 

K 

)

− β( M P + M a ) 

(

S 
p β−1 
e 

S 
p β
e + c β

p β

)

. (9) 

Under the assumption that all macrophages are primed (such 

that M P + M a = M̄ ) , we can compare the case where p β = 1 

(dashed) with the mean value predicted from the model fitting 

p β = 0 . 557 (solid) in Fig. 5 . It is striking that at lower bacterial 

densities, under the predicted shape of the ingestion function, g ( S e ) 

( equation (2) ), the macrophages’ response have a considerable im- 



A. Best, J. Jubrail and M. Boots et al. / Journal of Theoretical Biology 497 (2020) 110256 7 

Fig. 5. The per-capita growth rate, ρ , Eq. (9) , of extracellular bacteria, with values set as the mean from the posterior distributions in Fig. 2 . In particular p β = 0 . 557 (solid 

line). For comparison p β = 1 (dashed) is also shown. 

pact on extracellular growth, thus causing a significant delay in the 

bacteria approaching its final density. 

We term this second case considered above a quasi-equilibrium 

since the number of intracellular bacteria will in fact continue to 

increase by Eq. (7) . The quasi-equilibrium only exists up to a cer- 

tain value of M̄ , and for higher values only the infection-free state 

is feasible. However, even for lower values of M̄ , where both equi- 

libria are feasible, there is a region of bistability in the system as 

the stability condition is distinct from that of the infection-free 

case, which for the special case of p β = 1 is given by, 

r > 
βM̄ c βK 

(

S ∗e + c β
)2 

( K − 2 S ∗e ) 
. 

For the more general case of p β < 1, as we have noted, the 

infection-free equilibrium is always locally stable, and this bistabil- 

ity exists for the whole range of M̄ for which the endemic quasi- 

equilbirium is feasible. This can be seen clearly by plotting the 

equilibrium values for S e as the total cell density is varied as in 

Fig. 6 (using the mean parameter values from the posterior distri- 

butions in Fig. 1 ). At low values of M̄ the basin of attraction for 

the endemic quasi-equilibrium is very large and even small doses 

of bacteria will grow to close to the carrying capacity. Indeed, for 

the population sizes used here (10 5 ), a bacterial dose of 100 (i.e. 

an MOI of 0.001) would see the bacteria grow. For very high val- 

ues of M̄ the bacteria will always be eradicated. For intermediate 

densities, however, the outcome depends on the initial density of 

bacteria, with full control possible for realistic S. aureus doses if 

the macrophage population is large enough. 

4. Discussion 

We find that at low doses of S. aureus infection macrophages 

delay exponential growth of the bacteria for a number of hours, 

buying the host time to recruit other inflammatory cells to con- 

trol infection. At higher doses the response can be overwhelmed 

such that there is almost no control. We identified bistabilities in 

Fig. 6. – Location and stability of extracellular bacteria equilibria for varying 

macrophage numbers, M̄ . Solid line gives the stable equilibrium, the dashed line 

the unstable equilibrium. Arrows show the basin of attraction. Parameter values are 

the means of the posterior distributions in Fig. 2 as given in Table 2 . 

the system such that a large and fast enough macrophage response 

may be able to significantly limit the final size of the infection pro- 

vided the dose is low. We also found that killing is the key lim- 

iting step in the macrophage response to all infections, but that 

ingestion fails to keep pace with bacterial growth at high bacte- 

rial densities. Our model provides a good fit to experimental data 

and provides important insights into the early course of S. aureus 

infections. 
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Previously there has not been robust experimental kinetic data 

involving differentiated macrophages on which to base model pa- 

rameters. A great strength of this model is that it is informed 

by data with a differentiated macrophage cell line that replicates 

the phagocytic and microbicidal response of differentiated tissue 

macrophages ( Daigneault et al., 2010 ). Moreover the experimental 

data has been validated for primary human macrophages and in 

the clinically relevant JE2 strain ( Jubrail et al., 2015 ). This makes 

the data relevant to major clinical strains that are highly prevalent, 

such as USA300. These play a major role in current community- 

acquired MRSA infections and are a major cause of skin and soft 

tissue infection ( DeLeo et al., 1999 ). Based on this experimen- 

tal data our model has shown that macrophages may not fully 

clear an S. aureus infection even at relatively low initial doses. The 

growth rate of the bacteria generally outstrips the ingestion rate 

of the macrophages for parameter values estimated from experi- 

mental data. The macrophage response will reduce the final size 

of the extracellular bacterial population, but only by a small per- 

centage. However, we do see that at low doses the macrophages 

are able to delay exponential growth of the bacteria for a number 

of hours due to the relatively high ingestion rate at low bacterial 

densities. In vivo this may allow the immune system to ‘buy time’ 

while further immune cells, including neutrophils and T-cells, are 

recruited to the site of infection. This extended control of infec- 

tion at lower doses could activate downstream signalling pathways 

in active macrophages leading to the recrutiment of monocytes 

and/or other immune cells to further help with infection control. 

Macrophages play important roles generating the cytokine net- 

works required to recruit other immune cells during the immune 

response to Gram-positive bacteria such as S. aureus ( Cole et al., 

2014 ), so the extra time they buy during infection may be highly 

relevant for infection outcome. A clear area for future modelling is 

to incorporate the recruitment of such cells to give a more realistic 

model of an in vivo infection, similarly to models of Mycobacterium 

( Kischner and Marino, 2005 ) and Streptococcus ( Smith et al. ). 

It is clear from our results that the killing ability of 

macrophages is finite and becomes overwhelmed with sustained 

killing. Interestingly, our Bayesian model fitting indicates that this 

limitation may be linked to the extracellular bacteria density. We 

suggest this result reflects that it is not individual processes re- 

lated to intracellular numbers, such as ingestion or killing, but 

the cumulative effect of all of these that limits clearance. It may 

be that extracellular numbers are a better surrogate for the over- 

all effect of intracellular burden since measures of viable or non- 

viable bacteria intracellularly represent only a ‘snapshot’ of over- 

all interacellular burden and clearance. What is clear, however, 

is that after macrophages have been actively tackling relatively 

low numbers of bacteria the killing rate shows a significant drop- 

off to a state of almost no further killing. This fits with current 

knowledge from experimental studies of this system that loss of 

killing is a significant limiting step in macrophages’ response to 

S. aureus infection ( Jubrail et al., 2015 ). Stimulating macrophages 

with the M1 cytokine interferon gamma (IFN γ ) only modestly 

improved intracellular killing suggesting that failure of classical 

macrophage activation was not responsible and intracellular killing 

capabilities had been overwhelmed irrespective of classical activa- 

tion ( Jubrail et al., 2015 ). The ingestion ability of macrophages, on 

the contrary, showed no evidence of a decline, but the rate of in- 

gestion did saturate at medium bacteria densities since cells can- 

not physically ingest more than a set number of bacteria in a cer- 

tain time. Thus our model identifies that ingestion by macrophages 

is also an important limiting step as the size of infection grows. 

However, at low bacteria densities the model fitting suggests 

that the macrophages are rather efficient at ingesting and that 

full eradication of moderate inocula would be possible for large 

enough macrophage numbers. This emphasises the importance of 

the macrophage response being launched before the infection has 

grown too large. It would be interesting to consider the extent to 

which such dose-dependent responses are seen in other pathogens. 

While we have based our model on in vitro experimental re- 

sults, our model has suggested that complete eradication of low 

dose infections would be possible if far more macrophages were 

added, provided they were in the optimal polarisation status. This 

would have the effect of increasing the ingestion rate of the 

macrophage population. While this was not tested in our experi- 

mental set-up, in vivo it may be possible if recruitment of addi- 

tional monocytes is fast enough. Monocytes have been shown to 

contribute to control of S. aureus in animal models ( Veltrop et al., 

20 0 0 ) and recruitment of monocytes from the blood into the tis- 

sues and subsequent differentiation into macrophages could be 

beneficial for pathogen control. There is also evidence of local pro- 

liferation of alternatively activated macrophages within tissues un- 

der conditions where Th2 cytokines dominate ( Jenkins et al., 2011 , 

Jenkins et al., 2013 ), as would occur during conditions such as 

eczema and atopic dermatitis, that are associated with S. aureus 

colonisation ( Gong et al., 2006 ). Thus one can envisage clinical sce- 

narios where macrophage numbers responding to S. aureus could 

be supplemented either from monocyte-derived or tissue-derived 

populations to help control infection. However, it reamins unclear 

whether these alternative sources would enhance clearance or pro- 

vide extra cells in which ingestion might promote a population 

of viable intracellular opulation of bacteria since ingestion with- 

out complete killing can favour escape from macrophage host de- 

fence by Gram-positive bacteria, as recently demonstrated for sub- 

populations of splenic macrophages that fail to clear ingested S. 

pneumoniae , promoting sepsis ( Ercoli et al., 2018 ). Therefore the 

number of ‘active’ macrophages is likely to be a critical determi- 

nant of outcome. In this respect an increase in numbers of ‘ac- 

tive’ macrophages and the ability to prime cells for this function 

is likely to vary between individuals explaining some of the vari- 

ation in ability to handle bacteria observed. This would be more 

likely than altering numbers of tissue macrophages at the site of 

infection in the initial period .With the exception of clinical stiu- 

ations such as radiation or inhalation of toxic fumes variation in 

tissue macrophage numbers is less likely to vary than the qualita- 

tive function of these cells ( Cole et al., 2014 ). 

An important finding from the model is that there is bistability 

between different states. This means that infections at low doses 

are much more easily controlled than those at high doses, high- 

lighting the importance of a fast immune response to S. aureus 

infection. Moreover, the bistability means that simply calculating 

an “R 0 -like” bacteria-free stability condition is not enough to en- 

sure control, and if the immune response, or indeed treatment, is 

delayed then control of the infection is much harder. An implica- 

tion of this is that if the immune competence of the macrophage 

is altered control of S. aureus may be less successful. An exam- 

ple of this clinically could be the observation that S. aureus skin 

infections with virulent MRSA strains are more frequently encoun- 

tered in people living with HIV infection ( Popovich et al., 2010 ), a 

setting where macrophage function is altered ( Collini et al., 2010 ). 

Variation in numbers of ‘active’ macrophages represents a plausible 

explanation to how the the bistability in the model we observed 

could lead to variation in disease outcome between patient groups. 

The model fitting highlighted that there appears to be some 

variation in a number of the mechanistic rates, as a single param- 

eter set failed to fit all of the experimental data well simultane- 

ously, particularly of the timing of sudden increases in intracellu- 

lar bacteria. Our approach of using Approximate Bayesian Compu- 

tation allowed us to overcome this by including variability in the 

parameter estimates. In particular, allowing variation in the param- 

eter values for the killing and ingestion thresholds allowed most 

of the variation in the data to be predicted, suggesting that these 
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processes may not be homogenous or some biologically relevant 

terms may be missing from the model. As well as the future ex- 

tensions already mentioned above, it may therefore also be im- 

portant to explore the impact of macrophage heterogeneity. Tis- 

sue heterogeneity in macrophage populations is increasingly recog- 

nised both in terms of the variation between tissues ( Gordon et al., 

2014 ) and the range of phenotypes within a tissue ( Laskin et al., 

2001 ) and future work should explore this. There could also be sig- 

nalling between macrophages allowing an exhausted macrophage 

to elicit a signal to a nearby macrophage which can pick up the 

released bacteria. The concept of direct and indirect paracrine ef- 

fects in response to a pathogen are well characterized in infectious 

diseases and can be transmitted by cytokines or other signaling 

peptides produced by the host cells ( Mosser and Edwards, 2010 ). 

These cytokine responses lead to paracrine effects on neighbour- 

ing cells that can enhance pathogen clearance. Again, models of 

other bacteria-cell interactions have included cytokine signaling 

( Kischner and Marino, 2005 , Smith et al .) and would be an im- 

portant extension to explore here. 

In conclusion, we have shown that based on unique experimen- 

tal data we do not expect macrophages to completely eradicate 

S. aureus infections on their own except at very low inocula, but 

that they will delay the exponential growth phase, buying time 

for recruitment of further immune cells. In addition supplement- 

ing numbers of activated macrophages can further enhance the 

macrophages’ contribution to the immune response and clearance 

of S. aureus . Thus despite S. aureus ability to subvert macrophage 

innate responses macrophages still make a major contribution to 

host defense against this pathogen. 
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Csill éry, K. , Blum, M.G.B. , Gaggiotti, O.E. , Fran ̧ cois, O. , 2010. Approximate Bayesian 
computation (ABC)in practice. Trends Ecol. Evol. 25, 410–418 . 

Daigneault, M, Preston, JA, Marriott, HM, Whyte, MK, Dockrell, DH, 2010. The identi- 
fication of markers of macrophage differentiation in PMA-stimulated THP-1 cells 
and monocyte-derived macrophages. PloS one 5 (1), e8668. doi: 10.1371/journal. 
pone.0 0 08668 , Epub 2010/01/20PubMed PMID:20084270; PubMed Central PM- 
CID: PMCPMC2800192. 

Day, J , Friedman, A , Schlesinger, LS. , 2011. Modeling the host response to inhalation 
anthrax. J. Theor. Biol. 276, 199–208 . 

de Kraker, ME, Davey, PG, Grundmann, H, group Bs, 2011. Mortality and hospital 
stay associated with resistant Staphylococcus aureus and Escherichia coli bac- 
teremia: estimating the burden of antibiotic resistance in Europe. PLoS Med 
8 (10), e1001104. doi: 10.1371/journal.pmed.1001104 , PubMed PMID:22022233; 
PubMed Central PMCID: PMC3191157. 

DeLeo, FR , Allen, LA , Apicella, M , Nauseef, WM , 1999. NADPH oxidase activation and 
assembly during phagocytosis. Journal of immunology (Baltimore, Md: 1950) 
163 (12), 6732–6740 Epub 1999/12/10. PubMed PMID:10586071 . 

DeLeo, FR, Otto, M, Kreiswirth, BN, Chambers, HF, 2010. Community-associated 
meticillin-resistant Staphylococcus aureus. Lancet (London, England) 375 (9725), 
1557–1568. doi: 10.1016/s0140- 6736(09)61999- 1 , Epub 2010/03/09PubMed 
PMID:20206987; PubMed Central PMCID: PMCPMC3511788. 

Dockrell, DH , Marriott, HM , Prince, LR , Ridger, VC , Ince, PG , Hellewell, PG , et al. , 
2003. Alveolar macrophage apoptosis contributes to pneumococcal clearance 
in a resolving model of pulmonary infection. Journal of immunology (Bal- 
timore, Md: 1950) 171 (10), 5380–5388 Epub 2003/11/11. PubMed PMID: 
14607941 . 

Ercoli, G , Fernandes, V , Chung, W , Wanford, J , Thomson, S , et al. , 2018. 
Intracellular replication of Streptococcus pneumoniae inside splenic 
macrophages serves as a reservoir for septicaemia. Nat. Microbiol. 3, 
600–610 . 

Gong, JQ, Lin, L, Lin, T, Hao, F, Zeng, FQ, Bi, ZG, et al., 2006. Skin colo- 
nization by Staphylococcus aureus in patients with eczema and atopic der- 
matitis and relevant combined topical therapy: a double-blind multicen- 
tre randomized controlled trial. The British journal of dermatology 155 (4), 
6 80–6 87. doi: 10.1111/j.1365-2133.20 06.07410.x , Epub 20 06/09/13PubMed PMID: 
16965415. 

Gordon, S, Pluddemann, A, Martinez Estrada, F, 2014. Macrophage heterogeneity in 
tissues: phenotypic diversity and functions. Immunological reviews 262 (1), 36–
55. doi: 10.1111/imr.12223 , Epub 2014/10/17PubMed PMID:25319326; PubMed 
Central PMCID: PMCPMC4231239. 

Jenkins, SJ, Ruckerl, D, Cook, PC, Jones, LH, Finkelman, FD, van Rooijen, N, et al., 
2011. Local macrophage proliferation, rather than recruitment from the blood, 
is a signature of TH2 inflammation. Science 332 (6035), 1284–1288. doi: 10. 
1126/science.1204351 , Epub 2011/05/14PubMed PMID:21566158; PubMed Cen- 
tral PMCID: PMCPMC3128495. 

Jenkins, SJ, Ruckerl, D, Thomas, GD, Hewitson, JP, Duncan, S, Brombacher, F, 
et al., 2013. IL-4 directly signals tissue-resident macrophages to pro- 
liferate beyond homeostatic levels controlled by CSF-1. The Journal of 
experimental medicine 210 (11), 2477–2491. doi: 10.1084/jem.20121999 , 
Epub 2013/10/09PubMed PMID:24101381; PubMed Central PMCID: 
PMCPMC3804 94 8. 

Jonsson, S , Musher, DM , Chapman, A , Goree, A , Lawrence, EC , 1985. Phagocyto- 
sis and killing of common bacterial pathogens of the lung by human alveolar 
macrophages. The Journal of infectious diseases 152 (1), 4–13 Epub 1985/07/01. 
PubMed PMID: 3874252 . 

Jubrail, J, Morris, P, Bewley, MA, Stoneham, S, Johnston, SA, Foster, SJ, et al., 2015. 
Inability to sustain intraphagolysosomal killing of Staphylococcus aureus predis- 
poses to bacterial persistence in macrophages. Cell Microbiol doi: 10.1111/cmi. 
12485 , PubMed PMID:26248337. 

Kass, Robert E., Raftery, Adrian E., 1995. Bayes Factors. Journal of the Ameri- 
can Statistical Association 90, 773–795. doi: 10.1080/01621459.1995.10476572 , 
430. 

Kischner, D.E. , Marino, S. , 2005. Mycobacterium tuberculosis as viewed through a 
computer. TRENDS Microbiol. 13, 206–211 . 

Kumar, R , Chow, CC , Bartels, JD , Clermont, G , Vodovotz, Y , 2008. A mathemat- 
ical model of the inflammatory response to anthrax infection. Shock. 29, 
104–111 . 

Laskin, DL , Weinberger, B , Laskin, JD , 2001. Functional heterogeneity in liver 
and lung macrophages. Journal of leukocyte biology 70 (2), 163–170 Epub 
2001/08/09. PubMed PMID:11493607 . 

Maclaren, OJ , Parker, A , Pin, C , Carding, SR , Watson, AJM , AG Fletcher < /b> , 
Byrne, HM , Maini, PK , 2017. A hierarchical Bayesian framework for understand- 
ing the spatiotemporal dynamics of the intestinal epithelium. PLOS Comput Biol 
13, e1005688 . 



10 A. Best, J. Jubrail and M. Boots et al. / Journal of Theoretical Biology 497 (2020) 110256 

Marino, S. , Kirschner, D.E. , 2004. The human immune response to My- 
cobacterium tuberculosis in lung and lymph node. J. Theor. Biol. 227, 
463–486 . 

Mochan, E , Swigon, D , Ermentrout, GB , Lukens, S , Clermont, G , 2020. A mathemati- 
cal model of intrahost pneumococcal pneumonia infection dynamics in murine 
strains. J. Theor. Biol. 353, 44–54 . 

Mosser, DM , Edwards, JP. , 2010. Explorng the full spectrum of macrophage interac- 
tion. Nat. Rev. Immunol. 10, 460 . 

Popovich, KJ, Weinstein, RA, Aroutcheva, A, Rice, T, Hota, B, 2010. Community- 
associated methicillin-resistant Staphylococcus aureus and HIV: intersect- 
ing epidemics. Clin Infect Dis 50 (7), 979–987. doi: 10.1086/651076 , PubMed 
PMID:20192731. 

Rehm, SR, Gross, GN, Pierce, AK, 1980. Early bacterial clearance from murine lungs. 
Species-dependent phagocyte response. The Journal of clinical investigation. 66 
(2), 194–199. doi: 10.1172/jci109844 , Epub 1980/08/01.PubMed PMID: 6995480; 
PubMed Central PMCID: PMCPMC371698. 

Richardson, AR, Libby, SJ, Fang, FC, 2008. A nitric oxide-inducible lactate dehy- 
drogenase enables Staphylococcus aureus to resist innate immunity. Science 
319 (5870), 1672–1676. doi: 10.1126/science.1155207 , Epub 2008/03/22PubMed 
PMID:18356528. 

Rooijakkers, SH, Ruyken, M, van Roon, J, van Kessel, KP, van Strijp, JA, 
van Wamel, WJ, 2006. Early expression of SCIN and CHIPS drives in- 
stant immune evasion by Staphylococcus aureus. Cellular microbiology 8 
(8), 1282–1293. doi: 10.1111/j.1462-5822.20 06.0 0709.x , Epub 2006/08/03PubMed 
PMID:16882032. 

Smith, AM , McCullers, JA , Adler, FR , 2020. Mathematical model of a three-stage 
innate immune response toa pneumococcal lung infection. J. Theor. Biol. 276, 
106–116 . 

Tattevin, P, Diep, BA, Jula, M, Perdreau-Remington, F, 2009. Methicillin-resistant 
Staphylococcus aureus USA300 clone in long-term care facility. Emerg- 
ing infectious diseases 15 (6), 953–955. doi: 10.3201/eid1506.080195 , Epub 
2009/06/16PubMed PMID:19523301; PubMed Central PMCID: PMCPMC2727319. 

Veltrop, MH , Bancsi, MJ , Bertina, RM , Thompson, J , 20 0 0. Role of monocytes in ex- 
perimental Staphylococcus aureus endocarditis. Infection and immunity 68 (8), 
4 818–4 821 Epub 20 0 0/07/19. PubMed PMID:10899897; PubMed Central PMCID: 
PMCPMC98446 . 

Warrender, C, Forrest, S, Koster, F, 2006. Modeling intercellular interactions in early 
Mycobacterium infection. Bulletin of mathematical biology 68 (8), 2233–2261. 
doi: 10.1007/s11538- 006- 9103- y , Epub 2006/11/07PubMed PMID:17086496. 


	A mathematical model shows macrophages delay Staphylococcus aureus replication, but limitations in microbicidal capacity restrict bacterial clearance
	1 Introduction
	2 Methods
	2.1 Experimental methods
	2.1.1 Macrophage phagocytosis
	2.1.2 Macrophage killing
	2.2 Mathematical model
	2.3 Macrophage cell dynamics
	2.4 S. aureus dynamics
	2.5 Model Fitting


	3 Results
	3.1 Mathematical analysis

	4 Discussion
	Author Contributions
	Data
	Declaration of Competing Interest
	Acknowledgements
	Supplementary materials
	References


