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Abstract 

We use nationally representative English data to examine regional variations in 
body mass index (BMI) and waist circumference (WC), and to explore their 
underlying sources. Beyond our “at the mean” analysis, Shapley decomposition 
combined with  unconditional quantile regression analysis allow us to explore the 
relative contribution of small-area level proxies of the obesogenic environment as 
opposed to our set of individual-level characteristics, across the whole adiposity 
distribution . We find that the regional BMI differences, that are more evident 
towards the right tails of its distribution, are fully accounted for by the 
neighbourhood obesogenic environment. The latter exerts an independent 
contribution to excess adiposity over and above the potential mediating role of 
individual-level lifestyle and socio-economic position (SEP). Overall, the relative 
contribution of demographics (age and gender) becomes less evident moving to 
higher quantiles of the BMI distribution, while that of obesogenic environment, 
individual-level lifestyle and SEP measures becoming more relevant. The 
neighbourhood obesogenic environment is also much more relevant in the tails of 
the WC distribution. The role of the obesogenic environment on excess adiposity is 
more pronounced for women than men. Overall, our results highlight that policies 
that aim to tackle excess adiposity should address both people and places. 
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1.  Introduction  

Although progressive improvements in life expectancy and the health of the population 

have been evident over recent decades, preventable inequalities in health (including 

obesity) persist between regions within England (Baker, 2018; Newton et al., 2015; NHS 

Digital, 2018a; Shelton et al., 2009). Evidence for the period between 2008 and 2010 

shows that England has some of the largest regional health inequalities in Europe. For 

example, the life expectancy difference for women between the poorest English regions 

(the North East and North West) and the more affluent (London and the South East) 

was similar to the life expectancy gap between the former West and post-communist 

East Germany in the mid-1990s (Bambra et al., 2014). Understanding the geography of 

health is complex, given the regional variations and interactions of the different 

underlying health determinants at the individual, contextual and environmental level. 

The importance of mitigating regional differences in health is emphatically stated in the 

recent study by Newton et al. (2015): “if levels of health in the worst performing regions 

in England matched the best performing ones, England would have one of the lowest 

burdens of disease of any advanced industrialised country”.  

 

Excess adiposity is one of the leading risk factors for preventable ill-health and 

disability (Davillas and Pudney, 2019; Newton et al., 2015), being associated with 

several chronic conditions (GBD 2015 Obesity Collaborators, 2017; Must et al., 1999). 

Existing evidence shows significant regional differences in adiposity across the English 

regions. For example, obesity prevalence, defined as Body Mass Index (BMI) ≥ 30 kg/m2, 

is about 23% in London as opposed to 33% in the West Midlands (NHS Digital, 2018b). 

Regional inequalities in excess adiposity are of interest themselves, given the important 

socio-economic ramifications of obesity and the implied clustering of the health risks and 

disadvantage at the regional level. They are also important because they may influence 
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resource allocation and to infer the success of area-based policies to tackle obesity. From 

the perspective of health policy, better understanding of the underlying sources of the 

regional inequalities in excess adiposity are useful for local authorities, given their 

enhanced role as leaders for local population health. 

 

We use a nationally representative dataset for the UK, Understanding Society: the UK 

Household Longitudinal Study (UKHLS) to examine the relative contribution of the 

neighbourhood-level obesogenic environment and individual-level characteristics to 

adiposity variations in England. We use two measures of adiposity: BMI and waist 

circumference (WC). We contribute to the literature in a number of ways.  

 

First, we explore the presence of regional differences in adiposity at the nine 

Government Office Regions (GORs) of England. The GOR-level inequalities in obesity 

are frequently monitored in public health policy reports (e.g., NHS Digital, 2018a), with 

recent research aiming to explain regional-level health (including obesity) inequalities 

(Newton et al., 2015; Vallejo-Torres and Morris, 2010). Measurement of inequalities at 

GOR level has been of interest and policy relevance because these regions mostly 

coincide with administrative structures aimed to address English regional imbalances 

(i.e., the Strategic Health Authorities), up to their abolishment in favour of smaller scale 

and more local units of governance (Bambra et al., 2014; DHSC, 2013)1. These 

inequalities between regions are attributed to within region differences in the 

obesogenic environment at the small-area neighbourhood level is a timely issue, given 

the recently enhanced role of local authorities as leaders for local population health 

(DHSC, 2013). The legal duty for local authorities to commission care and support 

services is stated by the Department of Health and Social Care (DHSC, 2013): “they use 
																																																													

1 The Strategic Health Authorities (SHA) are coterminous with Government Office Regions, 
except that the large South East England region which is divided into the South Central and 
South East Coast SHA.  
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their knowledge of their communities to tackle challenges such as smoking, alcohol and 

drug misuse and obesity.”  

 

In this study, we use a detailed set of individual-level characteristics along with small-

area level proxies of the obesogenic environment to explore their relative contributions 

to the observed variations in our adiposity measures. We use multilevel analysis to 

explore the relative contribution of the neighbourhood-level effects, capturing the role of 

unobserved obesogenic characteristics. Beyond this analysis, we also employ a Shapley 

decomposition to directly decompose the contribution of our rich set of observed 

neighbourhood-level obesogenic characteristics and understand their relative role, over 

and above individual-level characteristics. This complements existing research 

exploiting the US institutional context on regional variations in food prices and taxes 

(Powell and Chaloupka, 2009; Rahkovsky and Gregory, 2013) or availability of detailed 

data on neighbourhood-level “food deserts” to better understand inequalities in health 

and nutritional status (Allcott et al., 2019). Other studies aiming to explore the role of 

the neighbourhood social conditions and “built” environmental factors on adiposity are 

often limited to specific geographical regions and selected population groups and, thus, 

do not provide nationally representative results (for example, Booth et al., 2005; 

Drewnowski et al., 2016; Lovasi et al, 2009). We focus on local (small-area level), 

modifiable obesogenic characteristics here, such as proxies for geographical barriers, air 

quality, criminality, local levels of anxiety, income and education deprivation levels. 

These latter may affect adiposity via their direct and indirect effects on the energy 

imbalance that causes excess adiposity (Papas et al, 2007; Stafford et al., 2007; 

Swinburn, 2011).  
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Although certain aspects of the built environment may affect obesity via direct biological 

mechanisms (such as, for example, the association between air pollution and metabolic 

disorders (An et al., 2018)), the role of obesogenic environment on adiposity is mainly 

behavioural via affecting consumption and energy expenditure (An et al., 2018; Carroll-

Scott, 2013; Santana et al., 2009). Our analysis allows us to explore the extent to which 

its role is mediated by the individual-level lifestyle and other characteristics, given the 

interplay between individual-level and environmental characteristics in affecting 

adiposity (Costa-Font and Gil, 2008; Raftopoulou, 2017; Santana et al., 2009), as well as 

the potential direct role of the obesogenic environment on adiposity. Identifying that the 

neighbourhood environment plays a systematic role for excess adiposity is of particular 

importance, indicating that a hypothetical movement of an individual from a less to a 

more obesogenic neighbourhood may put them at higher risk of excess adiposity. This 

information is also relevant for the design and planning of interventions to target 

aspects of the obesogenic environment at the neighbourhood level to tackle the obesity 

epidemic. 

	

Second, beyond our analysis “at the mean”, we also focus at quantiles of the distribution 

of adiposity. “Beyond the mean” estimation techniques allow us to explore the 

potentially heterogeneous patterns in the contribution of the explanatory variables 

across quantiles of the distribution with a focus on the right tails, where higher health 

care risks and costs are concentrated. To the best of our knowledge, this is the first 

study that combines Shapley decomposition techniques with unconditional quantile 

regression techniques (UQR) to explore regional inequalities in adiposity and the 

underlying individual and neighbourhood-level factors that may contribute to variations 

in adiposity. Analysis “at the mean” may mask important information in other parts of 

the adiposity distribution (for example,	 Green et al., 2016; Stifel and Averett, 
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2009).Dichotomising (or categorising) our adiposity measures using conventional clinical 

thresholds may also result in loss of information (Jolliffe, 2011).2 For example, assuming 

one of the most extensively used dichotomous indicators, i.e. obesity defined as 

BMI≥30mk/m2; does not explicitly explore the distribution of BMI above or below the 

threshold but treats those who fall into (or out of) obesity homogenously. By categorising 

BMI using thresholds, masks the fact that people with values well above any chosen 

threshold may experience significantly higher health risks compared to those close to 

the threshold. It has been shown that the latter matters when it comes to exploring the 

association between socioeconomic measures and adiposity (Jolliffe, 2011). Third, in 

contrast to many previous studies, we use nurse-collected adiposity measures. It has 

been shown that reporting errors in body weight (or BMI) are non-classical, meaning 

that they depend on individual characteristics and may create misclassification biases in 

obesity prevalence (Cawley et al., 2015).  

 

The rest of the paper is organised as follows. Section 2 describes our regression and 

decomposition analysis and section 3 introduces the data. Our results are presented in 

section 4, and section 5 concludes and summarises our findings.  

 

2.  Methods 

2.1 Regression and Decomposition Methods  

Our adiposity measures are initially modelled by linear regression, estimated using 

ordinary least squares (OLS). Regression models are first estimated using age, gender 

and regional dummies (Specification 1). We then enhance this specification by adding 

obesogenic small-area level characteristics (Specification 2). Our full specification is 

																																																													

2 It has been shown also that the prevalence of excess adiposity may increase over time, despite 
the mean BMI levels being unchanged, as a result of changes in the BMI distribution, with a 
greater numbers of people above certain excess adiposity thresholds (Madden, 2012). 
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further augmented by individual-level socio-economic position (SEP) and lifestyle 

covariates (Specification 3).  

 

We also estimate unconditional quantile regression models (UQR) that allow us to 

consider the entire distribution of the adiposity measures and to investigate the 

potentially differential associations at different points of their distribution (Firpo et al., 

2009). Unlike conventional quantile regression models, which explore the effect of 

covariates on the conditional quantiles of the outcome, the UQR technique estimates 

unconditional quantile partial effects.  

 

The estimation of the UQR is based on the Recentered Influence Function (RIF) (Firpo 

et al., 2009). The RIF can be estimated directly from the data by computing sample 

quantiles (𝑞!) of the adiposity measure (𝐻!) and then estimating the density of the 

distribution of adiposity measure at that quantiles using kernel density methods. 

Specifically, for an observed quantile (𝑞!), a RIF is generated as: 

 

𝑅𝐼𝐹 𝐻!; 𝑞! = 𝑞! +
!!! !!!!!

!! !!
                                                                                                   (1) 

 

where, 𝑞! is the observed quantile, 1 𝐻! ≤ 𝑞!  is an indicator that equals to one if the 

observed adiposity value is less than or equal to the observed quantile 𝑞! and zero 

otherwise. 𝑓! 𝑞!  is the estimated kernel density of the adiposity measure at the τth 

quantile. The RIF is then regressed on our different sets of covariates as defined in 

Specifications 1, 2 and 3 above. Our analysis is weighted using UKHLS sample weights 

to account for survey non-response and attrition, making the sample representative of 

the English population. 
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We then build on recent inequalities in health research that combines quantile 

regression techniques and Shapley decomposition techniques (Davillas and Jones, 2020). 

The Shapley decomposition (Shorrocks, 2013) is used to explore the contribution of each 

of the explanatory variables to the variance in adiposity measures explained (expressed 

in relative terms as a ratio to the overall variance) by our model specifications3. This 

allows us to explore the potentially heterogeneous patterns in the contribution of the 

explanatory variables across quantiles of the adiposity distribution with a focus on the 

right tail, implying higher health risks.  

 

In order to estimate the contribution of each of the explanatory variables to the variance 

in adiposity measures, the Shapley decomposition calculates the marginal effect to the 

variance in adiposity explained by eliminating each of the explanatory variables (𝑿) in 

sequence and, for each explanatory variable, assigns the average of its marginal 

contributions in all possible elimination sequences.4  

 

Unlike other decomposition techniques, the Shapley decomposition is both exactly 

additive and path (order) independent, indicating that the sum of factor (Xs) 

																																																													

3 This is equivalent to the contribution of each covariate to the R-squared of our models focusing 
at the mean (OLS) or at different quantiles of the distribution (UQR).  
4 Specifically, as an illustration example, there is no loss of generality to assume that there are 
only two covariates in our model specifications (𝑋!,𝑋!) and that (𝐼) is the indicator of interest to 
be decomposed (here, the relative explained variance in adiposity). The marginal effect of each 
variable on the indicator of interest can be computed in two ways, by first eliminating one 
variable and then the other, or vice versa. To compute the marginal contribution of 𝑋! for 
example, one way is to subtract from the overall (𝐼) indicator, the one obtained when this 
variable is omitted from the regression. The second way is to estimate (𝐼) by a regression with 𝑋! 
only and, then, subtract the derived (𝐼) from a regression with both variables are omitted; the 
latter is zero here as we are interested in the contribution of the explanatory variables to the 
explained variance in adiposity. Then, the Shapley contribution for 𝑋! can be given by averaging 

these possibilities: 𝐶! =
!

!
𝐼 𝑋!,𝑋! − 𝐼  𝑋! + 𝐼  𝑋! − 𝐼(. ) ; and analogously for 𝑋!. Allowing for 

more covariates makes things more complex and computationally intensive as all possible 
permutations of the explanatory variables need to be estimated, i.e., 2k, where 𝑘 is the number of 
explanatory variables. A more formal description of the Shapley decomposition of the relative 
variance explained by the model specification (equivalent to R-squared) can be found elsewhere 
(Israeli, 2007).	
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contributions adding up to the total variance explained. Typically, in most 

decomposition methods, the value of the contribution assigned to any given covariate 

depends on the order in which each covariate is eliminated from the model to calculate 

its contribution; as such, the different factors are not treated symmetrically. The path 

independence property of the Shapley decomposition ensures that we are able to explore 

the contribution of each factor robustly, irrespective of this ordering (Shorrocks, 2013).5 

However, as also noted by Ferreira and Gignoux (2014), Shapley decomposition 

techniques should only be interpreted as evidence on the relative importance of the 

different set of covariates. For example, the correlation between different aspects of the 

obesogenic environment at the small-area level may indicate that the coefficients might 

suffer from multicollinearity, which may bias our results and decomposition analysis. 

 

2.2  Multilevel random intercept models 

A multilevel random intercepts model may be a useful alternative to our analysis “at the 

mean”. A random intercepts model that allows for grouping of adiposity levels within 

small neighbourhood areas (LSOA-level) is estimated here. In practice, this is 

equivalent to a random effects model, as it allows for separate error components for each 

LSOA. This analysis provides an alternative way to explore the contribution of the 

neighbourhood level obesogenic environment to the explained variance in adiposity.  

 

Specifically, we estimate random intercept models without explanatory covariates, as: 

H!,! = β + θ! + u!,!                                                                                                                   (2) 

where, H!,! is the adiposity measure for an individual i in neighbourhood j, β is an 

unknown fixed intercept, θ! stands for the neighbourhood-level random effects and u!,! is 

																																																													

5 Shapley decomposition techniques have been used recently to explore to what extent (and what 
kind of) distributional changes in the BMI distribution may result in changes in obesity 
prevalence over time (Madden, 2012; Pak et al., 2016).		
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the error term. Given that this model allows for neighbourhood-level random intercepts, 

it captures the overall contribution of the neighbourhood obesogenic environment on 

adiposity (including unobserved factors), without the need to include specific 

neighbourhood-level obesogenic characteristics. The intra-class correlation coefficient 

(ICC) estimates the correlation between adiposity levels within neighbourhoods and, 

thus, the proportion of the total variance in adiposity that is attributed to 

neighbourhood characteristics. We then augment the models with GOR dummies and, 

subsequently, with our set of demographic, individual-level SEP and lifestyle covariates 

to explore whether the proportion of the total variance in adiposity that is attributed to 

neighbourhood characteristics is reduced. 

 

Although this analysis measures the share of the total adiposity variance that is 

attributed to the neighbourhood level, it is not helpful for understanding the 

neighbourhood-level obesogenic characteristics that exert the largest contribution. As 

such, these results may be considered as useful comparisons to our Shapley 

decomposition analysis “at the mean”, providing an alternative estimate for the total 

neighborhood-level contributions to adiposity.  

 

3.  Data 

The UKHLS is a large, nationally representative UK study. For this paper, we employ 

the General Population Sample (GPS), a random sample of the general population. 

Adiposity measures were collected for the GPS as part of the UKHLS wave 2 data 

collection (2010-2011). We focus on the English sub-sample, given the absence of 

comparable cross-national neighbourhood-level data for the rest of the UK that can be 

linked at the small-area level with UKHLS. Specifically, to obtain our neighbourhood-

level obesogenic data we have linked the UKHLS Wave 2 data (2010-2012) at the Lower 
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Layer Super Output Area (LSOA) level with selected sub-domains of the 2010 English 

Indices of Deprivation (EID2010). The LSOAs are lower layer geographies, taking into 

account population size, mutual proximity and social homogeneity; they have on average 

1,500 residents and 650 households. Following common practise (Flouri et al., 2013) and 

given data availability on linkage, respondents’ LSOAs at the UKHLS wave 2 collection 

are used to define neighbourhood areas.  

 

Given that we focus on adults we have excluded those individuals below the age of 20 

years old to overcome puberty-related body weight growth concerns (Davillas and 

Benzeval, 2016; Power et al., 1997). After excluding missing data on all variables used 

in our analysis, our working sample reduced from 13,162 adults aged 20+ (potential 

sample) to 12,271 (working sample)6. We use two adiposity measures: BMI and WC. 

BMI is calculated as the weight (kilograms) over the square of height (metres). Body 

weight, height and WC are measured by trained nurses using standard protocols. WC 

(in cm) was measured twice, or three times if the two original measurements differed by 

more than 3 cm. The mean of the valid measurements (the two closest, if there were 

three) is used (McFall, 2014). 

 

3.1 Aggregated regional-level (GOR) adiposity differences   

To explore the regional differences in adiposity levels, nine dummies for the GORs for 

England are included (South East, London, North West, East of England, West 

Midlands, South West, Yorkshire and the Humber, East Midlands and North East). 

GORs are the highest regional layer level for England, and are used here to explore 

regional adiposity differences at the aggregated level. One of the aims of our paper is to 

																																																													

6 Comparisons between the raw means of the full sample and our working sample show similar 
results, suggesting that the impact of item missingness may be limited.  
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explore the extent that regional differences in adiposity are attributable to the 

obesogenic environment and individual-level characteristics and behaviours. 

 

3.2 Neighbourhood-level obesogenic characteristics   

We use a set of modifiable small-area level characteristics to proxy the neighbourhood 

obesogenic environment. Our analysis allows us to explore the extent to which their role 

is mediated by individual-level characteristics and lifestyle, which are also accounted for 

in our model specifications (sub-section 3.3), as well as the potential direct role of the 

obesogenic environment on adiposity. Exploring the direct effect of these small-area 

level characteristics on adiposity levels (over and above individual characteristics) and 

to what extent these explain the adiposity inequalities at the aggregate regional level 

(GOR) is important for local-area policymaking. 

 

A proxy of neighbourhood air quality levels is included here. Several mechanisms may 

link air pollution to excess body weight (An et al., 2018): a) directly, as air pollution may 

result in metabolic dysfunction (via a number of biological mechanisms, such as 

increased oxidative stress and adipose tissue inflammation) that may result in excess 

adiposity; b) indirectly, as air pollutants have been linked to decreased lung function, 

elevated blood pressure, and other cardiovascular and respiratory symptoms, resulting 

in impaired exercise capacity and performance. In addition, air pollution may prevent 

people from engaging in regular physical activity, outdoor activities and promote 

sedentary lifestyles (An et al., 2018). A number of studies found systematic associations 

between air quality and excess adiposity (for example, An et al., 2018, Barrea et al., 

2017, Chaparro et al., 2018). In this study, we use sulphur dioxide concentrations at the 

LSOA level (the EID2010 sulphur dioxide indicator); a frequently used measure of air 

quality that is mainly attributable to metal processing, smelting facilities and motor 
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vehicles. This is defined as the average concentration of the pollutant by LSOA, divided 

by the WHO safe guideline levels for sulphur dioxide that are related with severe health 

risks (McLennan et al., 2011). It is, therefore, a ratio-scale indicator, and the higher the 

value, the closer the levels are to the WHO threshold, indicating worse air quality levels 

at the neighbourhood level. 

 

Neighbourhood crime levels may affect excess adiposity via several mechanisms. 

Neighbourhoods with excess crime levels may experience disinvestment and declining 

community resources and, thus, an environment which is unappealing and unsafe for 

fostering physical activity (Yu and Lippert, 2016). Beyond this community level 

mechanism, it has been shown that high neighbourhood crime rates are linked to a 

greater stress levels for the local population, which may lead to stress eating behaviours 

(Stafford et al., 2007; Torres and Nowson, 2007); more directly chronic stress initiates 

key physiological processes that increase the risk of obesity, and abdominal obesity in 

particular (Kahn et al. 1998).  The composite IMD crime domain index is used to proxy 

criminality levels at the neighbourhood level. This is a derived index that measures the 

rate of recorded crime levels (expressed per 1000 at-risk population or properties, 

accordingly) for four major crime types – violence, burglary, theft and criminal damage 

(McLennan et al., 2011)7. We have created a dummy variable taking the value of one for 

the most crime-deprived neighbourhoods (ranked at the higher tertile of the crime 

deprivation index) and zero otherwise.  

 

To explore the role of neighbourhood-level stressors in adiposity, a proxy of the 

community stress levels is also included in our analysis. Exposure to environmental, life 

																																																													

7 Given the differences in units of measurement, these indicators are standardised by ranking, 
and combined by the Office for National Statistics using weights to define a composite crime 
domain that can be used to order neighbourhoods with respect to their level of criminality 
(McLennan et al., 2011).   
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or work-related stressors is associated with a greater preference for high-sugar and fat 

foods, with existing evidence of a causal effect of stress on weight gain (Torres and 

Nowson, 2007). The EID2010 mood and anxiety disorder indicator derived index 

combines data from different administrative sources and can be used to rank 

neighbourhoods with respect to anxiety levels (McLennan et al., 2011). We have created 

a dummy variable to capture those neighbourhoods that have the highest anxiety levels 

(ranked at the highest tertile of the EID2010 anxiety index).  

 

We also account for the road distance to a GP to capture another aspect of the built 

environment. We used the road distance to a GP indicator of the EID2010, which 

captures the mean LSOA distance to the closest GP (in kilometres). Beyond being a 

proxy of the geographical barriers to access healthcare, this may be linked to excess 

adiposity via a direct link. In the UK, NHS Health Checks are largely conducted by GPs, 

with eligible individuals being offered a free screening test every five years. Obesity 

measurements (along with other cardiovascular related biomarkers) are fundamental 

parts of these checks; those individuals who are at risk are warned about their excess 

adiposity levels. Proximity to GPs may affect uptake (Burgess et al., 2015) and, thus, the 

possibility of tailored feedback on their adiposity levels, which may lead to behavioural 

changes and weight reduction. 

 

To capture SEP-related deprivation at the neighbourhood level, we have used the 

EID2010 income deprivation and the adults’ qualifications sub-domain. More prosperous 

neighbourhoods and those in which people with higher qualifications are clustered are 

more likely to have better built infrastructure, access to parks, and increased food 

options, with these resulting in more physical activity and/or reduced calories intake 

(Lopez, 2007; Santana et al., 2009).  
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The income deprivation domain measures the proportion of the population in an area 

that live in income-deprived families, defined as families claiming income support, 

income-based jobseeker’s allowance or pension credit. The skills deprivation sub-domain 

captures the proportion of adults at LSOA-level with no qualifications or with 

qualifications below National Vocational Qualification (NVQ) level 2 (McLennan et al., 

2011). Both indexes are ratio-scale variables with a natural interpretation. The higher 

values mean that a larger part of the LSOA-level population are income deprived or 

have low qualifications. 

 

Finally, we also account for fast-food density (per 1,000 population) at the local 

authority level. We match the most proximal administrative local authority-level data 

on fast-food restaurants (mid-2014) to our UKHLS wave 2 data8. The availability and 

proximity to fast-food restaurants is hypothesised to influence obesity rates (Dunn et al., 

2012; Lhila, 2011). 

 

3.3 Individual-level characteristics  

Following the literature (Baum and Ruhm, 2009; Davillas and Benzeval, 2016), we use a 

set of individual-level covariates that are typically associated with adiposity.  These are 

factors that affect the process by which energy balances (calories in versus calories out) 

are translated into changes in adiposity (Chou et al., 2004; Cutler et al., 2003).  

 

We include five age-group dummies (20-34, 35-49, 50-64, 65-79, 80+) for each gender. 

Three individual-level measures of SEP are included: levels of educational attainment  

																																																													

8   It should be noted that data availability prevents us from including fast-food density data at 
the LSOA level and, thus, it is the only obesogenic characteristic in our analysis that is merged 
at the local authority rather than the LSOA level (Public Health England, 2014). 
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(degree (reference category), post-compulsory but not tertiary qualification, secondary 

school-leaving qualification, basic/no-qualifications), a home ownership dummy and 

household income (equivalised using the OECD scale and log transformed). We also 

include individual-level indicators of health-related lifestyles: a) physical activity, 

proxied by sports activities (three of more times per week, at least monthly, less 

frequently/not at all (reference category)); b) a dummy for complying with public health 

recommendations to consume five or more fruits/vegetables per day to proxy healthy 

dietary habits (Davillas and Benzeval., 2016); and c) commuting to work, captured by a 

4-category variable ordered by the physical activity levels that each commuting method 

requires; no commuting (reference category), private transport, public transport and 

active transport). It has been shown that commuting patterns are associated with 

adiposity levels (Flint et al., 2014).  

 

4.  Results  

Figure 1 presents unconditional (without accounting for covariates) mean BMI levels 

(Panel A) and the 90th quantile of the BMI distribution (Panel B) across the nine regions 

(GOR) in England. Overall, there is a gradually increasing pattern in the mean BMI 

levels from the South to the North of England (p-value for the joint equality of the mean 

BMI across regions: 01e-5); however, there are no clear breaks to group regions into 

different classes by mean BMI (Figure 1, Panel A). Specifically, there are moderate 

differences in mean BMI between those regions with the higher and the lower mean 

BMI levels, although specific pairwise comparisons in the mean BMI levels across 

regions may not be sizable. The highest between-regions difference in the mean BMI 

levels are observed between London (the GOR with the lowest mean BMI) and North 

East (the one with the higher BMI), which is 1.10 kg/m2, equivalent to a difference of 3 

kg in body weight for someone on average height (1.67m).  
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More pronounced are the regional differences at the higher quantiles of the BMI 

distribution, where the health risks are higher (Figure 1, Panel B). For example, there 

are sizable differences in the BMI distribution for Yorkshire or North East compared to 

the two GORs at the South of England (South East and South West). The highest 10% of 

the BMI distribution (Q90) for Yorkshire and North East corresponds to higher BMI 

values (36.2 kg/m2 and above) compared to the relevant threshold for the South East 

and South West (34.3 kg/m2); this is a difference of about 2 BMI points (kg/m2), which is 

5.6kgs of body weight for an individual of average body height (1.67m tall). These 

results indicate that the BMI distribution for Yorkshire and North East seems to have 

longer, heavier tails compared to those for	South East and South West.  
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Figure 1. Mean BMI and the 90 th quantile of its distribution by region (GOR). 

Panel A: Mean BMI (kg/m2) Panel B: Q90 

  

Note: The colour palette is selected to allow for wider colour differences in the case of the Q90 graphs (Panel B, where 
regional differences are more evident) as opposed to those based on mean levels (Panel A).  

 

 

As an illustrative example to compare the whole BMI distribution by GOR, Figure 2 

presents the BMI distribution for two of the regions with the higher and lower Q90 in 

Figure 1 (Panel B). In accordance with the findings above, the BMI distribution of North 

East deviates from its for South West: the former has less mass around moderate BMI 

levels (20-28kg/m2) and more mass with high and extreme BMI values (compared to 

South West’s BMI distribution), also reflected by the higher BMI value that corresponds 

to the 90th quantile of the distribution (vertical lines).9 

 

																																																													

9 Two-sample Kolmogorov-Smirnov tests for equality of distribution functions reject the null 
hypothesis of equality in distributions across the two regions (p-value: 0.000).   
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Figure 2. Distribution of BMI for selected regions.  

 
Note: Vertical lines show the 90th percentiles of the two distributions.  

 

Figure 3 shows regional variations in the mean and the 90th quantiles of the WC 

distribution. Overall, we found only moderate between-region mean WC differences, 

which are gradually increasing when comparisons are made between regions with the 

lowest mean WC values and those with increasingly higher mean WC level. The larger 

differences in mean WC are observed between London and North East (Figure 3, Panel 

A); this is about 2.2 cm, which is equivalent to the one fifth of the standard deviation of 

the WC. Turning to the distributional statistics (Q90; Figure 3, Panel B), it is evident 

that it is not always the regions with the higher mean WC levels (Figure 3, Panel A) 

that have a WC distribution with the heavier tails and, thus, higher WC values that 

correspondent to Q90 as well as vice versa. The largest difference is observed between 

London and East of England, with the WC values at the 90th quantile of distribution 
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differs by about 3.4 cm between these regions. The WC distribution for East of England 

is more to the right, has more mass at higher WC values and heavier tails compared to 

this for London (Figure 4).10  

 

Overall, these findings suggest the importance of looking at the whole distribution of 

BMI and WC measures, rather than solely at mean. Regional variations are more 

pronounced at the right tails of the adiposity distributions, where health risks are more 

likely. We explore what are the underlying factors of the observed regional differences in 

adiposity at the mean and across the whole distribution as well as what drives within-

regional variations in adiposity.  

 

Figure 3. Mean waist circumference and the 90 th quantile of its distribution by region.  

Panel A: Mean WC (cm) Panel B: Q90 

  
Note: The colour palette is selected to allow for wider colour differences in the case of the Q90 graphs (Panel B, where 
regional differences are more evident) as opposed to those based on mean levels (Panel A). 

																																																													

10 The two-sample Kolmogorov-Smirnov test rejects the null hypothesis of equality of the WC 
distributions between East of England and London at the 1% level.   
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Figure 4. Distribution of waist circumference for selected regions. 

 
Note: Vertical lines show the 90th percentiles of the two distributions. 

 

4.1 Analysis at the mean  

Table 1 shows the Shapley decomposition results for the contribution of each of the 

explanatory variables to the variance in BMI explained (expressed in relative terms as a 

ratio to the overall variance) by our model specifications. After adjusting solely for 

demographics, GOR-level inequalities in BMI account for about 11.5% of the total 

explained variance (Specification 1). In other words, about one tenth of the explained 

variation in mean BMI is attributed to regional differences, after accounting for the 

effect of pure demographic variations11.  

																																																													

11 It should be noted here that the contribution of demographics remains practically unchanged 
when polynomials in age (interacted with gender, when statistically significant) are used instead 
of age-gender dummies. This is also the case for our “beyond the mean” analysis presented below 
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Table 1. Contribution to the share of the variance in BMI explained: Shapley 
decomposition.  

 Specification 1 Specification 2 Specification 3 
 Shapley 

value 
% Shapley 

value 
% Shapley 

value 
% 

Demographics (age-gender)  0.032 88.57 0.034 71.89 0.030 48.66 
Regional dummies (GOR) 0.004 11.43 0.002 4.47 0.002 3.00 
Neighbourhood-level characteristics       
Criminality index    0.001 0.80 0.001 0.49 
Anxiety index   0.001 2.00 0.001 1.48 
Air quality   0.002 3.86 0.002 2.38 
Distance to GP   0.001 1.24 0.001 0.69 
Income deprivation  0.002 4.53 0.002 2.49 
Skills deprivation   0.005 10.50 0.004 5.72 
Fast food density    0.000 0.71 0.000 0.65 
Individual-level characteristics       
SEP       
Household income     0.001 0.71 
Education      0.008 12.74 
House ownership      0.001 2.21 
Lifestyle        
Fruits/vegetables:5 day     0.000 0.20 
Sports activity      0.005 8.04 
Commuting behaviour     0.006 10.42 
Share of the total variance explained 0.036 100 0.047 100 0.061 100 

 

 

Augmenting Specification 1 with measured area-level obesogenic characteristics fully 

accounts for the contribution of the regional differences. The percentage contribution of 

the regional-level inequalities in BMI is reduced in magnitude from around 11.5% to 

4.5%, and the relevant regional dummies are not any more statistically significant (see 

Table A1, Appendix; p-value=0.168); this indicates that the observed regional variations 

in BMI are fully accounted for by the role of neighbourhood-level characteristics. 

Specifically, the Specification 2 shows that the neighbourhood-level SES deprivation, 

air-quality and proximity of the small-area in terms of distance to GP are the main 

contributors.  

 

																																																																																																																																																																																													

and when WC is used as our adiposity outcome measure. Statistical tests for equality of the age 
dummies rejected the null hypothesis, indicating the presence of systematic differentiation of the 
age effect across age groups.  
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Further augmenting our model with individual-level SEP and lifestyle indicators 

(Specification 3), reduces the aggregate percentage contribution of all the small-area 

level obesogenic characterises from 24% (specification 2) to 14% (specification 3). This 

indicates that individual-level characterises only partially account for the total 

contribution of the obesogenic environment, with the latter still having a systematic 

effect (joint significance test, p-value=0.000). Specification 3 shows that the individual-

level SEP and lifestyle indicators respectively contribute to about 16% and 19% of the 

explained variance in BMI, along with the increase in the absolute magnitude of the 

total variance explained. There is also a reduction in the contribution of demographics 

from 72% to 49% between specifications 2 and 3. Specifically, individual education is the 

dominant SEP contributor and physical activity proxies (frequency of sports 

participation and active commuting) exert the largest contribution from our set of 

lifestyle factors. Overall, these results indicate that much of the between-region BMI 

variation (GOR-level BMI differences; Specification1) can be attributed to the 

differences in the small-area level obesogenic environment, while individual-level SEP 

and lifestyle also exert an independent role in explaining overall variation in adiposity 

(after accounting for demographics). 

 

Regarding the mean level of central adiposity (Table 2), demographic factors dominate 

and regional inequalities in WC account for a much smaller proportion (around 1%) of 

the explained variation in WC across all model specifications (although regional 

dummies are statistically significant at the 1% level; Table A2, Appendix). This 

indicates that despite being statistically significant and unlike our results for BMI, the 

corresponding regional differences in central adiposity are not large enough to explain a 

considerable part of the total variation in central adiposity. However, as in the case of 

BMI, individual-level educational attainment and physical activity are the SEP and 
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lifestyle factors that make the largest contribution. Unlike the BMI results, the area-

level obesogenic environment explains a trivial part of the variation in central adiposity 

as our analysis “at the mean” shows. 

 

Table 2. Contribution to the share of the variance in WC explained: Shapley 
decomposition. 

 Specification 1 Specification 2 Specification 3 
 Shapley 

value 
% Shapley 

value 
% Shapley 

value 
% 

Demographics (age-gender) 0.185 98.66 0.188 95.63 0.179 83.21 
Regional dummies (GOR) 0.003 1.34 0.002 1.02 0.002 0.88 
Neighbourhood-level characteristics       
Criminality index    0.000 0.08 0.001 0.05 
Anxiety index   0.001 0.49 0.001 0.34 
Air quality   0.001 0.35 0.001 0.27 
Distance to GP   0.001 0.39 0.001 0.27 
Income deprivation   0.001 0.54 0.001 0.27 
Skills deprivation   0.003 1.44 0.002 0.78 
Fast food density    0.000 0.05 0.000 0.03 
Individual-level characteristics       
SEP       
Household income     0.001 0.21 
Education      0.010 4.63 
House ownership      0.002 0.74 
Lifestyle       
Fruits/vegetables:5 day     0.001 0.26 
Sports activity     0.009 4.08 
Commuting behaviour     0.009 3.98 
Share of the total variance explained 0.188 100 0.196 100 0.215 100 

 

 

4.2 Random intercept models  

Table 3 shows the ICC from our random intercept models. About 14% of the variance in 

BMI is attributed to unobserved neighbourhood-level effects, which is practically 

unchanged after accounting for GOR-level differences.  The contribution of the 

neighbourhood-level effects is reduced to about 12% when all individual-level 

characteristics are accounted for. These results broadly accord with the total 

contribution of our set of observed neighbourhood-level obesogenic characteristics in the 

Shapley decomposition (Table 1, Specification 3), confirming the role of the 

neighbourhood-level characteristics. 
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Turning to WC, about 12% to 13% of the variance attributed to the total role of the 

neighbourhood-level characteristics, captured by the LSOA-level random effects (Table 

3). These results further confirm the role of the neighbourhood environment, over and 

above the role of all other characterises accounted in our analysis.  

 

Table 3. Properties of the random intercept models 

 No covariates Accounting for 
GOR 

Accounting for all 
individual-level 
characteristics 

BMI    
ICC 0.141  

[0.117; 0.171] 
0.138  

[0.114; 0.167] 
0.118 

[0.094; 0.148] 
Waist circumference    
ICC 0.121  

[0.099; 0.146] 
0.118  

[0.097; 0.144] 
0.130 

[0.112; 0.148] 

Notes: Intra-class correlation coefficient (ICC). 95% confidence intervals in brackets.  

 

 

4.3 “Beyond the mean” analysis  

Table 4 shows Shapley decomposition results regarding the explained variance, 

expressed in relative terms as a ratio to the overall variance (equivalent to the R-

squared of linear regressions on the RIF), across selected BMI quantiles. There are 

three main findings. First, adjusting for gender and age only, GOR-level BMI 

inequalities exert an increasing and quantitatively important contribution of the total 

BMI variation explained, when moving to higher quantiles of BMI distribution. 

Specially, the relative contribution of the regional dummies (as a percentage of the total 

variance explained) increases from 5% to 19% across the BMI distribution. This 

indicates that, in the case of excess BMI (Q90), about one quarter of the total explained 

variance is attributed to regional BMI inequalities. Second, augmenting our models with 

small-area level obesogenic characteristics (Specification 2), fully accounts for the GOR-

level differences in BMI (joint test of regional dummies; p-value>0.10). The latter is 
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more evident towards the right tails of the BMI distribution; for example, in the case of 

Q90, the contribution of the obesogenic environment is around 50% and the direct 

contribution of the GOR dummies fall from 19% (Specification 1) to 5% (Specification 2). 

A more detailed look on the role of the particular neighbourhood-level characteristics at 

Q90 reveal that the small-area level SEP is the dominant contributor, while smaller but 

still important contributions are attributable to air quality and anxiety levels (detailed 

results available upon request). Third, accounting for individual level SEP and lifestyle 

characteristics, we find that part of the role of the neighbourhood obesogenic 

environment may be partially mediated by the individual-level characteristics. 

Specifically, Specification 3 shows that the contribution of SEP and lifestyle increases 

towards the right tails of the BMI distribution, with the role of demographics being 

much less evident. For example, the percentage contribution of SEP (lifestyles) increases 

from 11% (9%) at the 25th quantile to 18% (19%) at the 90th BMI quantile. This indicates 

that the underlying sources of excess BMI is not solely attributed to age and gender 

inequalities in BMI, but the neighbourhood environment has an independent role over 

and above the role of SEP and lifestyle factors.  

 

Table 4. Contribution of covariates across quantiles of the BMI 
distribution. 

 Q25 Q50 Q75 Q90 

Specification 1 % % % % 

Demographics 94.7 92.1 85.0 81.3 
Regional differences (GOR) 5.3 7.9 15.0 18.7 
Total 100.0 100.0 100.0 100.0 
Specification 2     
Demographics 89.5 80.8 61.6 43.0 
Regional differences (GOR) 3.7 3.9 5.0 3.7 
Neighbourhood-level obesogenic characteristics 6.8 15.3 33.4 53.3 
Total 100.0 100.0 100.0 100.0 
Specification 3     
Demographics 72.0 56.3 36.3 30.1 
Regional differences (GOR) 3.1 3.0 3.1 2.6 
Neighbourhood-level obesogenic characteristics 5.0 9.4 16.5 30.7 
SEP 11.3 16.0 21.2 17.7 
Lifestyle 8.7 15.4 22.9 18.9 
Total 100.0 100.0 100.0 100.0 
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As in the case of analysis at the mean, results for central adiposity differ from those for 

BMI in terms of the contribution of regional differences (Table 5). After accounting for 

our set of covariates, the regional inequalities in waist circumference account for a small 

percentage of variance in central adiposity, as in the case of analysis at the mean. Age 

and gender seem to explain a larger proportion of the total variance in WC, compared to 

BMI, even in the case of our full model specification. However, the percentage 

contribution of age and gender reduced at higher WC quantiles, with the contribution of 

the neighbourhood-level obesogenic characteristics becoming more evident. These have a 

direct association over and above the role of individual-level SEP and lifestyle. Of 

particular interest, unlike our analysis “at the mean” (Table 2), the neighbourhood 

environment seems to be much more relevant at the tails of the WC distribution (with a 

percentage contribution of about 12%), independent from all other factors accounted for 

(Specification 3). The neighbourhood-level SEP, air quality and anxiety levels are the 

first (individual contribution of 6%), second (around 2%) and third (around 2%) more 

important contributors, respectively.  

 

Table 5. Contribution of covariates across quantiles of the WC 
distribution. 

 Q25 Q50 Q75 Q90 

Specification 1 % % % % 

Demographics 98.7 98.9 99.0 95.1 
Regional differences (GOR) 1.3 1.1 1.0 4.9 
Total 100.0 100.0 100.0 100.0 
Specification 2     
Demographics 97.7 96.5 92.9 75.8 
Regional differences (GOR) 1.4 0.9 0.5 2.9 
Neighbourhood-level obesogenic characteristics 1.0 2.7 6.5 21.3 
Total 100.0 100.0 100.0 100.0 
Specification 3     
Demographics 89.4 83.6 73.3 56.6 
Regional differences (GOR) 1.5 0.8 0.4 1.9 
Neighbourhood-level obesogenic characteristics 0.6 1.5 3.5 12.1 
SEP 4.4 6.0 7.0 10.2 
Lifestyle 4.1 8.2 15.8 19.2 
Total  100.0 100.0 100.0 100.0 
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Analysis by gender 

Figures 5 and 6 present the Shapley decomposition results across quantiles of the 

BMI and WC distributions for our full model specification (Specification 3), 

separately by gender. Turning to the results for BMI (Figure 5) , the contribution of 

demographics become less relevant towards the right tails of the BMI distribution 

for both males and females. On the other hand, the neighbourhood-level obesogenic 

factors are more relevant at the higher tails of the distribution; their contribution is 

larger for females, accounting for about 40% of the total variance explained at Q90, 

as opposed to 25% for the case of males (Figure 5). Similarly, individual’s SEP and 

lifestyle exert higher contributions towards the right tails of the BMI distribution, 

which are similar in magnitude across gender. 	

 

Figure 5. Contribution of covariates across quantiles of the BMI 
distribution: Analysis by gender.  
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The relevant results for WC (Figure 6) show that, as in the case of our pooled sample 

(Table 5), the role of demographics decreases moving towards to higher quantiles of the 

distribution, while the role of the obesogenic environment, individual’s SEP and lifestyle 

become more evident for both men and women. The contribution of the obesogenic 

environment is more relevant for females at higher WC quantiles as opposed to males, 

while the opposite is the case for lifestyle. Overall, despite some gender differences in 

the magnitude of the contribution of the different factors, the gender-stratified analysis 

confirms our pooled sample results.  

 

Figure 6. Contribution of covariates across quantiles of the WC 
distribution: Analysis by gender. 
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5.  Conclusion  

Using representative English data, we explore the contribution of individual-level 

characteristics and small-area level obesogenic environment on adiposity. The observed 

GOR-level differences in BMI, that are more evident towards the right tails of its 

distribution (explaining up to 19% of the total BMI variance), are fully accounted for by 

the neighbourhood obesogenic environment. Although part of the role of the 

neighbourhood environment is accounted for by the individual-level differences in 

lifestyle and SEP, the former still exerts an independent role of about 32% of the 

explained variance at the right tails of the BMI distribution. Regarding central 

adiposity, the neighbourhood obesogenic environment is much more relevant at the tails 

of the WC distribution, where accounts for about 12% of the explained variance. Our 

evidence that the role of obesogenic environment on excess adiposity is more pronounced 

for women than men complements existing literature that has argued that women are 

more vulnerable to obesogenic environmental risks than men (Lovasi et al., 2009; 

Shapira, 2013).  

 

Our results show that the neighborhood obesogenic environment exerts a sizable 

contribution to variation in adiposity, even though its role partially explained by the 

observed individual-level characteristics and lifestyles; the latter suggests that these 

individual-level characteristics may be key mediators. Exploring the association of the 

obesogenic environment with adiposity levels (over and above other individual 

characteristics) is important for local-area policymaking, as they are modifiable 

environmental characteristics. We find that neighborhoods with disadvantaged 

environments, such as those of higher SEP deprivation, geographic barriers and lower 

air quality levels may influence individuals’ adiposity levels, especially at the higher 

tails of its distribution. Our evidence accords with existing research that has found 
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significant associations between adiposity measures and environmental risk factors 

(e.g., An et al., 2018, Chaparro et al., 2018, Lopez et al., 2007, Raftopoulou et al., 2017, 

Santana et al., 2009) and extends them by quantifying the relative contribution of the 

obesogenic environment, as opposed to individual-level characteristics, across the whole 

distribution of the adiposity measures.  

 

Moving towards the right tails of BMI and WC distribution, the contribution of the 

neighbourhood-level obesogenic environment become much more pronounced, while the 

relative contribution of demographics is reduced in magnitude. This highlights the 

importance of considering analysis across the whole distribution of adiposity as these 

results would have been masked if focused solely at the mean. The set of neighborhood-

level characteristics that play the most important role at the right tails of the adiposity 

distribution are environmental constraints that may reduce individuals’ physical 

activity, promote unhealthy or stress eating patterns. For example, our results 

suggesting that being a resident of a more SEP-deprived neighborhood is positively 

associated with higher adiposity, accord with arguments that the better built 

infrastructure and increased food options (available to more affluent neighborhoods) 

may result in more physical activity and/or reduced calorie intake (Lopez, 2007; Santana 

et al., 2009). Given the modifiable nature of these characteristics, consideration may 

need to be given to the built and social environment to further encourage active 

lifestyles and healthy eating and, thus, reduce the risk of obesity. 

 

Our findings are relevant to the English local authorities, in their relatively new role (as 

from 2014) as leaders for local population health. This highlights that, at least for BMI, 

inequalities within regions are more evident compared to inequalities between them; the 

latter is consistent with recent results on disability and mortality for England (Newton 
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et al., 2015). Using data collected between 2010 and 2012, just before the abolishment of 

the strategic health authorities and the enhanced role of the local authorities, these 

results are supportive to the need for focusing at the smaller-area level to reduce 

regional-level inequalities in adiposity in particular. Given our findings, a recent call for 

action at the local authority level to develop policies and initiatives for healthier food 

environments as well as planning restrictions for more activity-friendly and walkable 

neighbourhoods need to be further stimulated (Public Health England, 2017).  

   

We also find that individual-level SEP and lifestyle exert independent contributions, 

over and above the role of the obesogenic environment, with their relative contribution 

becoming more pronounced towards the right tails of adiposity distribution. These 

results accord and extend existing research showing a steeper SEP-health gradient at 

the tails of the distribution, where health risks are more evident (e.g., Davillas et al., 

2019; Carrieri and Jones, 2017). Overall, our results suggest that policies that aim to 

tackle excess adiposity should address both people and places in order to be more 

fruitful (Blüher, 2019; Santana et al., 2009). Excess adiposity has multi-factorial causes 

beyond any biological causes and mechanisms. Although our analysis confirms existing 

literature on the prominent role of individual level characteristics as risk factors for 

excess adiposity (e.g., Brunello et al., 2013; Davillas and Benzeval, 2016; Madden, 2012), 

the neighbourhood-level environment still plays an independent role. Efforts to reduce 

the obesity burden, therefore, require approaches that combine individual-based 

interventions with changes in small-area and neighbourhood environmental 

characteristics.  

 

There are some limitations to our study, however. First, our analysis does not aim to 

address the potential endogeneity biases or establish any causal links between our 
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explanatory variables and adiposity measures. Second, although our results are 

supportive to the need for focusing at the small area level to reduce regional-level 

inequalities in adiposity. They are based on data collected just before the abolishment of 

the strategic health authorities and the enhanced role of the local, smaller area-level 

authorities. Future research, when more up to date adiposity data linked to detailed 

neighbourhood-level characteristics are available is needed to assess the effectiveness of 

the small-area local authorities in their new duties as leaders for the local population 

health. Third, unlike the other neighbourhood-level characteristics, fast food density is 

available at an aggregate level rather than at the small area-level. We are thus unable 

to disentangle whether its limited role observed in our study is an artefact of an 

aggregation effect or accords with existing studies found weak or non-systematic 

associations between excess adiposity and local availability of fast-food outlets (Dunn et 

al., 2012; Feng et al., 2010; Salois, 2012)12.  
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Appendix  

Table A1. BMI regression models: OLS estimates 
 Specification 1 Specification 2 Specification 3 
North East 0.971*** 0.417 0.403 
 (0.257) (0.284) (0.283) 
North West 0.783*** 0.337 0.300 
 (0.194) (0.227) (0.227) 
Yorkshire 0.522** -0.064 -0.117 
 (0.206) (0.237) (0.236) 
East Midlands 0.256 -0.114 -0.166 
 (0.200) (0.211) (0.210) 
West Midlands 0.706*** 0.254 0.197 
 (0.214) (0.218) (0.216) 
East of England  0.194 -0.011 -0.044 
 (0.193) (0.196) (0.195) 
London 0.043 0.040 0.176 
 (0.223) (0.249) (0.250) 
South West -0.181 -0.266 -0.296 
 (0.188) (0.194) (0.194) 
Neighborhood-level 
characteristics 

   

Crime deprived   0.065 0.062 
  (0.153) (0.152) 
High anxiety levels  0.058 0.037 
  (0.166) (0.165) 
Sulphur dioxide level  6.872*** 6.562*** 
  (2.121) (2.096) 
Distance to GP  0.099*** 0.077** 
  (0.036) (0.036) 
Income deprivation  1.295 0.345 
  (1.175) (1.196) 
Skills deprivation  0.022*** 0.016*** 
  (0.006) (0.006) 
Fast food density   0.261 0.394 
  (0.307) (0.302) 
Individual-level 
characteristics 

   

Ln(income)   0.148 
   (0.133) 
Post-compulsory/ no tertiary   0.545*** 
   (0.162) 
Secondary qualification   0.739*** 
   (0.142) 
No qualification   0.892*** 
   (0.204) 
House ownership   -0.627*** 
   (0.146) 
Fruits/vegetables:5/day   -0.088 
   (0.126) 
Sports activity: 3/week   -0.655*** 
   (0.151) 
Sports activity: monthly   -0.372*** 
   (0.127) 
Commuting: private   0.153 
   (0.151) 
Commuting: public   -0.917*** 
   (0.262) 
Commuting: active   -0.940*** 
   (0.218) 
Joint significance tests    
Regional dummies (p-values) 0.000 0.168 0.122 
Age-gender dummies (p-values) 0.000 0.000 0.000 
Sample size 12,271 12,271 12,271 
***P < 0.01; **P < 0.05; *P < 0.10. 
Notes: Estimates are weighted using UKHLS nurse visits sample weights. 

 

 



39	
	

 

 

Table A2. Waist circumference regression models: OLS 
estimates 
 Specification 1 Specification 2 Specification 3 
North East 0.829 -0.440 -0.437 
 (0.626) (0.685) (0.681) 
North West 1.233** 0.246 0.167 
 (0.487) (0.555) (0.551) 
Yorkshire -0.039 -1.188** -1.316** 
 (0.507) (0.579) (0.571) 
East Midlands -1.072** -1.866*** -1.967*** 
 (0.506) (0.531) (0.525) 
West Midlands 1.133** 0.141 -0.008 
 (0.517) (0.528) (0.524) 
East of England  0.183 -0.258 -0.380 
 (0.488) (0.493) (0.491) 
London -0.248 -0.128 0.079 
 (0.538) (0.604) (0.605) 
South West 0.058 -0.188 -0.234 
 (0.474) (0.488) (0.485) 
Neighborhood-level 
characteristics 

   

Crime deprived   0.160 0.110 
  (0.363) (0.360) 
High anxiety levels  0.415 0.336 
  (0.404) (0.398) 
Sulphur dioxide level  13.393*** 12.506** 
  (5.167) (5.094) 
Distance to GP  0.209** 0.156 
  (0.094) (0.095) 
Income deprivation  3.085 -0.323 
  (2.782) (2.807) 
Skills deprivation  0.049*** 0.033** 
  (0.013) (0.014) 
Fast food density   0.121 0.476 
  (0.725) (0.708) 
Individual-level 
characteristics 

   

Ln(income)   0.555 
   (0.352) 
Post-compulsory/ no tertiary   1.018** 
   (0.399) 
Secondary qualification   1.966*** 
   (0.351) 
No qualification   2.394*** 
   (0.496) 
House ownership   -1.706*** 
   (0.359) 
Fruits/vegetables:5/day   -0.484 
   (0.309) 
Sports activity: 3/week   -3.073*** 
   (0.389) 
Sports activity: monthly   -1.572*** 
   (0.314) 
Commuting: private   -0.490 
   (0.372) 
Commuting: public   -2.644*** 
   (0.669) 
Commuting: active   -2.595*** 
   (0.531) 
Joint significance tests    
Regional dummies (p-values) 0.001 0.007 0.003 
Age-gender dummies (p-values) 0.000 0.000 0.000 
Sample size 12,271 12,271 12,271 

***P < 0.01; **P < 0.05; *P < 0.10. 
Notes: Estimates are weighted using UKHLS nurse visits sample weights. 
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