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Abstract  13 

Rapid climate change in Arctic regions is resulting in more frequent extreme climatic events. 14 

These can cause large-scale vegetation damage, and are therefore among key drivers of 15 

declines in biomass and productivity (or “browning”) observed across Arctic regions in recent 16 

years. 17 

Extreme events which cause browning are driven by multiple interacting climatic variables, 18 

and are defined by their ecological impact – most commonly plant mortality. Quantifying the 19 

climatic causes of these multivariate, ecologically defined events is challenging, and so existing 20 

work has typically determined the climatic causes of browning events on a case-by-case basis 21 

in a descriptive, unsystematic manner. While this has allowed development of important 22 

qualitative understanding of the mechanisms underlying extreme event driven browning, it 23 

cannot definitively link browning to specific climatic variables, or predict how changes in these 24 

variables will influence browning severity. It is therefore not yet possible to determine how 25 

extreme events will influence ecosystem responses to climate change across Arctic regions.   26 

To address this, novel, process-based climate metrics that can be used to quantify the conditions 27 

and interactions that drive the ecological responses defining common extreme events were 28 

developed using publically available snow depth and air temperature data (two of the main 29 

climate variables implicated in browning). These process-based metrics explained up to 63% 30 

of variation in plot-level Normalised Difference Vegetation Index (NDVI) at sites within areas 31 

affected by extreme events across boreal and sub-Arctic Norway. This demonstrates potential 32 

to use simple metrics to assess the contribution of extreme events to changes in Arctic biomass 33 

and productivity at regional scales. In addition, scaling up these metrics across the Norwegian 34 

Arctic region resulted in significant correlations with remotely-sensed NDVI, and provided 35 

much-needed insights into how climatic variables interact to determine the severity of 36 

browning across Arctic regions. 37 
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 38 

1 Introduction 39 

An increase in frequency of climatic extreme events is among the most marked consequences 40 

of climate change (IPCC, 2017). In the Arctic, climate change is progressing faster than almost 41 

anywhere else in the world, especially during winter (AMAP, 2017), and increases in extreme 42 

events - particularly those associated with winter climate - are therefore being observed 43 

(Vikhamar-Schuler et al., 2016, Graham et al., 2017). Although traditionally, climate change 44 

research has focussed on changes in mean conditions, it is now recognised that extreme events 45 

can have major impacts on ecosystems (Zscheischler et al., 2014, Solow, 2017). In Arctic 46 

regions, these impacts include considerable changes in vegetation biomass, productivity and 47 

phenology (Bokhorst et al., 2008, Jepsen et al., 2013, Reichstein et al., 2013).  However, proper 48 

quantitative understanding of the climatic drivers that cause these extreme event impacts is 49 

currently lacking, since research has so far focussed on an ‘impact orientated’ approach, where 50 

ecological consequences are studied in detail, while climatic drivers are generally defined in 51 

qualitative, descriptive terms.  52 

 53 

This is of concern since extreme events linked to winter climate change are already causing 54 

major disturbance in the form of sudden mortality and extreme stress in widespread Arctic and 55 

sub-Arctic vegetation, with the potential to cause large scale and magnitude impacts, such as 56 

the record low productivity of the Nordic Arctic Region (NAR) observed in 2012 (Bokhorst et 57 

al., 2009, Bjerke et al., 2014, 2017). Such events include, for example, transient periods of 58 

extreme winter warmth, leading to premature dehardening and frost damage (extreme winter 59 

warming), or exposure to cold, wind and irradiance following loss of snow cover, leading to 60 

severe desiccation damage (frost drought). These are important drivers of ‘Arctic browning’, a 61 

decline in biomass and productivity observed across Arctic regions in recent years (Epstein et 62 
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al., 2015, 2016, Phoenix & Bjerke, 2016). However, although remotely sensed Normalised 63 

Difference Vegetation Index (NDVI) has been used to assess the extent and impacts of extreme 64 

events identified during field studies (Bokhorst et al., 2009), detecting events using this 65 

approach is challenging (Treharne et al., 2018). Methods to quantitatively define climatic 66 

drivers of extreme event driven browning are therefore needed before the contribution of 67 

extreme events to remotely-sensed vegetation change across Arctic regions can be fully 68 

determined.  69 

 70 

Extreme events are typically defined using climatological thresholds or using an impact-71 

orientated definition (van de Pol et al., 2017). The latter approach may define an extreme event 72 

as one where the ability of an organism to acclimate is substantially exceeded (Gutschick & 73 

BassiriRad, 2003) or as a climatologically rare event that alters ecosystem structure or function 74 

outside the bounds of normal variability (Smith et al., 2011). Impact orientated definitions are 75 

commonly used for ‘compound events’; events driven by combinations of interacting variables 76 

which separately may not trigger an extreme response, but, together, cross ecological 77 

thresholds to trigger an extreme response (van de Pol et al., 2017). Extreme climatic events 78 

which drive Arctic browning, such as frost drought and extreme winter warming, are examples 79 

of compound events. These events have therefore so far been defined by their biological 80 

impacts; most clearly vegetation mortality (Bokhorst et al., 2011) or a marked visible stress 81 

response indicated by persistent anthocyanin pigmentation (Bjerke et al., 2017). 82 

 83 

Events such as these which are defined by an ecological impact and driven by a combination 84 

of multiple climatic variables are especially complex to quantify, compare or predict 85 

(Easterling et al., 2000). This complexity is compounded when the physiological thresholds 86 

beyond which an extreme response is triggered are likely to differ with event timing, preceding 87 
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conditions and the occurrence of successive events (Knapp et al., 2015, Sippel et al, 2016, Wolf 88 

et al, 2016, Ummenhofer & Meehl 2017). This is particularly relevant in Arctic regions, where 89 

the depth and extent of insulating snow cover determines whether vegetation is exposed to 90 

ambient conditions such as air temperature (Williams et al., 2014; Bokhorst et al., 2016), where 91 

event timing may drastically change the conditions to which vegetation is exposed, such as 92 

light intensity, and where susceptibility to an extreme response may be heavily dependent on 93 

preconditioning, such as the duration of chilling prior to an extreme winter warming event, 94 

which could determine susceptibility to premature loss of winter freeze tolerance 95 

(dehardening).  96 

 97 

In common with much extreme event literature (Bailey & van de Pol, 2015, Altwegg et al., 98 

2017), assessment of the multivariate climatic drivers in studies of extreme event driven Arctic 99 

browning is therefore typically descriptive and unsystematic, dealing with a single event or a 100 

few, often differing, events. Nonetheless, these studies have provided critical insights into these 101 

events, including a qualitative understanding of event drivers and quantification of major 102 

impacts on vegetation growth, phenology and productivity, and on ecosystem CO2 fluxes 103 

(Bokhorst et al., 2008, 2009, 2011; Bjerke et al., 2014, 2017; Parmentier et al., 2018). However, 104 

their ability to attribute these measured responses definitively to specific hypothesised climatic 105 

drivers is limited. In addition, this approach cannot determine where response thresholds lie, 106 

or therefore predict how the severity of the browning response could scale with different 107 

climate variables, or when specific conditions might be expected to result in vegetation 108 

damage.  109 

 110 

This is of concern given the scale of observed browning impacts, which include substantial 111 

loss of biomass at landscape or greater scales (Bjerke et al., 2014, 2017) and large changes in 112 
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ecosystem CO2 fluxes with significant implications for landscape-level carbon balance. 113 

Furthermore, as the frequency of many types of extreme climatic event is predicted to increase 114 

in Arctic regions as climate change progresses, the scale and extent of these impacts are likely 115 

to increase (Vikhamar-Schuler et al., 2016, Graham et al., 2017). To fully understand how these 116 

events will influence the responses of Arctic ecosystems to climate change, a more systematic 117 

approach is needed; correlating measured response to specific, process-based climatic 118 

variables. As a first step, a framework to quantify the drivers of extreme event-driven Arctic 119 

browning, and the interactions between them, is required to understand how variation in these 120 

drivers influences the severity of response in vegetation communities, and ultimately drives 121 

browning. This quantitative understanding is critical to identify the contribution of extreme 122 

events to Arctic browning trends at regional scales, and to fully understand how winter climate 123 

change will impact Arctic plant communities.  124 

 125 

Therefore, the aims of this work were to apply established ecological understanding about the 126 

drivers of specific instances of extreme event driven browning to (a) identify simple, process-127 

based, quantitative climate metrics that can be used to quantify extreme winter conditions in a 128 

systematic, comparable way and (b) assess the relationship between these metrics and changes 129 

in satellite NDVI at regional scales. The development of climate metrics initially utilised a 130 

dataset of plot-level measurements of NDVI and visible vegetation damage  across 19 sites 131 

known to have been affected by extreme winter climatic events (primarily frost drought and 132 

extreme winter warming experienced during the 2013/14 winter) and subsequent browning. 133 

Following this, national meteorological and modelled snow cover datasets were used to 134 

compare climate metrics with remotely sensed NDVI across the Norwegian Arctic region. It 135 

was hypothesised that (a) simple climate metrics will be identified that correlate with NDVI in 136 

areas known to have been affected by browning, (b) these metrics will reflect ecological 137 
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understanding about the mechanisms underlying extreme climatic event driven browning, and 138 

(c) these metrics will correlate with NDVI change at regional scales.   139 
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2 Methods 140 

2.1 Developing climate metrics using plot-scale analysis 141 

2.1.1 Plot-level NDVI  142 

 143 

Widespread browning of evergreen shrubs across boreal and sub-Arctic regions of Norway was 144 

observed following the 2013/14 winter, attributed to extreme winter weather conditions 145 

(Meisingset et al., 2015; Bjerke et al. 2017). For this plot-scale analysis, observations of 146 

browning recorded in the growing seasons following these extreme winter conditions (2014 or 147 

2015) were collated from 19 sites (Fig. 1) in boreal and sub-Arctic Norway. The number of 148 

plots at each site ranged from 1 to 143 (with a mean of 19), with each plot measuring 1 x 1m. 149 

Replicate plots were located at least 2 m apart and were chosen to reflect the full range of 150 

observed browning, including green, healthy vegetation apparently unaffected by extreme 151 

events (control plots). Browning at the majority of these sites was driven by the extreme 152 

conditions during the 2013/14 winter, with remaining sites browned during previous winters 153 

(2011/12 at the earliest; Bjerke et al., 2014). Observations consisted of plot-level NDVI 154 

measurements and/or visual assessments of plant damage (mortality; observed as browning). 155 

NDVI measurements were taken using either digital NDVI cameras (passive NDVI sensors), 156 

in which the usual light sensor is replaced with an infrared sensor, enabling the camera to record 157 

visible light in the blue channel and near infrared in the red channel (Llewellyn Data 158 

Processing, New Jersey), or an active NDVI sensor (Greenseeker; Trimble, California). The 159 

Greenseeker NDVI sensor emits red and infrared light and measures the reflectance of each 160 

wavelength in terms of the normalized difference vegetation index (NDVI) and is mainly used 161 

in precision agriculture (Bourgeon et al., 2017) and in phenological monitoring; including of 162 

browning trends and events in the Arctic (Anderson et al. 2016; Bokhorst et al., 2018). The 163 

visual assessments of browning were recorded either as percentage cover of browned 164 

vegetation (mortality), or the proportion of the dominant species affected by browning (own 165 

data and data provided by J. Bjerke). NDVI and observed browning (plot survey) were 166 
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significantly correlated. This correlation was calculated separately across plots within each of 167 

the three Norwegian counties of Troms, Nordland and Nord-Trøndelag to allow for some 168 

regional variation while minimising the loss of statistical power (p < 0.05 in all cases). The 169 

correlation was then used to predict plot-level NDVI at plots where observed browning alone, 170 

and not NDVI, was recorded.  171 

 172 

In addition, a ‘pre-browning’ NDVI value was estimated for each site. This ‘pre-browning’ 173 

value was assigned to the growing season preceding the winter during which browning 174 

occurred (i.e. 2013 for the majority of sites). To estimate these pre-browning values, linear 175 

regressions of NDVI and observed browning were calculated separately for each county (p < 176 

0.05) and used to predict NDVI in vegetation with no observed browning. This approach 177 

produced ecologically sensible estimates for healthy dwarf-shrub heathland NDVI of between 178 

0.67 and 0.75 (Street et al., 2007). At two sites, 5-6 NDVI values in undamaged vegetation 179 

adjacent to observed browning plots were recorded; in these cases recorded NDVI values in 180 

undamaged vegetation were averaged to estimate pre-browning values for those sites.  181 

(a) (b) (c) 

Figure 1: (a) Map of Norway showing locations of 19 sites (orange triangles) where extreme event-

driven browning was observed and plot-level NDVI was measured. The Norwegian Arctic Region, the 

area used for regional level analysis, is outlined in red. This area is shown separately and enlarged in 

(b). The locations of the weather stations from which climatic data was analysed are shown in (c). 
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 182 

2.1.2 Climate data  183 

Snow depth maps of Norway with a daily temporal and 1 x 1 km spatial resolution were 184 

obtained from The Norwegian Water Resources and Energy Directorate (NVE). This publically 185 

available data is produced using the SeNorge snow model (http://www.senorge.no), which is 186 

forced by daily observations of temperature and precipitation and performs well in Norway 187 

(Saloranta, 2012).  188 

 189 

From SeNorge snow maps, daily snow depth values were extracted from each pixel which 190 

contained plot-level browning observations in the dataset described above. This data was 191 

extracted for each winter between 2011 and 2015. Daily snow depth values for each site were 192 

then obtained by taking a simple average across the pixels containing plot-level browning 193 

observations for each site.  194 

 195 

Daily mean, minimum and maximum air temperature was obtained from the Norwegian 196 

Meteorological Institute via the publically available eklima.no web portal. Data for 2011 – 197 

2015 was downloaded from the weather stations closest to each site (maximum distance < 198 

25km) at an elevation of < 200m (as sites were located in relatively low-lying areas). Based on 199 

the quality and availability of air temperature data from these stations, data from 14 stations 200 

was subsequently analysed. See Fig. 1c for weather station locations. 201 

 202 

2.1.3 Development of metrics 203 

Snow and air temperature data was combined into a single dataset. Only data from the winter 204 

period was used to develop climate metrics, to avoid any confounding effect of occasional late 205 

http://www.senorge.no/
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spring or summer snowfall. To identify an appropriate window for this winter period during 206 

which snow cover and cold temperatures could reasonably be expected, and therefore during 207 

which warmth and exposure may have ecological consequences, first winter snow fall and final 208 

spring snow melt for each winter (2011/12 – 2014/15) were identified. This was done by 209 

selecting all periods of absent snow cover (0 mm snow depth) throughout the year; first winter 210 

snowfall and final spring melt were recorded as the dates following and preceding the long 211 

summer exposure period in consecutive years. Winter was thus defined from Day of Year 305 212 

(Day of Winter 1) to Day of Year 120 (Day of Winter 181 or 182). A consistent winter period 213 

was used rather than defining when winter began and finished each year separately (based on 214 

climate data).  This was because the latter approach might exclude periods of unseasonable 215 

warmth or absent snow cover in early or late winter, since these periods would not be classed 216 

as winter.  217 

 218 

Within each winter a set of approaches were used to extract ‘events’ which may have 219 

influenced NDVI. These were ‘exposure events’ based on absent snow cover (0 mm snow 220 

depth) or ‘warming events’ based on warm winter temperatures (> 2 ˚C). A 2 ˚C threshold for 221 

warming events was chosen based on assessment by eye of plotted temperature data during 222 

warming events known to have resulted in browning, with this temperature found to ensure the 223 

full duration of any warming event was captured.  Furthermore, differentiation between short, 224 

relatively mild warming events and prolonged periods of high temperatures was subsequently 225 

facilitated by an ‘intensity’ metric (below and Table 1). Periods of exposure or warming 226 

occurring before initial winter snowfall or cold temperatures were excluded. The variables 227 

recorded for each event type were chosen based on the mechanism of damage particularly 228 

associated with either winter warming (i.e. premature dehardening and initiation of spring-like 229 

bud burst, followed by frost damage on the return of cold temperatures) or frost drought (loss 230 
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of snow cover and subsequent exposure, leading to gradual desiccation as transpiration exceeds 231 

uptake from frozen or near-frozen soils) (Table 1). These two processes account for the 232 

majority of reported extreme climatic event-driven browning in mainland Norway (e.g. 233 

Hørbye, 1882; Printz, 1933; Bokhorst et al., 2009, 2012; Bjerke et al. 2014, 2017). Thus, for 234 

exposure events (most likely to be associated with frost), event duration, start date and mean 235 

air temperature were recorded. For warming events (most likely to be associated with extreme 236 

winter warming), a wider range of variables were recorded (Table 1). These include the 237 

intensity metric, calculated as air temperature*duration. Weighting air temperature in this way 238 

reflects the process through which extreme winter warming drives browning; exposure to 239 

temperatures of sufficient warmth and duration to (a) melt snow and expose vegetation, and 240 

then (b) subsequently initiate bud burst and premature loss of freeze tolerance.   241 

 242 

Using this approach, several events were extracted for each year. To select those most likely to 243 

influence growing season NDVI, up to 4 events were selected for each year. These were (a) 244 

‘Maximum intensity warming events’; the warming event with the highest ‘Intensity’ (air 245 

temperature*duration; Table 5.1), (b) ‘Temperature drop warming events’; the warming event 246 

with the greatest 24-h temperature drop following the final day of the event, (c) ‘Maximum 247 

duration exposure events’; the maximum duration exposure event (i.e. no snow cover) (d) 248 

‘Maximum warmth exposure events’; the warmest exposure (no snow cover) event.  249 
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 250 

  251 

2.1.4 Satellite NDVI 252 

Remotely sensed NDVI data were extracted from the publically available MOD13Q1 version 253 

6 dataset. MOD13Q1 provides level 3 16-day composites of vegetation indices at 250 m 254 

resolution in a sinusoidal projection. Tiles were downloaded for DOY 193 in 2015, the nearest 255 

date to when plot-level measurements were recorded, using USGS Earth Explorer. These tiles 256 

were re-projected to the UTM Zone 33 projection using the NASA HDF-EOS To GeoTIFF 257 

Conversion Tool (HEG) and mosaicked to encompass the full extent of plot-level data. At the 258 

Table 1: Variables (climate metrics) recorded for each event type (either warming events based 

on consecutive daily air temperatures of > 2˚C, or exposure events based on consecutive days 

of absent (0mm) snow cover) as extracted from snow depth and air temperature data. 

Variable Meaning Event type

Count Event duration (days).
Warming; 

Exposure 

Start date Date (Day Of Winter) of the first day of the event.
Warming; 

Exposure 

Intensity

Cumulative mean daily air temperature (˚C) linearly 
weighted by duration throughout the event. E.G. for a 

3 day event with daily mean air temperatures of 4˚C, 
6˚C and 3˚C, Value = (4*1) + (6*2) + (3*3) = 25.

Warming 

Mean snow depth Mean snow depth (mm) during the event. Warming

Mean air 

temperature
Mean air temperature (˚C) during the event. Exposure

End minimum 

temperature

Minimum temperature 24 hours following the final 

day of the event (˚C). Warming

24 hour 

temperature drop

Difference between mean daily air temperature on 

the last day of the event and minimum air 

temperature 24 hours later (˚C).
Warming

5 day temperature 

mean 

Mean daily air temperature over the 5 days following 

the event (˚C). Warming
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plot-scale analysis stage, remotely sensed NDVI values were used only to test for an overall 259 

correlation between plot-scale and remotely sensed NDVI values (supporting information). 260 

 261 

2.1.5 Statistical analysis  262 

Correlations between metrics representing selected events and subsequent growing season 263 

NDVI were assessed by multiple regression. Selection of metrics with high explanatory power 264 

for use in multiple regression was initially guided by tree-based regression analysis, following 265 

which interactions included in multiple regression of each event type (a – d) against NDVI 266 

were based on a priori knowledge and predictions relating to the mechanisms through which 267 

each event may cause browning (Bokhorst et al., 2008; Bjerke et al., 2017). Terms and 268 

interactions without a significant correlation with NDVI change were removed step wise. A 269 

maximum of three terms was included in each multiple regression. Plot-level and MODIS 270 

NDVI were compared by linear regression.  271 

 272 

2.2 Applying climate metrics at regional scales 273 

The Norwegian Arctic region (Fig. 2) was selected for upscaling as a clearly definable region 274 

encompassing the majority of sites used for plot-level analysis. This area extends southwards 275 

to the Arctic Circle (66˚ 33’ N) and eastwards to the longitude of Magerøya, Finnmark (25˚ 276 

40’ E); the most northerly point of the Nordic Arctic Region (NAR, Bjerke et al., 2014).  277 

 278 

2.2.1 Satellite NDVI  279 

Both time integrated NDVI (TI-NDVI) and peak/maximum NDVI have been widely used in 280 

Arctic vegetation studies (Stow et al., 2004). The TI-NDVI is considered as a robust proxy for 281 

total growing-season productivity (Stow et al., 2004; Epstein et al., 2017). Remotely sensed 282 

NDVI data were extracted from the publically available MOD13Q1 version 6 dataset described 283 
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above from the beginning of May (DOY 129) to the end of August (DOY 241). Tiles were 284 

extracted for this period in 2014, as the most marked and widespread browning observed at 285 

plot-level occurred during the 2013/2014 winter, and from 2005 to 2010 (inclusive) to create a 286 

baseline period for comparison. Tiles were re-projected and mosaicked as described above. 287 

Unvegetated areas (NDVI < 0.12) were masked out. Images were aggregated (by mean) to a 1 288 

km resolution to facilitate comparison with climate data.  289 

From this May-August NDVI dataset, time-integrated NDVI (TI-NDVI; the sum of NDVI 290 

values during this period) was calculated for 2014 and the 2005-2010 baseline period. Change 291 

detection was then carried out between 2014 and the 2005-2010 baseline period, producing TI-292 

NDVI change. This process was also carried out for mean July (approximately peak biomass) 293 

NDVI. 294 

 295 

2.2.2 Climate data  296 

Data was obtained from The Norwegian Water Resources and Energy Directorate (NVE) and 297 

the Norwegian Meteorological Institute as described above. To provide air temperature data 298 

continuously across the Norwegian Arctic region, data was downloaded from every Norwegian 299 

Meteorological Institute weather station with an elevation of < 200m in the counties of 300 

Nordland, Troms and Finnmark; a total of 77 stations.  The 200m cut-off was used since above 301 

this, weather stations tended to be on mountainsides, where data may be less representative of 302 

the broader surrounding landscape and so be less suitable for interpolation (the majority of the 303 

heathland vegetation typically affected by browning is in low lying regions). Mean daily air 304 

temperature from each station was interpolated across these three counties using Inverse 305 

Distance Weighted interpolation, before the resulting air temperature map was cropped to the 306 

Norwegian Arctic region. Climate data (both air temperature maps and SeNorge snow maps) 307 
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were resampled using nearest neighbour assignment resampling to correspond to each other 308 

and to MODIS data.  309 

 310 

2.2.3 Climate metrics  311 

Maximum intensity warming events and maximum duration exposure events were chosen to 312 

investigate further in this analysis due to their high explanatory power in the plot-level analysis. 313 

Extreme event metrics for these two event types were calculated as described above for the 314 

2013/2014 winter within each 1 km pixel.  315 

 316 

2.2.4 Statistical analysis  317 

Multiple regressions of the parameters for each event type were carried out using Generalised 318 

Least Squares against TI-NDVI change. This was also done for July NDVI change (change in 319 

mid-season NDVI). All regressions were carried out at a 4 km resolution by aggregating raster 320 

data to reduce computational intensity. As the Moran’s I test indicated significant spatial 321 

autocorrelation in model residuals, this was accounted for by using correlated error structures 322 

(exponential, Gaussian, linear, spherical and rational quadratic) and selecting the appropriate 323 

model error structure (rational quadratic for TI-NDVI and exponential for July NDVI) 324 

according to the AIC criterion (Burnham & Anderson, 2002).   325 
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3 Results  326 

3.1 Climate metrics in plot-scale analyses  327 

Climatic events described by simple metrics were well correlated with plot-level NDVI. 328 

‘Maximum intensity warming events’ were calculated as the greatest value within a pixel of 329 

sum of daily mean air temperature multiplied by event duration (i.e. intensity) in periods of 330 

consistently warm (> 2˚C) winter air temperatures. The start day in winter, mean snow cover 331 

and intensity of these events explained more than 60 % of variation in plot-level NDVI in 332 

multiple regression (Fig. 2a; F = 14.26, D.F. = 4, 27, p < 0.001, R2 = 0.63; see supporting 333 

information for multiple regression formulae), with high intensity, later start day and lower 334 

mean snow cover corresponding to lower NDVI values. ‘Temperature drop warming events’ 335 

were calculated as the periods of consistently warm air temperature (> 2 °C) with the greatest 336 

drop in temperature during the 24 hours following the final day of the event. The start day and 337 

intensity of these events explained almost 50% of variation in NDVI in multiple regression 338 

(Fig. 2b; F = 10.81, D.F. = 3, 33, p < 0.001, R2 = 0.45). Again, high intensity and later start 339 

day were associated with lower NDVI. For both warming event types (maximum intensity 340 

warming events and temperature drop warming events) there was a significant interaction 341 

between intensity and start day (p < 0.05), meaning that the effect of intensity upon NDVI was 342 

weaker later in the winter. Tree-based regression analysis (supporting information) of metrics 343 

calculated for warming events also highlighted the 24-h temperature drop following an event 344 

as a metric with high explanatory power for variation in NDVI; mean NDVI in plots which had 345 

experienced a maximum intensity warming event with a 24-h temperature drop of more than 346 

5.7 °C was 0.2 (NDVI) lower than in those which had not. While the importance of the 24-h 347 

temperature drop is of interest and provides some insight into mechanisms underlying plant 348 

damage following warming events, its computational complexity (in particular its use of 349 

minimum as well as mean air temperature datasets) meant that it was unsuitable for further 350 

analysis within this work and was therefore not included in multiple regression analyses. 351 
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 352 

‘Maximum duration exposure events’ were calculated as the periods of consistently absent 353 

snow cover (0 mm snow depth) with the longest duration in days during winter. The start day 354 

of and mean temperature during these events were highly correlated with NDVI in multiple 355 

regression (Fig. 3a; R2 = 0.61, F = 17.87, D.F. = 3, 29, p < 0.001). ‘Maximum warmth exposure 356 

events’ are the periods of consistently absent snow cover with the highest mean temperature. 357 

The start day and duration of these events were also significantly correlated with NDVI in 358 

multiple regression, albeit with a weaker R2 (Fig. 3b; F = 3.802, D.F. = 3, 29, p < 0.05, R2 = 359 

0.21). In both cases there was a significant interaction between the two model predictors (start 360 

day and mean temperature), meaning that the effect of start day on NDVI was weaker for longer 361 

events. 362 

p < 0.001 
R2 = 0.63 

p < 0.001 
R2 = 0.45 

(a) (b) 

Figure 2: Correlations between plot-level NDVI as predicted by multiple regression models and plot-

level NDVI observed in the field. Correlations are shown for (a) ‘Maximum intensity warming events’ 
and (b) ‘Temperature drop warming events’. Points are coloured according to the value of residuals; 

warm colouring indicates that multiple regression predicted higher NDVI values than were observed in 

the field, while cold colouring indicates that multiple regression predicted lower NDVI values than 

observed. See supporting information for explanation of number of visible data points. 
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 363 

 364 

 365 

3.2 Climate metrics in regional scale analyses 366 

 367 

Climate metrics calculated and mapped across the Norwegian Arctic implicate the processes 368 

underlying frost drought and extreme winter warming in MODIS NDVI change between the 369 

2005-2010 baseline period and 2014. They also highlight interesting characteristics of winter 370 

climate and the conditions which lead to extreme climatic event-driven browning.  371 

 372 

3.2.1 Event characteristics  373 

Maximum intensity warming event metrics (intensity, start day and mean snow cover) show 374 

that prolonged periods of warmth during winter were rare across the Norwegian Arctic region 375 

p < 0.001 
R2 = 0.61

p < 0.05 

R2 = 0.21 

Figure 3: Correlations between plot-level NDVI as predicted by multiple regression models and plot-

level NDVI observed in the field. Correlations are shown for (a) ‘Maximum duration exposure events’ 
and (b) ‘Maximum warmth exposure events’. Points are coloured according to the value of residuals; 

warm colouring indicates that multiple regression predicted higher NDVI values than were observed in 

the field, while cold colouring indicates that multiple regression predicted lower NDVI values than 

observed. 

(a) (b) 
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in the 2013/14 winter (indicated by low maximum intensity across much of the region; Fig 4a). 376 

Such rare occurrence is consistent with climatic conditions which can produce an ecologically 377 

extreme response (i.e. extreme events). The median value of intensity in the 2013/14 winter 378 

was 61 across the entire Norwegian Arctic region, compared to a median of 328 specifically in 379 

observed browning sites. The wide variation inherent in this variable (with a range of 3 to 2440) 380 

across the Norwegian Arctic region means that when mapped, areas where events of especially 381 

high intensity took place – reflecting prolonged, unseasonable warmth – are clearly 382 

distinguishable by eye (Fig 4a). Visual assessment suggests that high intensity events, when 383 

they do occur, are most often found in coastal areas. Furthermore, while most warming events 384 

across the region occurred in the first half of the winter period, with 60% occurring in January 385 

alone, events with the highest maximum intensity typically began later in the season (Fig 4; 386 

best model: R.S.E = 187.24, D.F = 5265; start day: t = 9.56, S.E. = 0.07, p < 0.001). There was 387 

no significant correlation between event intensity and mean snow cover during the event. 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 
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 396 

Similarly, exposure event metrics show that exposure (snow depth = 0) during winter was 397 

relatively rare across the Norwegian Arctic in the 2013/14 winter (Fig. 5a) and was limited 398 

primarily to coastal areas. Where exposure events did take place further inland, visual 399 

comparison suggests they typically began later in the winter compared to those taking place 400 

close to the coastline (Fig. 5b). All winter 2013/14 exposure events across observed browning 401 

sites plus the majority (59 %) of exposure events across the Norwegian Arctic region were 402 

Figure 4: Climate metrics calculated for the warmth event with the highest 

intensity in each 1 km2 pixel. Climate metrics shown are (a) intensity; cumulative 

warmth weighted linearly by event duration, here rescaled to a range of 0-1 for 

easier interpretation, (b) the start day of the event (Day of Winter 1 equivalent to 

Day of Year 305) and (c) mean snow depth (mm) during the event. The change in 

time integrated NDVI between the baseline 2005-2010 period and 2014 is shown 

(d) for comparison with the potential climatic drivers (a) – (c). 
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associated with a mean air temperature of more than 0 °C during the event. However, 21 % of 403 

Norwegian Arctic-region exposure events were relatively cold, with mean air temperature 404 

below or equal to −2 °C. Visual comparison suggests these cold exposure events may be more 405 

common further inland. Timing of the longest exposure events across the region was relatively 406 

evenly spread throughout the majority of the winter period, although with a higher proportion 407 

(32 %) of events occurring in April. 408 

 409 

 410 

Figure 5: Climate metrics calculated for the exposure event with the longest 

duration in each 1 km2 pixel. Climate metrics shown are (a) event duration 

(b) the start day of the event (Day of Winter 1 equivalent to Day of Year 

305) and (c) mean air temperature (˚C) during the event. The change in time 
integrated NDVI between the baseline 2005-2010 period and 2014 is shown 

(d) for comparison with the potential climatic drivers  (a) – (c). 
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3.2.2 Correlation with MODIS NDVI 411 

Maximum intensity warm events: both the intensity of the event (Fig. 4a), and the mean snow 412 

cover during the event (Fig. 4c) were significantly positively correlated with change in time 413 

integrated NDVI (TI-NDVI), i.e. cooler and shorter warming events with shallower snow 414 

resulted in greater negative change in TI-NDVI. (Fig. 4d; best model: R.S.E. = 0.54, D.F. = 415 

5259; intensity: t = 2.1, S.E. < 0.001, p < 0.05; mean snow cover: t = 13.9, S.E. < 0.001, p < 416 

0.001). There was also a significant negative interaction between intensity and mean snow 417 

cover (t = -5.19, S.E. <0.001, p < 0.001) and, while the start day of the event did not have a 418 

significant main effect, there was a significant positive three-way interaction between intensity, 419 

mean snow depth and start day (Fig. 6, t = 2.56, S.E. < 0.001, p < 0.05). Overall, these terms 420 

and interactions show that increasing event intensity (greater air temperature * duration) at the 421 

shallowest snow depths results in smaller TI-NDVI reductions (Fig. 6, 25 cm line), while at the 422 

deepest snow depths increasing event intensity results in greater TI-NDVI reductions (Fig. 6, 423 

100 cm line). As winter progresses (moving left to right on Fig. 6), the slope of the relationship 424 

between TI-NDVI change and event intensity becomes more positive at any given snow depth; 425 

meaning that the threshold of snow depth above which this slope is negative increases.  426 

 427 

There was no correlation between change in peak-season (July) NDVI and any maximum 428 

intensity warm event metric. 429 
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 430 

Maximum duration exposure events: Start day of the longest exposure event (Fig. 5b) was 431 

negatively correlated with change in TI-NDVI, i.e. later longest exposure events resulted in 432 

greater negative NDVI change (best model: R.S.E. = 0.57, D.F. = 2331; start day: t = −3.91, 433 

S.E. < 0.001, p < 0.001). The mean temperature of the event (Fig. 5c) was positively correlated 434 

with change in TI-NDVI (greater negative TI-NDVI change with cooler events; t = 3.29, S.E. 435 

= 0.015, p < 0.001), while event duration (Fig. 5a) showed no correlation (p > 0.05). There was 436 

an interaction between start day and mean temperature, showing that the slope of the positive 437 

Figure 6: Three-way interaction between intensity (the sum of air 

temperature multiplied by duration for each day of the event), start day, 

and mean snow depth in multiple regression of maximum intensity 

warmth events (the warming event within each pixel with the greatest 

intensity) with TI-NDVI change. Lines illustrate relationships between 

event intensity and TI-NDVI change at snow depths of 25cm (short 

dashed line), the mean value across the Norwegian Arctic Region of 

63cm (long dashed line) and 100cm (solid line). Panels show these 

relationships at different time points during winter. 
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relationship between TI-NDVI change and mean temperature became shallower, and 438 

eventually became negative, as the winter progressed (Fig. 7 t = -3.5, S.E. < 0.001, p < 0.001).  439 

 440 

There were no correlations between any exposure event metric and change in July NDVI (p > 441 

0.05). 442 

 443 

 444 

 445 

 446 

Figure 7: Two-way interaction between the 

start day and mean air temperature of 

maximum duration exposure events (periods 

of consistently absent snow cover with the 

longest duration in each pixel). Lines 

illustrate relationships between mean 

temperature and TI-NDVI change on Day of 

Winter (DOW) 40 (December 11th; short 

dashed line), DOW 90 (January 30th; long 

dashed line) and DOW 140 (March 21st; solid 

line). 
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 447 

4 Discussion  448 

 449 

We demonstrate that simple climate metrics can explain variation in NDVI (vegetation 450 

greenness) in areas known to have been affected by extreme event-driven Arctic browning. 451 

These process-based metrics (i) provide quantitative assessment of the climatic conditions that 452 

drive browning, reinforcing previous descriptive and qualitative assessments of these climatic 453 

drivers by showing that periods of unusual warmth and low snow cover during winter are 454 

associated with loss of vegetation greenness (Hancock, 2008; Bjerke et al., 2014, 2017; 455 

Bokhorst et al., 2009; Meisingset et al., 2015), and (ii) provide much-needed insight into how 456 

variation in these climatic drivers influences the severity of the browning observed. This work 457 

also suggests that with further work such metrics, easily calculated from mean daily air 458 

temperature and snow depth, could be used to assess the contribution of winter climatic extreme 459 

events to Arctic browning at regional scales, and ultimately to improve predictions of how 460 

changing Arctic winters will affect the biomass and productivity of vegetation communities. 461 

 462 

4.1 Plot-level analysis 463 

Metrics representing both maximum intensity warming events (the period of consistently 464 

warm, > 2 °C, air temperature with the highest intensity in the plot’s pixel, where intensity is 465 

the sum of daily mean air temperature multiplied by event duration) and maximum duration 466 

exposure events (the period of consistently absent snow cover, 0 mm snow depth, with the 467 

longest duration in days in the plot’s pixel) explained a substantial proportion of variation in 468 

plot-level NDVI across observed browning sites. In analysis of maximum intensity warm 469 

events, high intensity, late start date and shallow snow depth were associated with low NDVI. 470 

This is consistent with NDVI and biomass reductions driven by extreme winter warming or 471 

frost drought events (Bokhorst et al., 2009, Bjerke et al., 2014; Meisingset et al., 2015). In 472 
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extreme winter warming, unusual winter warmth causes premature dehardening and initiation 473 

of spring-like bud-burst following snow melt and exposure of vegetation to warmth, after 474 

which the rapid return of sub-zero temperatures causes frost damage (Phoenix & Lee, 2004; 475 

Bokhorst et al., 2008). It is likely that vegetation could be more prone to extreme winter 476 

warming damage later in winter, after a substantial cold period has already been experienced 477 

and when light levels are increasing, meaning any subsequent warm period is more likely to 478 

trigger premature de-hardening and bud-burst (Körner, 2016; Parmentier et al., 2018). 479 

Alternatively, frost drought occurs when vegetation is exposed and soils are frozen, which 480 

reduces the availability of free water and promotes winter desiccation (Tranquillini 1982; Sakai 481 

& Larcher, 2012). In late winter, soils are most likely to be closer to their coldest year-round 482 

temperature. Exposure events with a higher mean air temperature at this time may therefore 483 

encourage plant transpiration and water loss, but may not be sufficiently warm to initiate soil 484 

thaw and an increase in the availability of free water (Larcher & Siegwolf, 1987). Desiccation 485 

is likely to be further accelerated in late winter due to higher solar irradiance, which promotes 486 

physiological activity including transpiration and increasing water loss (Hadley & Smith, 1986, 487 

1989). However, since there is a high explanatory power of the 24-h drop in temperature 488 

following the end of the warm period, it appears likely that the browning observed at these sites 489 

is driven largely by extreme winter warming rather than frost drought.  490 

 491 

In analysis of maximum duration exposure events, a late start day and comparatively warm 492 

mean air temperature (1.7˚C) was associated with lower plot-level NDVI, with the negative 493 

correlation between mean air temperature and NDVI steepening throughout the winter. 494 

Similarly to the above, this could either indicate frost drought or extreme winter warming. 495 

Regardless, it would appear that periods of warmth associated with snowmelt or shallow snow 496 

depth, particularly in late winter, are strong drivers of the NDVI reductions observed at these 497 
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sites. This is also consistent with observations that reductions in Vaccinium myrtillus biomass 498 

in the 2014 growing season in coastal Norway were associated primarily with winter warmth 499 

(Meisingset et al., 2015). These results represent a first attempt to disentangle these complex 500 

climatic variables and physiological responses. Further work is required to build upon and 501 

refine this approach and so develop models with higher explanatory power, as well as models 502 

applicable to wider or different Arctic regions. 503 

 504 

4.2 Regional-scale analysis 505 

Climate metrics calculated for both event types – maximum duration exposure events and 506 

maximum intensity warming events – show that both prolonged, warm periods during winter 507 

and periods of winter exposure are rare across the Norwegian Arctic region; the majority of the 508 

region experienced low maximum intensity of warmth events and no periods of exposure 509 

during the 2013/14 winter. This is consistent with ecological theory that states that extreme 510 

events should be rare enough that organisms are not (or poorly) adapted to them, such that 511 

when these events do occur, an extreme ecological response is produced (Smith 2011). As 512 

might be expected, the highest magnitudes of both event types occurred primarily along the 513 

coastline, where temperatures are warmer and the climate more variable. As both mean 514 

temperatures and temperature variability are expected to increase as climate change progresses 515 

(AMAP, 2017), this suggests that coastal areas may act as indicators of conditions likely to 516 

become more common as colder, inland areas warm, and supports predictions that the 517 

magnitude and frequency of these events will increase across Arctic regions as climate change 518 

progresses (Vikhamar-Schuler et al., 2016, Graham et al., 2017).  519 

 520 

Climate metrics for both event types correlated with change in TI-NDVI. For maximum 521 

duration exposure events the strongest predictor of change in TI-NDVI was mean temperature 522 
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during the exposure event. However, this relationship changes throughout the winter; the 523 

negative correlation between start day and change in NDVI (with later events associated with 524 

greater TI-NDVI reductions) is steeper where mean temperature is high. This means that early 525 

in the winter, cold exposure events are associated with greater TI-NDVI reductions, but in late 526 

winter, from around March, it is warmer events that cause larger TI-NDVI reductions. It is 527 

these late winter, relatively warm events which contribute to the largest reductions in TI-NDVI 528 

overall. Similarly to the plot-level analysis, this could suggest that in late winter, when 529 

vegetation has already experienced cold winter temperatures and light availability is increasing, 530 

warm conditions may be more likely to initiate premature dehardening, driving extreme winter 531 

warming damage (Bokhorst et al., 2010). However, there is also evidence that the impact of 532 

exposure events on change in TI-NDVI may be driven to some extent by frost drought. As 533 

described above, mild temperatures and high light levels in late winter could accelerate 534 

desiccation by encouraging transpiration and water loss before soils begin to thaw (Parmentier 535 

et al., 2018). The contrasting link between TI-NDVI reduction and colder temperatures in early 536 

winter suggest greater possibility of frost drought as the driving mechanisms of damage: in 537 

early winter when normal air temperatures are higher and soils have had little time to chill, cold 538 

exposure events may accelerate or exacerbate soil freezing (Hancock, 2008; Zhao et al., 2017), 539 

promoting vegetation desiccation.  540 

 541 

For maximum intensity warmth events the strongest predictor of change in TI-NDVI was mean 542 

snow depth during the event. Although, overall, maximum intensity warmth events with 543 

shallower snow depths were associated with greater TI-NDVI reductions, the relationship 544 

between the severity of these events and change in TI-NDVI was determined by interactions 545 

between mean snow depth, start day and the intensity of the event. In early winter, increasing 546 

event intensity was associated with greater reductions in TI-NDVI when the mean snow depth 547 
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during those events was deeper. Also, as winter progresses, the relationship between intensity 548 

and TI-NDVI becomes shallower, and by late winter increasing event intensity is associated 549 

with greater loss of TI-NDVI only at relatively deep snow depths. Overall, this shows that at 550 

low temperatures, shallow snow depth and exposure were consistently associated with greater 551 

reductions in TI-NDVI. However, these relationships may also reflect smaller impacts of 552 

increasingly severe warm spells in vegetation communities which typically experience shallow 553 

snow cover or periods of exposure during winter (for example coastal vegetation communities), 554 

compared to those where snow cover is typically deep and persistent (Bokhorst et al., 2016). 555 

This would arise where vegetation in areas with normally low snow depth may be more adapted 556 

and resilient to fluctuations in winter temperature because they typically are (more likely to be) 557 

exposed above the snow (Kudo & Hirao, 2006, Bienau et al., 2014). Increasing warming event 558 

intensity in these vegetation communities may therefore have little effect. In contrast, areas 559 

with greater snow depth may be much more sensitive to extreme temperature fluctuations and 560 

higher rates of water loss associated with exposure since here vegetation is typically covered 561 

by deep snow throughout winter, and hence is less well adapted to exposure. Further work 562 

should determine whether amount of snowmelt (i.e. initial snow depth – final snow depth) 563 

during a warming event may be a more ecologically relevant metric than mean snow depth. 564 

 565 

It is not clear why the relationship between change in TI-NDVI and event intensity is positive 566 

in late winter, even at mean snow depth (i.e. less negative TI-NDVI change with greater 567 

intensity). This may be related to the alleviation of water stress from snow melt-water, or to 568 

the impact of increased soil moisture following snowmelt on phenology (Vaganov et al., 1999; 569 

Barichivich et al., 2014). Alternatively, it may suggest that late in the winter, when mean air 570 

temperatures are beginning to increase, warming events are less likely to be followed by the 571 

rapid drop in temperature which was highlighted by plot-level analysis as an important driver 572 
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of NDVI decline. Without this temperature drop, warming in later winter may simply 573 

encourage earlier spring snowmelt and accelerate phenology, without damaging effects 574 

(Meisingset et al., 2015). However, this appears to conflict with the association between large 575 

NDVI reductions and warm exposure events during late winter, but the reason for these 576 

apparently conflicting associations is not clear.    577 

  578 

The regional-scale findings arise from analyses of change in TI-NDVI, yet regional-scale 579 

climate metrics did not correlate with change in July NDVI (approximately peak biomass, or 580 

peak NDVI). The peak season value of NDVI reflects the seasonal trajectory of photosynthetic 581 

activity and can therefore help with interpretation of TI-NDVI (Park et al., 2016). However, it 582 

is likely that the influence of altitudinal, latitudinal and coast-inland variability on the timing 583 

of peak NDVI, combined with detection of this from just two MODIS images within a single 584 

month, means that the genuine peak NDVI may not be well reflected in the methods used here. 585 

TI-NDVI may make for better comparison of greenness among sites that have contrasting 586 

phenology and timing of peak biomass. In addition, while winter extreme climatic events can 587 

drive extensive vegetation mortality, and therefore biomass loss, they also frequently cause 588 

severe stress and delayed phenology (Bjerke et al., 2017). Subsequent recovery from stress and 589 

catch-up in phenology and/or growth (Koller, 2011; Treharne et al., 2018), would reduce 590 

detection from peak season NDVI (Anderson et al., 2016), while the initial stress and 591 

phenology impacts would be incorporated in (and likely detected in) TI-NDVI, which 592 

correlates with total growing season productivity (Epstein et al., 2017). 593 

 594 

4.3 Plot-level compared with regional analyses 595 

Analyses at plot-level and regional scales, combined with correlation between plot-level and 596 

remotely sensed NDVI (supporting information), indicated similar processes underlying the 597 
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greatest reductions in NDVI, in particular periods of unusual warmth and exposure during 598 

winter, and especially during late winter. However, regional-scale analysis showed more 599 

complexity compared to plot-level analysis; for example with colder temperatures during 600 

exposure periods associated with greater TI-NDVI reductions in early winter. This illustrates 601 

that, while the plot-level analysis focussed on the drivers of pre- and post-damage NDVI in 602 

observed browning sites, when these drivers are scaled up to regional analysis, a wider range 603 

of processes are involved in NDVI change. As TI-NDVI reflects cumulative productivity 604 

across the May – August growing season, reductions in this indicator could reflect altered 605 

phenology, and lower productivity in otherwise ‘undamaged’ vegetation, as well as the more 606 

extreme ecological responses associated with extreme event-driven browning, such as 607 

mortality and visible stress responses (Treharne et al., 2018). Assessing this greater range of 608 

conditions driving TI-NDVI change is necessary to investigate the drivers of reductions in 609 

greenness observed at landscape to pan-Arctic scales in recent years (Epstein et al., 2015, 2016; 610 

Phoenix & Bjerke, 2016; Park et al., 2016). Nonetheless, this work shows that a small number 611 

of climate metrics can explain a substantial proportion of variation in NDVI across a region 612 

affected by browning in the 2014 growing season. While further work will be required to apply 613 

these or similar metrics at a broader scale this demonstrates potential for such simplified 614 

approaches requiring a limited range of climate datasets to attribute drivers of browning and 615 

be used in models to predict browning in the future.    616 

 617 

5 Conclusion 618 

This analysis has demonstrated that the severity of NDVI reductions, both across sites where 619 

browning has been observed and at a regional scale, can be related to simple, process-based 620 

climate metrics. These metrics reinforce ecological theory about the drivers underlying winter 621 

climatic extreme event-driven browning, showing that prolonged periods of unusual warmth 622 
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and vegetation exposure during winter have negative consequences for NDVI. They also 623 

provide novel and much-needed insight into how different climatological variables and timing 624 

interact to produce greater or less severe browning. Looking forward, with further development 625 

utilizing satellite data with medium to high spatial resolution, simple climate metrics could be 626 

used to assess the impact of winter extreme climatic event driven-browning on productivity at 627 

regional scales and improve predictions of changes in browning frequency in the future.  628 
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Highlights 646 

• New metrics quantified climatic drivers of extreme event-driven Arctic browning. 647 

• These metrics explained up to 63% of variation in greenness at affected sites. 648 

• Prolonged warmth or vegetation exposure in winter are associated with browning.   649 

• Event metrics correlated with satellite greenness across Arctic Norway. 650 

  651 
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