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ABSTRACT 

Lubricant-infused surfaces have attracted a lot of attention in antifouling applications. 

Previously, lubricant-infused surfaces fabricated by a layer-by-layer process involved 

two or more polyelectrolytes and needed post-treatments to generate pores. Here, the 

paper proposes a layer-by-layer sol-gel process to prepare a lubricant-infused surface. 

This process only involves a single material and without any post-treatment. The 

nanostructured titania layers were layer-by-layer assembled onto 316L stainless steel 

substrates by immersing the substrates into a titanium (IV) butoxide ethanol solution. 

The titania layers were subsequently surface-functionalized by fluorinated silanes and 

infiltrated with fluorinated lubricant to form lubricant-infused nanoparticle surfaces. 

The physicochemical properties of the lubricant-infused nanoparticle surfaces 

dominated the antifouling performance. These results give some insight into the 

construction of lubricant-infused nanoparticle surfaces with desirable liquid repellency 

and antifouling properties via a layer-by-layer sol-gel process. 
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1. Introduction 

Liquid-repellent surfaces widely exist in nature, including the lotus leaf [1], gecko feet 

[2], cicada wings [3], butterfly wings [4], and rice leaves [4]. Superhydrophobic 

surfaces have developed rapidly in the last decade [5-7]. Liquid droplets can easily roll 

off the superhydrophobic surface and take away contaminants. Superhydrophobic 

surfaces therefore occupy an important position in antifouling applications. However, 

inherent limitations of superhydrophobic surfaces severely restrict their applications. 

First, the air layers cannot stand up to pressure, humidity, and biological fluids [8-11]. 

Moreover, the air layers are not stable in an underwater environment. For example, 

superhydrophobic surfaces often cannot have long term antifouling performance in a 

marine environment. 

 

Nature has provided a remarkably simple alternative approach. The Nepenthes pitcher 

plant overcomes the shortcomings of superhydrophobic surfaces. For the Nepenthes 

pitcher plant, an intermediary liquid layer is locked by its rough surface to act as a 

repellent surface. Inspired by this, Wong et al. [12] proposed liquid-repellent surfaces, 

which were called as “Slippery Liquid Infused Porous Surfaces” (SLIPSs). SLIPSs 

have attracted a lot of attention owing to their great liquid repellency [13, 14] and 

antifouling performances [15]. Wong et al. [12] proposed three principles for 

constructing stable SLIPSs: (1) the solid surface must have a micro/nano rough 

structure to provide a large surface to entrap and lock liquid lubricant, (2) the solid 

surface must prefer to entrap the liquid lubricant instead of the repellent liquid and (3) 

the liquid lubricant is immiscible with the repellent liquid.  

 

The micro/nano rough structures on solid substrates are necessary to prepare SLIPSs. 

At present, numerous techniques have been used to construct micro/nano rough 

structures for SLIPSs, including femtosecond laser direct writing [16, 17], reactive ion 

etching [18], photolithography [19], electrochemical deposition [8], sol-gel [20], and 

so on. These methods are complicated and require specific equipment. Layer-by-layer 

assembly provides a simple solution to form a porous surface [10]. It is a convenient 

method which can be performed at ambient temperature and pressure. Moreover, layer-



by-layer assembly could adjust surface structures at the micro and nanoscales according 

to the sizes of polyelectrolytes and assembly conditions. SLIPSs were previously 

successfully created by layer-by-layer assembly with polyelectrolytes [10, 21, 22]. 

Sunny et al. [10] used layer-by-layer deposition with positively charged 

polydiallyldimethylammonium chloride and negatively charged silica nanoparticles to 

create a nanostructured surface. The structured surface was further modified by 

fluorinated silanes and infused with lubricant to form a SLIPS with highly antifouling 

properties. Manabe et al. [23] prepared a SLIPS by layer-by-layer assembly deposition 

with silica nanoparticles and chitin nanofibers. Moreover, Manabe et al. [24] prepared 

a mix layer-by-layer film, which contributed to the electrostatic interactions between 

positively charged chitosan and negatively charged alginate as well as the hydrogen-

bonding between alginate and polyvinylpyrrolidone (PVPON). After the components 

in the mixed film were cross-linked, the PVPON in the film was removed to obtain 

porosity to fabricate a SLIPS. The as-prepared SLIPS showed great potential as a 

nonfouling material. All these studies usually involved two or more polyelectrolytes in 

the layer-by-layer process and required post-treatments to remove one polyelectrolyte 

to generate the porosity for liquid lubricant. Layer-by-layer self-assembly deposition to 

construct a porous structure with a simpler approach would bring great benefit and this 

work presents a self-assembly approach via a single material. 

 

Up to now, there was no report about the porous nanostructure on a SLIPS which was 

formed via layer-by-layer sol-gel process of alkoxide. The hydrolysis of alkoxide could 

form nanoparticles to generate a porous structure [25]. Compared with the layer-by-

layer assembly of polyelectrolytes, in-situ hydrolysis of alkoxide is more flexible to 

construct porous structures at the micro and nanoscales. Firstly, the nanopores can be 

controlled by the reaction conditions in the hydrolysis process, without being limited 

by the original particle sizes of polyelectrolytes. Moreover, the porous nanostructures 

can be constructed directly without extra post-treatment. The layer-by-layer sol-gel 

deposition process of alkoxide to construct porous nanostructures for SLIPSs is novel 

and offers the possibility to radically simplify the porous layer synthesis.  

 



Stainless steels are widely used in marine environments for their superior mechanical 

properties and high corrosion resistance [8]. However, stainless steesl are still troubled 

by biofouling. Herein, we report construction of SLIPSs on stainless steel substrates by 

a simple layer-by-layer sol-gel process of alkoxide for antifouling applications. A 

nanostructured layer formed by titania nanoparticles was layer-by-layer assembled onto 

a given substrate by immersing the substrate into an ethanol solution containing 

titanium (IV) butoxide. The titania nanoparticle layer, formed by the hydrolysis of 

titanium (IV) butoxide with abundant hydroxyl, was further modified by fluorinated 

silanes and resulted in enough space to entrap liquid lubricant. This method allows us 

to fabricate a SLIPS with desirable antiwetting and antifouling properties by a layer-

by-layer sol-gel process. 
 

2. Experimental section 

2.1. Materials 

316L stainless steel (SS, nominal composition of 0.029 wt.% C, 0.075 wt.% N, 0.71 

wt.% Si, 0.035 wt.% P, 2.04 wt.% Mo, 0.02 wt.% S, 15.92 wt.% Cr, 1.41 wt.% Mn, 

11.35 wt.% Ni and remaining iron) was used. The (1H,1H,2H,2H-perfluorodecyl)-

triethoxysilane (PFTEOS, Sigma-Aldrich, 96%) was used as received. DuPont Krytox 

GPL 100 lubricant with a density of 1870 kg/m3 at 0 °C and a surface tension of 17±1 

mN/m was used as lubricant.  

 

2.2. Fabrication 

The 316L stainless steel substrates (10 mm × 10 mm × 2 mm) were polished and then 

washed sequentially in acetone, ethanol and water. Subsequently, the clean substrates 

were soaked into a piranha solution (95-97% sulfuric acid and 30% hydrogen peroxide 

in 7:3 volumetric ratio) for 30 minutes to clean the surfaces and generate hydroxyl 

groups (denoted as SS−OH). After piranha solution treatment, samples were washed by 

deionized water and subsequently drying. The titania multilayer was deposited on the 

SS−OH surface via the layer-by-layer sol-gel process. In brief, the SS−OH surface was 

soaked into 0.1 M titanium (IV) butoxide ethanol solution for 10 minutes. The hydroxyl 



groups on the SS−OH surface induce the hydrolysis reaction of titanium (IV) butoxide. 

The samples were rinsed in ethanol three times to remove the unreacted alkoxides and 

then soaked in deionized water for 2 minutes to recreate the hydroxyl groups on titania 

particles (Ti−OH). They were then dried. The steps were repeated several times to 

produce titania layers (denoted as SS−TiO2). 

 

The SS−TiO2 samples were immersed into a 1 vol % PFTEOS ethanol solution for 1 h 

at 37 °C and then transferred into an oven for 1 h at 120 °C to make sure that the 

PFTEOS molecules completely chemically bind to the multilayer (denoted as 

SS−TiO2−F). Then, lubricant was added drop by drop onto the modified sample. After 

the lubricant was spread onto the whole surface, the samples were tilted vertically for 

more than 12 h to remove the excess lubricant (denoted as SS−TiO2−S).  

 

2.3. Characterization 

Microstructural features of the samples were examined by field emission scanning 

electron microscopy (FESEM, Zeiss Ultra Plus, Germany). The topography of the 

samples was characterized by atomic force microscopy (AFM, Bruker Dimension 

FastScanTM) and the roughness was obtained by the equipped NanoScope Analysis 

software (Bruker). The chemical components of samples were analyzed using X-ray 

photoelectron spectroscopy (XPS, ESCALAB 250Xi, U.S.A) with radiation resource 

of Al-kα (1486.6 eV).  

 

The wettability of these surfaces was tested by a contact angle meter (Dataphysics OCA 

15EC, Germany) at room temperature. The static water contact angles (CA) were 

determined from deionized water with a droplet of 3 μL. The CA data were acquired 

using ellipse fitting. Water contact angle hysteresis (CAH) was calculated by the 

difference between advancing contact angle (ACA) and receding contact angle (RCA). 

The ACA was measured in the process of increasing the volume of a drop of deionized 

water and the RCA was measured in the process of decreasing the volume of a drop of 

deionized water by an image analysis system. Each test was repeated in triplicate. 



 

2.4. Antifouling performance 

A marine strain of Phaeodactylum tricornutum was typically selected in this work. The 

adhesion behavior of P. tricornutum on samples was used to assess their antifouling 

performance. The adhesion experiments were conducted in sterilized artificial seawater 

(ASW) which was prepared according to ASTM D1141-98. P. tricornutum was cultured 

in sterilized Guillard’s F/2 growth medium with 0.03 g/L Na2SiO3·9H2O. The algae 

were cultured at 20 °C in an illumination incubator with a 12 h: 12 h light/dark cycle. 

 

The algal suspension with a concentration of 5×106 cells/mL was prepared. The samples 

were soaked in the algal suspension and incubated for 7 days at 20 °C in an illumination 

incubator with a 12 h:12 h light/dark cycle. After incubation, the samples were washed 

with sterilized ASW to remove unadhered algae and then fixed by 2.5% glutaraldehyde 

for 2 h. The adhesion behavior of P. tricornutum was observed by confocal laser 

scanning microscopy (CLSM, Leica TCS SP8, Germany). CLSM pictures were further 

quantified using the COMSTAT program to obtain a series of biofilm parameters to 

characterize the features of biofilms formed on different samples [26]. Each test was 

repeated in triplicate. 

 

3. Results and Discussion 

3.1. The fabrication process of nanoscale coatings 

The fabrication process of the SLIPS is shown in Fig. 1. A porous layer was formed by 

a layer-by-layer sol-gel deposition process of titanium (IV) butoxide. The process 

comprised chemisorption and hydrolysis of titanium (IV) butoxide (Fig. 1a-d) [25]. In 

detail, hydroxyl groups were generated on the substrate by immersion in a piranha 

solution. A piranha solution is usually used to create hydroxyl groups on stainless steel 

substrates [27]. The substrate was subsequently immersed into a titanium (IV) butoxide 

ethanol solution. Titanium (IV) butoxide was chemisorbed on the hydroxylated surface 

by the hydrolysis reaction of the Ti−O−(CH2)3CH3 with the surface hydroxyl groups 

[27] (Fig. 1b). The surfaces with chemisorbed alkoxide were then rinsed in deionized 



water to cause the hydrolysis of the chemisorbed alkoxides, resulting the formation of 

titania nanoparticles and regeneration of hydroxyl groups (Fig. 1c) [28]. The 

regenerated hydroxyl groups continued to induce the chemisorption of alkoxide when 

the samples were again put in the titanium (IV) butoxide ethanol solution. The 

chemisorption and hydrolysis steps were repeated to produce a porous titania layer 

assembly on the substrate (Fig. 1d). The titania layer was subsequently modified by 

PFTEOS to produce a fluorinated surface. The silane molecules of PFTEOS were 

strongly anchored to the hydroxylated surface by reaction of the hydrolysis silane 

species (Si−O−CH2CH3) with the surface functional groups (Ti−OH) to form a self-

assembled monolayer with low surface energy (Fig. 1e). A fluorinated lubricant oil was 

then infused into the porous nanostructure to create a lubricant layer, thus forming a 

SLIPS (Fig. 1f). 



 

Fig. 1. Schematic view of the layer-by-layer sol-gel deposition process to form a 

lubricant-infused porous surface. Hydroxyl groups were generated on the substrate (a) 

and subsequent chemisorption (b) and hydrolysis (c) of titanium (IV) butoxide to form 

a nanostructured titania multilayer (d). After the surface was covalently functionalized 

with PFTEOS (e), a liquid lubricant was infused into the nanostructured layer (f), 

forming a SLIPS. 

 

3.2. Characterization of the as-prepared layers 

The chemical composition of the as-prepared surface was characterized by XPS 



analysis. The Ti 2p spectrum acquired from the as-prepared surface is presented in Fig. 

2a. In the Ti 2p spectral region, there are two peaks at 459.1 eV and 464.7 eV, which 

are assigned to TiO2 2p3/2 and TiO2 2p1/2 peaks, respectively [29]. A shoulder on the 

high-binding-energy side is contributed to their satellite peak. The symmetric shape and 

satellite feature indicate the successful formation of titania particles. The O 1s spectrum 

acquired from the as-prepared surface, is resolved into two components, namely TiO2 

(529.6 eV) [29], and C−O (531.2 eV) (Fig. 2b). These results indicate that the as-

prepared layer is composed of titania particles. 

 

Fig. 2. High-resolution XPS spectra of Ti 2p (a) and O 1s (b) detected from the as-

prepared surface. 

 

SEM images of the titania layers on stainless steel substrates prepared with different 

deposition cycles are shown in Fig. 3, indicating that titania multilayers are successfully 

established on the stainless steel substrates. The titania layer after one deposition cycle 

is compact with ~ 26 nm nanoparticles, resulting in a nano-porous structure. The titania 

layer after three deposition cycle exhibits an obvious micro/nano-porous structure. The 

bottom layer has ~ 26 nm nanoparticles and the upper layer has ~ 50 nm nanoparticles. 

The titania nanoparticles and their aggregates result in a micro/nano-porous structure 

with ~ 40 nm nanopores and ~ 1 µm micro-grooves after 5 deposited cycles. With an 

increased number of deposition cycles, the nano-porous structure replaces the 



micro/nano-porous structure. Titania particles with sizes of ~ 50 nm are exhibited on 

all these coatings, suggesting the particle sizes are independent of the number of 

deposition cycles.  

 

AFM images of the titania layers on stainless steel prepared with different deposition 

cycles were also characterized (Fig. 3). The SS−OH surface is very smooth and the root 

mean square roughness (RMS) is about 1.82 nm (5 μm×5 μm) (Fig. 3 a-3). The titania 

layer after one deposition cycle exhibits a little rougher surface with RMS of 5.77 nm 

(5 μm×5 μm) (Fig. 3 b-3). For other titania layers, the RMS is significantly increased 

to 30.7 nm, 26.4 nm and 26.0 nm, respectively. The titania layer after three deposition 

cycles and the titania layer after five deposition cycles are a little rougher than the titania 

layer after seven deposition cycles, which agrees with SEM observations. The height 

distribution of nanoparticles on the surface increases at beginning and then slightly 

decreases, indicating that the surface becomes uniform with increased deposition cycles. 

The surface morphologies and roughness are changed after different number of 

deposition cycles. This allows the surface morphology, roughness and thickness of the 

coating to be controlled by varying the number of deposition cycles.  

 

A porous nanostructure is preferred to form an encapsulated configuration, which is 

beneficial to the stability of samples [30]. The titania layer after seven deposition cycles 

can supply enough space to entrap the lubricant and the lubricant can be stable stored 

by the capillary force induced by their nano-porous structure. Therefore, the titania 

layer after seven deposition cycles with a porous nanostructure is used for the rest of 

the study. 



 

Fig. 3. SEM images (1-2) and AFM images (3-5) of the surface topographies after 

different deposition cycles on stainless steel substrates: without deposition (a), 1 layer 

(b), 3 layers (c), 5 layers (d) and 7 layers (e). -2 is the high magnification view of -1, 

respectively. -4 is the high magnification view of -3, respectively. -5 is the height 

distribution of -3, respectively. 

 

3.4. Characterization of the fluorinated and lubricant-infused surfaces 

The surface-functionalized process with fluorinated silanes is necessary to form a stable 

lubricant-infused surface [30]. The titania surface was first chemically modified by 

PFTEOS to ensure that the solid was preferred to be wetted by lubricant (Fig. S1). XPS 

spectra results demonstrate that PFTEOS molecules are successfully bound with the 

titania layer (Fig. 4). PFTEOS can bind with the hydroxylated titania surface by the 

hydrolysis process to form a fluorinated titania surface (Fig. S2). Subsequently, the 

lubricant is spread on the top of the fluorinated surface (Fig. 4). Capillary forces mainly 

contribute to the retention of the lubricant on the nano-porous titania surface, since the 

diameter of the pores is much lower than ~1 mm which is the capillary length of the 

lubricant under Earth’s gravity [31]. Meanwhile, the van der Waals forces also benefit 



the storage of the liquid lubricant [15].  

 

Fig. 4. XPS spectra of the SS−TiO2 (1), SS−TiO2−F (2) and SS−TiO2−S (3) surfaces. 

 

3.5. Wettability 

The wettability of different surfaces was quantified by a contact angle meter. The 

SS−OH, SS−TiO2, SS−TiO2−F, SS−TiO2−S surfaces exhibit different CA and CAH 

values (Fig. 5). Table 1 presents their CAs and surface free energies (γ) which were 

calculated by the Owens-Wendt-Rabel-Kaelble (OWRK) method using three kinds of 

test liquids: water, glycol, and diiodomethane.  

 

The SS−OH surface shows a water CA of 50.7 ± 4.8°, which is smaller than the water 

CA of native stainless steel, indicating that the SS−OH surface is more hydrophilic. The 

surface energy reveals a polar contribution (γp) of 20.47 mN/m. It leads to significant 

fouling on SS−OH, since the high polar contribution of surface free energy usually 

results in serious biofouling of biomacromolecules [17]. The water remains on the 

surface even though it is at 180° tilt. This strong adhesion between water and the 

substrate can contribute to the hydrogen bond between water and hydroxyl groups on 

stainless steel, further indicating the enrichment of hydroxyl groups on the SS−OH 

surface. 

 

The SS−TiO2 surface is superhydrophilic with a water CA of 0°, where the water droplet 

is almost not visible (Fig. 5b). This superhydrophilicity could contribute to the 

hydrogen bond between water and the hydroxyl groups on titania layers (Ti−OH). 



Indeed, the presence of porosity on titania layers can facilitate water to spread onto the 

surface through capillary forces.  

 

The SS−TiO2−F surface was then characterized. Water contact angle measurement 

indicates that the fluorosilanization was successfully achieved, as the SS−TiO2−F 

surface presents a sharp increase in water CA compared with the SS−TiO2 surface 

(155.6 ± 0.5° versus 0°). The synergistic effect of surface chemistry and surface 

structure results in its superhydrophobicity. Meanwhile, an extremely low CAH (0.5 ± 

0.1°) is observed on the SS−TiO2−F surface and the liquid droplet easily rolls off from 

the SS−TiO2−F surface. The high water CA and the low CAH indicate that the 

SS−TiO2−F surface was in a suspended Cassie-Baxter’s state [7]. The porosity in the 

titania nanoparticle layer is mainly responsible for this phenomenon, where the air layer 

entrapped by the porous layer effectively prevents the penetration of water into the 

surface. However, the air layer cannot prevent the spread of liquids with low surface 

tension. The lubricant CA of SS−TiO2−F surface is nearly 0° (Fig. S1). 

Fluorosilanization is therefore performed to provide affinity to liquid lubricant to 

guarantee the stability of lubricant-infused surfaces [12]. Otherwise, the lubricant 

would be displaced by water (Fig. 5 e,f). The fluorosilanization is necessary in the 

formation of a stable SS−TiO2−S surface.  

 

Lubricant infusion shows a great impact on surface wettability. An obvious decrease in 

water CA occurs on the SS−TiO2−S surface compared with the SS−TiO2−F surface 

(120.9 ± 2.5° versus 155.6 ± 0.5°). The phenomenon can be explained by the formation 

of a liquid lubricant interface. There are two kinds of lubricant infusion states, namely 

the encapsulated state and the impregnated-emerged state [17]. If the lubricant is in the 

encapsulated state, the lubricant covers all over the surface (Fig. 6). While the lubricant 

only infuses in the cavities if the lubricant is in the impregnated-emerged state (Fig. 6). 

A low CAH usually occurs on the surface when it is in the encapsulated state [17, 30]. 

Dynamic goniometry evidence that the SS−TiO2−S surface presents an extremely low 

CAH value (1.9 ± 1.4°). Therefore, the SS−TiO2−S surface is in the encapsulated state 



with a smooth liquid interface. Meanwhile, the surface energy of SS−TiO2−S surface is 

about 14.93 mN/m (Table 1), which also indicates the lubricant is covered on the surface, 

as it is close to the lubricant surface tension (17 ± 1 mN/m). 

 

Fig. 5. Water droplets on the SS−OH (a), SS−TiO2 (b), SS−TiO2−F (c), SS−TiO2−S (d) 

surfaces, Evaluation of the stability of lubricant layers on the fluorinated (e) and non-

fluorinated (f) SS−TiO2 surfaces. 

 

Fig. 6. Possible water-lubricant-solid configurations for liquid-infused surfaces. 

 

Table 1 CAs and surface energies of different samples 

 

Water CA 

(deg) 

Glycol CA 

(deg) 

Diiodomethane CA 

(deg) 

γtot 

(mN/m) 

γd 

(mN/m) 

γp 

(mN/m) 

SS−OH 50.7 ± 4.8 23.4 ± 0.5 48.4 ± 1.7 51.76 31.29 20.47 

SS−TiO2 0 0 0 Impossible to determine a 

SS−TiO2−F 155.6 ± 0.5 120.8 ± 1. 124.1 ± 3.2 Impossible to determine a 

SS−TiO2−S 120.9 ± 2.5 95.9 ± 0.4 91.2 ± 0.5 14.93 14.78 0.15 

a Surface energy was calculated from CAs of three liquids. It is difficult to calculate the 

surface energy of the SS−TiO2 and SS−TiO2−F surfaces since that the observed CAs 

resulted from their surface morphology and surface energy.  

 



3.6. Antifouling performance 

Antifouling performance of these surfaces after incubation in P. tricornutum suspension 

for 7 days is shown in Fig. 7. The surface properties greatly influence the antifouling 

performance of samples by comparing their adhesion ratio. Adhesion ratio is defined as 

the ratio of adhesion area of P. tricornutum to total surface area of substratum [32]. The 

SS−TiO2 surface has poor antifouling properties with an obvious increase (126%) in 

fouling compared with the SS−OH reference. The antifouling performance is observed 

on the SS−TiO2−F surface, presenting a slight decrease (12%) in fouling compared with 

the SS−OH reference. The best antifouling performance is observed on the SS−TiO2−S 

surface, with a significant decrease (97%) in fouling compared with the SS−OH 

reference.  

 

Fig. 7. CLSM images of adhered P. tricornutum on the SS−OH (a), SS−TiO2 (b), 



SS−TiO2−F (c), and SS−TiO2−S (d) surfaces. Antifouling performance to P. 

tricornutum of the different surfaces compared with the SS−OH reference (e). 

 

CLSM images were further analyzed by the COMSTAT program to obtain key biofilm 

parameters to elucidate the biofilm formation on different surfaces. The results showed 

that total biomass of the biofilm dramatically increased (267%) on the SS−TiO2 surface 

and decreased (98%) on the SS−TiO2−S surface compared with the SS−OH reference 

(Fig. 8a). Compared with the biofilm grown on the SS−OH reference, the average 

thickness was significantly higher (281%) for the biofilm grown on the SS−TiO2 

surface and lower (98%) for biofilm grown on the SS−TiO2−S surface (Fig. 8b). The 

total biomass of the biofilm grown on the SS−TiO2−F surface presented a decrease 

(45%) compared with the SS−OH reference. The average thickness was also decreased 

by 33%. The total biomass and the average thickness gave a more obvious antifouling 

performance of the SS−TiO2−F surface compared with the adhesion ratio. The results 

also indicated that the SS−TiO2−S possessed the best antifouling property. 

 

Fig. 8. The key parameters of P. tricornutum biofilm on different samples: total biomass 

(a), average thickness (b). * p < 0.05 and *** p < 0.01, as compared with biofilm grown 

on the SS−OH reference. 

 

Factors, including surface topography, surface wettability and surface chemistry, have 

impact on antifouling performances [30, 32]. It is speculated that the hydrophilicity is 

the main reason responsible for the worst antifouling performance of the SS−TiO2 

surface. The titania layers formed by the sol-gel method are hydroxylated. It is common 

knowledge that the hydrophilic surfaces possess good biofouling resistance [32, 33]. 



While these observations are normally related to hydrophilic nature of polymers or 

hydrogels, where water molecules can get together to produce a hydration layer, acting 

as a barrier to resist foulants [32]. However, the SS−TiO2 surface, which is a 

superhydrophilic metallic oxide, does not belong to the phenomenon. The 

superhydrophilic SS−TiO2 surface leads to a high surface energy, resulting in serious 

biofouling [17]. When comparing the fouling results on the SS−TiO2 and SS−TiO2−F 

surfaces, it appears that the SS−TiO2−F surface has a positive impact on antifouling 

performance, as the SS−TiO2−F surface shows much less adhesion of P. tricornutum 

than that on the SS−TiO2 surface. Meanwhile, the SS−TiO2−F surface can effectively 

decrease the biomass and thickness of biofilm (Fig. 8 a,b). The antifouling performance 

of the SS−TiO2−F surface is related to its wettability. The SS−TiO2−F surface is in a 

suspended Cassie-Batxter’s state. In this state, the SS−TiO2−F surface can resist 

biofouling by the air layer entrapped in the rough structure. Some proteins secreted by 

P. tricornutum can destroy the suspended Cassie-Baxter’s state of the SS−TiO2−F 

surface [17]. As a result, the self-cleaning properties of the SS−TiO2−F surface are not 

significant as we expected. The SS−TiO2−S surface provides a much better solution. 

The antifouling performance of the SS−TiO2−S surface is excellent, and could decrease 

biofilm formation by 98%. The SS−TiO2−S surface is in the encapsulated state (Fig. 5). 

In this state, the lubricant layer can isolate the microorganisms from the targeted solid 

surface to effectively decrease biofouling [34]. Our attempt to fabricate the lubricant-

infused titania coatings provides the feasibility of SLIPSs fabrication by layer-by-layer 

sol-gel deposition process. Meanwhile, the protocols by layer-by-layer sol-gel 

deposition process can be expected to fabricate lubricant-infused surfaces with different 

substrate materials, shapes and sizes. 

 

4. Conclusions  

A simple process was developed to introduce a lubricant-infused surface on stainless 

steel. The nanostructure was formed via a layer-by-layer sol-gel deposition process of 

titanium (IV) butoxide. The in-situ hydrolysis of titanium (IV) butoxide was flexible to 

construct a nano-porous structure and generate abundant hydroxyl to be further 



modified by fluorinated silanes. After fluorosilanization, a liquid lubricant was infused 

into the porous nanoparticle layer. The strong affinity of the lubricant to the substrate 

ensured stability of the lubricant-infused surface. The lubricant-infused titania surface 

resulted in successful resistance to water and foulants. This method allows us to 

fabricate lubricant-infused nanoscale coatings with desirable antiwetting and 

antifouling properties by layer-by-layer sol-gel deposition process.  
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