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Abstract

The use of robots for the inspection of buried pipelines has gained popularity

over the past decade. In this paper we move the vision forward by examining what

behavior and attributes would be required for these robots to become autonomous

and pervasive within buried water pipe infrastructure. We present the results from

novel simulations to evidence the inspection capability of autonomous robots, in-

vestigating operation, cooperation and communication attributes. The simulation

uses a biologically-inspired behavior that provides complete and consistent cov-

erage of real life example clean water distribution management areas. We show

that autonomous robots could operate without a centralized controller and benefit

from having some degree of in-pipe communication. We evidence the ability to

adapt to changes in communication, speed, and flow conditions. The mathemati-

cal model that we derive through the simulation is scalable with the change of net-

work length, topology, robots’ speed and number. This work paves the way and

sets the specifications for practical development of autonomous pervasive robots

for the inspection of complex pipe networks.

Keywords: Swarms, Robotics, Autonomy, Inspection, Stigmergy, Infrastructure

1. Introduction

The unknown condition of buried assets is a big problem for water utilities that

manage large networks of pipes. A majority of faults in these systems are only
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being discovered after they have failed, resulting in leakages, costly repair works,

and traffic and supply disruption. Environmental impact is also a concern, as flu-

ids can leak from pipes causing erosion and pollution. Ground water can infiltrate

pipes contaminating clean water or adding a significant load on the wastewater

treatment plant. Being able to map the position, and assess the condition and per-

formance of these assets will allow for proactive repair and rehabilitation at the

early onset of critical change in the pipe in a manner that minimizes disruption

and is more cost efficient. Performing such assessment can be achieved through

the pervasive use of mapping and inspection technologies. Although a variety of

pipe inspection technologies, including robotic, are already deployed by water and

other infrastructure companies Liu and Kleiner (2013), there is yet to be a solu-

tion that provides the complete and consistent coverage required to see widespread

adoption of autonomous robots and achieve the key benefits of human-free oper-

ation.

The early days of buried asset inspection were heavily reliant on visual in-

spection. A human would enter a pipe of a large enough diameter to assess its

condition. This method required the pipe to either be emptied or, in the case of

sewers, have a low enough flow of water for the person to wade through. This

method presented a serious risk to the person assessing the pipes that led to the

development and use of Closed Circuit Television (CCTV) devices for remote vi-

sual assessment. The majority of commercial inspection solutions for sewer pipes

now rely heavily on this particular method Calderon and et al (2014). More novel

solutions are to use man-hole zoom cameras for the rapid inspection of sewer net-

works Laggis (2016). Zoom cameras are optical devices with a high resolution

video camera with a telescopic lens and powerful lights attached to the end of

a pole that are inserted into man-hole entry points to capture images upstream

and downstream from a fixed point. Images are taken at each man-hole in an in-

spection area and sent to an operator for subsequent analysis. Unfortunately, such

images only show a limited range in the pipe meaning that if the pipe network does

not have man-holes in close proximity then faults may not be detected. Addition-

ally, human assessment of the images is subjective and prone to misclassification

Dirksen et al. (2013). To overcome the range limitation, technologies that employ

acoustics, such as SewerBatt, have been developed Horoshenkov et al. (2010).

This acoustic technology sends out a pulse of sound from a man-hole location

and listens to the reflections to identify anomalies and their locations in the pipe.

Unfortunately, some fault types are not detectable by acoustics, leading some to

suggest that both acoustic and visual inspection should be used in conjunction

Plihal et al. (2016) for this kind of fixed-location method.

Unlike clean water and sewer pipes, gas and oil pipelines do not have regularly

spaced entry points. In these pipes remote visual inspection is performed with

teleoperated robotic devices known as crawlers Ogai and Bhattacharya (2018).
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Crawlers feature a camera and powerful lights attached to a mobile platform that

is able to drive down an empty pipe and record video for subsequent analysis.

These platforms are typically designed to travel down straight pipes without any

branches or obstacles (such as valves), making them unsuitable for large-scale

inspection of more complex pipe networks. The need to receive video from a

crawler continuously has lead to the majority of crawlers being tethered and ex-

ternally powered. For these reasons an alternative technique of Pipe Inspection

Gauges (PIGs) has seen wide-spread use in gas and oil networks Tiratsoo (1992).

These devices are inserted via a launch tube into pipes that carry flow product and

are propelled along by the flow until they reach the end where they are collected

from a receiver tube. These are self-powered and carry a variety of sensors for as-

sessing the internal condition of pipes. This approach reduces human involvement

in the inspection process. Unfortunately, pipes contain features such as valves, in-

tersections, or diameter changes that PIG designs are not equipped to deal with.

Additionally, they are expensive and require complex enabling works. This lim-

itation has lead to a number of alternative inspection platforms being proposed

Mills et al. (2017). Efforts have been made to introduce PIG-like commercially

available devices into water and wastewater pipes, e.g. Pipediver Pure Technolo-

gies (2017) and Smartball Pure Technologies (2014). These devices can traverse

obstacles such as valves and cross-sectional changes because their size is notably

smaller than the diameter of the pipe they are travelling through. However, these

devices are passive and designed to follow the flow. This means that they can col-

lect inspection data only along the path that the flow of water would take, leaving

gaps in the system’s condition knowledge. Additionally, retrieval can often be a

substantial, and even prohibitive practical barrier.

Alternatives to in-pipe inspection are also being explored, with ground pen-

etrating radar Liu and Kleiner (2013) being one such technique. Ground pene-

trating radar (GPR) is a non-invasive inspection technique that uses radar pulses

directed into the ground to detect the presence and structure of buried infrastruc-

ture. A downside of GPR is that being external to the pipe, any faults that orig-

inate from within the asset may not be detected early enough to be proactively

responded to. Additionally, it has a low resolution in comparison to the size such

faults are likely to form in the soil surrounding the pipe, and it only works in above

ground areas that have no buildings or other infrastructure impeding access. An-

other alternative is that of SmartPipes Sadeghioon et al. (2014), whereby the pipes

of a network are themselves capable of assessing their condition and performance.

Such technology would augment new and existing pipes with sensors and process-

ing that enables them to determine their own structural and operational conditions,

and communicate information externally. Depending on what pipe condition in-

formation is required, retrofitting existing pipes can be achieved in a non-invasive

(to the pipe) manner Liu and Kleiner (2013); Nuron (2019). Although this tech-
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nology has potential for the future, the slow upgrade cycle of water infrastructure

assets means that it could take well over a century for the majority of pipes to be

upgraded to smart pipes or retrofitted through costly excavation works, massive

traffic and service disruptions and pipe renovation costs.

None of the existing solutions for buried water pipeline infrastructure are truly

autonomous or pervasive. Our review of pipe inspection technologies suggests

that a radical solution is required to address proactively and cost-efficiently the

problem of ageing pipe infrastructure. In this paper we propose that pervasive au-

tonomous robots can be this solution. These robots will transform the way utilities

collect data on the condition and performance of their buried pipes in real-time,

over the entire network using minimal human interaction. This will enable util-

ities to act timely when the disruption to the service and traffic is minimal and

the cost of intervention is relatively low. Currently such autonomous robots do

not exist, raising the research question of whether they are actually viable for in-

specting buried assets. This paper explores this question from a robot intelligence

perspective (as opposed to mechanical, sensing or any other practical aspects of

robot design and implementation), and offers a positive answer by examining a

biologically-inspired behavior of a swarm of autonomous robots that can provide

complete and consistent inspection coverage of a clean water pipe network of a

realistic size. The choice of this type of network is not accidental. Data suggests

that in England and Wales alone 3.170Bn liters of water are lost every day through

pipe leaks Water UK (2019). Detection of leaks with swarms of robots will enable

water utilities to locate the position of these leaks and to guide repair equipment

with unprecedented accuracy, minimising the associated road disruption and re-

pair costs. In addition, the complete and consistent coverage would enable the

monitoring of pipe cross-sectional changes or surface corrosion levels that, if left

unchecked, may result in leaks in the future.

Through computer simulations we show that robots with a biologically-inspired

behavior are able to operate without a centralized controller and can adapt to

changes in communication, speed, and flow conditions. In this paper we assume

that these virtual robots are small and intelligent enough to avoid collisions with

each other or being stuck in some narrow parts of the pipe network. From the

results obtained, a basic mathematical model is derived that is scalable with the

change of network length, topology, robots’ speed and number. We note that key

principles behind the simulated swarm robot behavior under realistic flow condi-

tions and variable communication capabilities are generic to other types of pipe

networks such as sewerage, gas and oil.

The rest of this paper is organised as follows. Section 2 discusses the intelli-

gence challenges faced by autonomous robots performing inspection, and presents

the concept of the biologically-inspired robot behavior. Section 3 details the sim-

ulation environment created and the code implementation of the proposed robot
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behavior. Section 4 details and analyses results obtained from the simulator. Fi-

nally, Section 5 concludes the paper and summarises the work.

2. Autonomous Inspection

Internal inspection of a single pipe with a single or multiple robots controlled

by an operator is a relatively straightforward process. However, inspection of a

realistic network of buried pipes with autonomous robots is a much more com-

plicated process that requires robots to have intelligence to navigate through the

network, and to co-operate and communicate to produce efficient paths. Formulat-

ing a path to follow, known as planning, is a process that has seen widespread use

in society over the past decade, most notably to direct drivers as part of satellite

navigation systems for vehicles. These systems use knowledge of road networks

to calculate the shortest path for drivers to follow to reach their destinations La-

porte (1992); Eksioglu et al. (2009), often considering other factors such as traffic

congestion Ahn and Shin (1991). The way these systems achieve this is by rep-

resenting the road network as a set of connected vertices and edges, known as a

graph, and applying algorithms to intelligently search through them. The most

well known algorithms for path planning are Dijkstra’s Dijkstra (1959) and A-star

Hart et al. (1968), which are both able to find the shortest path between any two

graph vertices if given sufficient computation time. What makes A-star different

from Dijkstra’s is that it performs this search more intelligently by including a

heuristic to estimate how much further is left to be travelled, often allowing it to

arrive at a solution much faster. The inclusion of a heuristic in algorithms like

A-star makes them informed searches.

For the autonomous inspection of distribution assets to be performed regu-

larly, an optimal path needs to be computed that allows robots to repeatedly travel

along every pipe in the network collecting usable data on the pipe conditions and

performance. This is known in graph theory as the Chinese Postman Problem

Thimbleby (2003), which seeks to find the shortest route or cycle that a postman

can follow to deliver mail to every resident along a set of streets, with the ideal

case being an Eulerian cycle. This differs from the well known Travelling Sales-

man Problem Jünger et al. (1995) as the destinations are not the focus, but rather

the streets connecting them. A cycle is considered Eulerian if from a starting point

it is possible for a robot to travel along every graph edge (e.g. pipe in our case)

exactly once to get back to the starting point Christofides (1973). A less ideal case

is that of a semi-Eulerian cycle, which travels along each graph edge once but has

different starting and ending points.

Finding an optimal network cycle presents a few challenges for in-pipe in-

spection with multiple robots. It can be computationally expensive to generate for

networks of realisitic sizes, either placing high processing demands on individual
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robots or requiring the computation to be offloaded to an external server and the

results communicated back. Any change in the network, either as a result of main-

tenance or changing environmental conditions such as flow rates, requires a new

cycle to be computed. Additionally, it is difficult for such techniques for comput-

ing cycles to scale to work with multiple robots inspecting a given network at the

same time, although some efforts have been made to address this Osterhues and

Mariak (2005).

An alternative approach to navigating a network is that of swarm behavior.

Instead of computing a cycle for each robot to follow, the robots are treated as

biological species exploring the network by reacting to the environment and each

other. Many examples of this exist in nature ranging from flocks of birds and

schools of fish, to insect colonies Camazine et al. (2001). In all these examples,

a complex behavior emerges from local interactions. It enables a swarm to avoid

predators, search for food, or to build intricate structures. One particular technique

used in nature is that of stigmergy Dorigo et al. (2000), which is also referred to

as indirect coordination. In this process individual creatures place chemical sig-

nals (pheromones) in the environment that themselves and others can sense and

act upon. An example of this is with members of an ant colony that are collect-

ing food. Each ant explores the environment, leaving a chemical trail behind it

that acts as a path back to the nest. When an ant finds food, it retraces its path,

strengthening the chemical trail in this process, encouraging other ants in prox-

imity to adopt the same path and further strengthen the trail. Any chemical trails

that are not regularly travelled along dissipate over time and stop being followed.

Eventually, the swarm converges on to a small number of paths from nest to food

until that source is exhausted and the process repeats itself once again.

Inspired by ant colonies, a stigmergy-based behavior for in-pipe inspection

robots was explored in this paper. Rather than placing chemical signals in the

environment for other robots to detect, stigmergy was performed virtually via the

use of internal memory on board each robot and inter-robot communication Pin-

ciroli et al. (2016). Figure 1 shows this concept applied to a single robot exploring

a cross-shaped network of pipes. Every time the robot entered a pipe, it flagged

that a new inspection had started by depositing a strong virtual pheromone in that

pipe. Pipes were flagged at the start of an inspection rather than the end to avoid

the later situation with multiple robots of one not being aware of the decision of

another until after the other had already travelled the pipe length. At the central

crossroad the robot decided on the next pipe to go down based on its knowledge

of these virtual pheromones. Unlike in the case with the ants, which are drawn to

stronger signals to create and to follow a path, in this approach the robot selected

the pipe with the weakest signal to form a cycle to follow. When the robot reached

a dead-end it turned around, redeposited a strong virtual pheromone, and travelled

back along the pipe again. As with ant chemical pheromones, the strength of the
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virtual pheromone would reduce over time. In our work it was reduced linearly

with each step the robot would take, making the pheromone strength follow an

inverse dependence on the time since last inspection (TSLI) started of each pipe.

As can be seen in Figure 1, it takes the robot 16 time-steps to inspect all

the pipes in the cross-shaped network and get back to its start location. When

adding a second robot to this scenario that is delayed by one time-step (as shown

in Figure 2), the two robots return to their respective starting locations in 8 time-

steps, having equally distributed the network inspection task between the two of

them. This can be thought of as having performed the same number of inspections

in half the time, or double the number of inspections in the same amount of time.

3. Simulation Environment

To evaluate the proposed autonomous robot behavior on more realistic net-

works of pipes, a simulation environment was developed to observe how various

numbers of such robots perform under different conditions. The simulator was

built in C++ and used EPANET, the US EPA software that models drinking wa-

ter distribution systems US EPA (2018), to read in data from .inp files. These

are files that contain network position and connectivity information as well as the

water demands experienced (from which pipe flow velocities are computed) over

a 24-hour period, at a given interval (e.g. 1 hour). Rendering was implemented

using built-in Windows Application Programming Interface (API) functions. The

simulator stored a network structure as an undirected graph consisting of junctions

(vertices) and links (edges). Each junction of the graph had a name, 2D position

and a list of the pipes it joined with. The junctions also acted as points of demand

of water within the network. Each link in this network had a pipe ID, length, diam-

eter, roughness, calculated flow velocity data, and references to the two junctions

that it joined together. Note that there is not necessarily a correlation between a

pipe’s ID and its location or connectivity in a network. Robots were implemented

as points that travel along the lines that links represent.

With the described network representation, simulations of the robot behavior

were initialized by randomly inserting robotic agents into the network at junc-

tions marked as communication nodes. Communication nodes were assumed to

be those junctions that only had a single link connecting them to the rest of the net-

work, as these are likely candidates for external access and communication with

the outside world. Once initialised, agents proceeded to travel at a given velocity

down links based on their knowledge of each pipe’s TSLI, each time selecting the

one that had gone the longest without an inspection. Agents were aware of the

current link they were within, based on its pipe ID, and used this to query their

internal memory for the TSLI values. It should be noted that the agents did not

know their exact coordinates within the network, nor needed high certainty prior
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Time Since Last

Inspection

(a) Legend

(b) Start (c) Step 0 (d) Step 1 (e) Step 2

(f) Step 3 (g) Step 4 (h) Step 5 (i) Step 6

(j) Step 7 (k) Step 8 (l) Step 9 (m) Step 10 (n) Step 11

(o) Step 12 (p) Step 13 (q) Step 14 (r) Step 15 (s) Step 16 / End

Figure 1: A single robot exploring a cross-shaped network using virtual stigmergy linked to the

time since last inspection started. The robot is depicted as a red circle, with the white arrow

indicating its direction of travel. Large gray circles are end points and the small light-gray circle is

the junction point. The robot takes 2 time-steps to travel down a pipe. When multiple pipes have

been without an inspection for a similar time, the robot randomly chooses the next one to inspect.
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Time Since Last

Inspection

(a) Legend

(b) Start (c) Step 0 (d) Step 1 (e) Step 2

(f) Step 3 (g) Step 4 (h) Step 5 (i) Step 6

(j) Step 7 (k) Step 8 (l) Step 9 / End

Figure 2: Two robots exploring a cross-shaped network using virtual stigmergy linked to the time

since last inspection started, with the second robot being inserted 1 time-step after the first. The

robots are depicted by red and blue circles, with the white arrows indicating their directions of

travel. Large gray circles are end points and the small light-gray circle is a junction point. The

robots take 2 time-steps to travel down a pipe. If a robot encounters multiple pipes that have been

without an inspection for a similar time, it randomly chooses the next one to inspect.

knowledge of the network layout. Instead, they only knew the current junction

they were at or the current link they were within and their distance along it. An

illustrative example of the simulator running on a real network with eight agents

is shown in Figure 3. The window is divided into two main views:

• Network View - Shows the structure of the network with agents overlaid on

top, and communication node junctions marked by gray circles (see Figure

3(a)). Links are depicted as lines with their color representing the TSLI

up to a user specified duration, and their thickness being a function propor-

tional to the pipe diameter. The Plasma colormap created for Matplotlib

Van Der Walt and Smith (2015), which follows a yellow to purple transi-

tion, is used for coloring the links. Any links with the TSLI being beyond

that specified by the user are shown as Dark Gray. For the simulation run

shown, a duration of 84 hours (half a week) was chosen, as this allowed the
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majority of pipes to be assigned a color whilst also being able to observe

color differences between neighboring pipes.

• Memory View - Shows one-dimensional plots of the TSLI of each link in the

network in ascending ID order from left to right (see Figure 3(b)). Both the

actual TSLI values recorded by the simulation and the values each agent has

stored in its internal memory are shown. In addition, an external perceived

plot is shown, representing values that may have been communicated out by

the agents to an external system via communication node junctions. Colors

follow the same yellow to purple gradient described for the Network View

window.

The proposed robot behavior was implemented by the simulation environment

as follows. Each agent started at a junction and selected the link that it believed

had gone the longest without inspection, discounting any for which the flow ve-

locity at that moment was greater than what the agent was capable of travelling

against (whenever applicable). If multiple links had gone the same longest time

without an inspection, both were equally viable choices to travel down, so one

was chosen randomly. This situation was most likely to have occurred at the be-

ginning of a simulation run when no pipes have been inspected, meaning that all

of them have gone the longest without an inspection. In order to avoid agents

back-tracking unnecessarily, the link that they last travelled down was initially

excluded from the link selection process, and only got considered if no other link

was available to select. For example, if an agent reached a T-junction, there must

have been flow coming from both of the two available links before the agent would

consider travelling back down the pipe it arrived by. If no suitable link was iden-

tified through which the agent could travel, and back-tracking was not an option,

then the agent entered a sleep state for a period of 30 minutes before repeating

the selection process again. This duration was chosen as it corresponded to half

of the flow data update interval of 1 hour at which the flow data was acquired

originally. If a suitable link was found, then the agent set the TSLI of that link in

its internal memory to zero, indicating an inspection had started, and would then

proceed to travel along the link. At this moment the agent could optionally broad-

cast (depending on simulation run parameters) the TSLI values stored within its

internal memory by a given range for other agents to receive and update their own

data. Whether two agents were in broadcast range was determined by the length

of the shortest network path between them. When a new TSLI value for a given

pipe was received by another agent, it updated its memory with the value only if

it was lower than what was already stored, otherwise it was ignored. This process

ensured that the agents were always aware of when the latest inspections occurred.

Two conditions were supported by the simulator for agents travelling along

links. The first was to move at their driving velocity regardless of the current
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(a)

(b)

Figure 3: An example screenshot from the simulator performing a run on a real network with eight

agents driving at 0.1 ms−1 under flow conditions. The image is divided in to two main views, a)

Network View and b) Memory View.
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flow velocity, and the second was to move at their driving velocity minus the

current flow velocity. If the resulting velocity was greater than the driving veloc-

ity then the driving velocity was used, and if it was negative then an agent was

stopped. Although the former approach was less realistic in a real-world scenario,

it was considered less computationally expensive because checks for the current

flow did not need to be performed at every simulation time-step. When an agent

reached the end of its selected link, and it was at a new junction considered to

be a communication node, an optional synchronisation routine could occur (de-

pending on simulation run parameters), whereby the agent updated its memory

through the comparison with the TSLI values stored in its memory and externally.

At this point a new link selection process could begin. This information was the

Perceived Time Since Last Inspection as illustrated in Figure 3(b). The specific

implementation of this behavior is explained in Algorithm 1. Videos of the simu-

lator in operation under a variety of conditions can be found in the supplementary

material that accompanies this paper (Parrott et al. (2019)).

4. Behavior Analysis

To analyse the proposed robot behavior, simulations were conducted on four

networks: two artificial without flow (see Figures 4(a-b)) and two real district

metered areas (DMAs) with 24-hour flow data that exist in the UK (see Figures

4(c-d)). The first artificial network was a branching case where every junction

except the ends presents at least two choices to the robot agents, and the second

was a branching case created by randomly adding new junctions linked to the

previous ones. All links in the artificial networks were 10 meters in length. For

the real networks, the first was a branching network, and the second contained

both branches and loops. Key parameters for all the networks are summarised in

Table 1.

In this paper the effect of communication method and robot driving speed

under the presence and absence of flow was studied. The mean and standard

deviation of the time between inspections (TBI) that each link experienced was

determined from these simulations. Unlike TSLI, which is a measure of how long

a link has gone without an inspection relative to the current time in a simulation,

TBI is the amount of time separating any two sequential inspection events on a

link. If a link did not experience two sequential events during a simulation run,

then the TBI for that link was taken as being simulation duration. All simula-

tions were performed for the number of robot agents being between 1 ≤ N ≤ 32.

These agents were initially deployed at random communication node junctions

within each network type for a simulation duration of 28 days (4 weeks) with a

0.1 s time-step. This duration was chosen as it allowed agents to perform multi-

ple inspection passes at slow driving speeds to produce meaningful results. The
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Algorithm 1 Pseudocode of the behavior executed by each agent within the simulation. Agents

begin at junctions and travel at a specified driving speed. For networks without flow data, line 22

and 28 are omitted.

Require: CurrentJunction , null, DrivingS peed > 0

1: LastLink ← null

2: loop

3: NextLink ← SelectLink(CurrentJunction, DrivingS peed, GetT ime(), LastLink)

4: if NextLink , null then

5: TimeS inceLastInspection of NextLink ← 0

6: (Optional) Broadcast all known TimeS inceLastInspection values to nearby agents

7: Travel along NextLink at DrivingS peed

8: CurrentJunction← opposite junction of NextLink

9: LastLink ← NextLink

10: if Only 1 link is connected to CurrentJunction then

11: (Optional) Synchronise TimeS inceLastInspection values with Node

12: end if

13: else

14: Sleep for 30 minutes

15: end if

16: end loop

17:

18: function SelectLink(Junction, DrivingS peed, CurrentT ime, LastLink)

19: CandidateList ← empty

20: BackTrackingCandidate← null

21: for all Links connected to Junction do

22: if DrivingS peed > FlowVelocity of Link at CurrentT ime then

23: if Link , LastLink then

24: Add Link to CandidateList

25: else

26: BackTrackingCandidate← Link

27: end if

28: end if

29: end for

30: if CandidateList , empty then

31: S electionList ← empty

32: MaxTimeS inceLastInspection← 0

33: for all Links in CandidateList do

34: if TimeS inceLastInspection of Link > MaxTimeS inceLastInspection then

35: MaxTimeS inceLastInspection← TimeS inceLastInspection of Link

36: S electionList ← empty

37: end if

38: Add Link to S electionList

39: end for
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40: return A random link from S electionList

41: else if BackTrackingCandidate , null then

42: return BackTrackingCandidate

43: end if

44: return null

45: end function

Table 1: Attributes of the four example networks used to study the robots’ behavior. Networks

with an A suffix are artificially created and networks with an R suffix are from real pipe network

data.

Network Junctions Links
Total Longest # of Junctions with Degree

Length (m) Direct Path (m) 1 2 3 4 5 6

Tree (A) 61 60 600.00 80.00 32 0 28 1 0 0

Random (A) 32 31 310.00 120.00 15 9 4 3 1 0

Branching (R) 168 175 2858.50 1187.53 38 87 39 1 1 2

Looping (R) 510 560 28765.51 4489.83 124 188 172 26 0 0

time-step was selected to ensure that agents could not travel along the entirety of

a network’s shortest pipe in a single simulation update. For example, the looping

network’s shortest pipe was 0.1 m in length, meaning the agents would need to

be travelling at 1 ms−1 for this situation to occur. In order to reduce the effects

of starting conditions, 20 iterations (Monte Carlo simulations) of each case were

performed with a random seed and the results were combined to determine the

mean and standard deviation in the time between inspections. These are our two

chosen measures of performance. The mean gives the arithmetic average of the in-

spection regularity experienced by a network over the simulation duration, and the

standard deviation gives a measure of any irregularities experienced, both between

pipes and between different time periods. The choice of 20 iterations was made to

balance the accuracy versus the computational costs of the simulation runs. Con-

sidering that each simulation is 24192000 individual update loops, a single run

would take hours if the number of iterations were chosen greater than 20. The

TBI values were normalized by the robots’ speed and pipe network length:

Tn =
Tbi × S

L
, (1)

where Tbi is the TBI predicted from the simulation, Tn is the dimensionless, nor-

malized TBI, S is the robots’ nominal travel speed, and L is the total length of

all the pipes in a given network. The proposed normalization procedure allowed

for comparison of the results predicted for networks of different topologies and

lengths.
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(a) Tree

(b) Random (c) Branching

(d) Looping

Figure 4: Two artificial networks (a-b) and two real district metered area (DMA) networks (c-d)

used to study the virtual stigmergy behavior of a robot swarm. Links (pipes) are represented as

lines, junctions are solid circles, and the main flow inlet junction is depicted as a square.

4.1. Communication Method

Five different methods of communication were simulated:
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• No Communication - Agents are only aware of the latest inspections they

themselves have performed.

• Constant Communication - Agents are aware of all the latest inspections

that have been performed.

• Node Synchronisation - Agents synchronise their knowledge of when in-

spections last occurred with an external system that is connected to all com-

munication node junctions.

• Junction Broadcast - Agents broadcast their knowledge of when inspections

last occurred a given distance from the junction they are at, for other agents

in proximity to receive.

• Junction & Node Communication - Agents both synchronise at communi-

cation nodes and broadcast at junctions (including those that are communi-

cation nodes).

The broadcast range of the latter two methods was set to 0.1, 1.0 and 10.0% of the

longest direct path of each network (see Table 1), giving a total of nine communi-

cation conditions to simulate.

The mean and standard deviation of Tn as a function of the number of agents

in the four networks is shown in Figure 5. These results were obtained for the no-

flow condition in the pipes and for agents travelling at 0.1 ms−1. As can be seen,

the mean Tn for all the networks follows the same linear trend in log-log space ir-

respective of the communication condition chosen. The reason for this is currently

unclear and deserves a separate mathematical interpretation. The introduction of

additional robots to the system exponentially reduces the Tn required to inspect

the network. Tn is in an inverse relationship with the number of robots deployed

in the pipe network. The dependence of the mean Tn on the type of network is

marginal.

The graphs with the standard deviation in Tn show the effect of the communi-

cation condition as a function of the number of agents. This effect is strong. For

any of the four networks having the robot agents in constant communication with

each other leads to a steeper decline in the standard deviation of the Tn when com-

pared to the no communication case. The higher values of the standard deviation

in the time between inspections are when there is no communication at all or when

the robots use node communication. In the particular case of the tree network (see

Figure 4(a)), the standard deviation in the Tn can be up to an order of magni-

tude higher when communicating at a node (e.g. see ‘node comms’ vs ‘junction

10%’ for 32 robots in Figure 5(a)). Broadcasting at junctions reduces the standard
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(a) Tree Network
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(b) Random Network
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(c) Branching Network
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(d) Looping Network

No Comms

Constant Comms

Node Comms

Junction

0.1% + Node

Junction

1.0% + Node

Junction

10.0% + Node

Junction 0.1%

Junction 1.0%

Junction 10.0%

Figure 5: Log-log plots of the mean (left) and standard deviation (right) normalized time between

inspections (Tn) as a function of the number of agents working under nine communication condi-

tions and travelling at 0.1 ms−1 in networks without flow.
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deviation in Tn considerably in comparison with no-communication case. Com-

municating over a longer broadcast range produces results that converge towards

the constant communication case as the number of robots increases.

Node synchronisation presents an interesting case, as for all networks the

standard deviation in Tn showed much less dependence on the number of agents

present in the network than in any other case considered here. Although synchro-

nisation at communication nodes causes all robot agents within the network to

share knowledge about the time since last inspection (TSLI) started of each pipe

in the networks, this sharing makes them unaware of the actions of other agents

in their immediate proximity until the next node is reached. This leads to the

same decisions being made by multiple agents resulting in the agents clustering

together and attempting to inspect the network as a crowd rather than spreading

out to perform more uniform inspection across the whole network. When node

synchronisation is combined with junction broadcasting the clustering effect dis-

appears. Additionally, at broadcast ranges greater than 1.0% of the longest direct

path this combination acts as a ‘range amplifier’, reducing the standard devia-

tion in Tn considerably (e.g. see the result ’junction 10% + node’ communication

condition in Figure 5(a))).

Overall, these simulations suggest that for networks either without flow or

with robots able to overcome all flow velocities, in-pipe communication at a cer-

tain range is necessary to receive a benefit from the proposed stigmergy behavior

beyond that achieved by merely inserting additional robots into the pipe network.

Additionally, node synchronisation alone is not a viable method of sharing stig-

mergy information between robot agents, but can aid other methods.

4.2. Flow and Driving Speed

To understand how a 24-hour flow cycle affects the inspection performance

of robot agents within the two real-world networks, simulations were run for

all nine communication conditions for driving speeds ranging from 0.025 ms−1

to 0.5 ms−1, in 0.025 ms−1 increments. The upper speed was chosen as it was

≥ 99.5% of the flow velocities in both networks, and the lower speed and incre-

ment were chosen to give sufficient resolution across the range. We considered

two scenarios, one in which the flow in the branching and looping networks only

affected the decision making process, and one where the flow in these two net-

works affected both the decision making process and robots’ speed. In this process

the speed of robots traversing each pipe is updated as the flow conditions change.

Figure 6 shows the results for robots travelling at the speed of 0.1 ms−1 in the pres-

ence of flow (in the interest of paper length raw results for other speeds are not

shown). It is of interest to compare these results against the no-flow results at the

same speed shown in Figure 5(c-d). Clearly, the addition of flow to the simulation

had a strong effect on both the mean and standard deviation of Tn predicted at this
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robots’ speed. In the presence of flow the time between inspection’s dependence

on the number of agents is less than that in the case of no-flow. There is a much

greater effect of communication condition on the mean and lesser effect on the

standard deviation in Tn. For the branching network node synchronisation visibly

remains the poorest choice because of the robots’ clustering effect.

The results presented in Figure 6 suggest that the dependence of the mean Tn

and its standard deviation on the number of agents is approximately linear when

plotted on the logarithmic scale, i.e.:

log(Tn) = b log(N) + log(a), (2)

where a and b are the coefficients in the regression. These coefficients relate to the

pipe network topology, flow and communication conditions and they have a clear

physical meaning. The coefficient a controls the absolute value of the mean Tn or

its standard deviation in a pipe network being inspected with one robot only. The

value of the coefficient b relates to the rate at which the mean Tn or its standard

deviation reduces with the increased robot agent number (N). Basically, this pair

of coefficients provides a mathematical estimate of how the Tn and its statistics

would change with a change in the conditions in a realistic pipe network. An

alternative form of eq. (2) is:

Tn = aNb. (3)

The application of the above equation to (1) yields its non-normalized form:

Tbi = aNb L

S
, (4)

where Tbi is the mean, non-normalized TBI or its standard deviation expected

from the deployment of N agents in a given pipe network. The unit for Tbi can

be flexible depending upon the choice of the units for L and S . This approach is

likely to make the model scalable and valid for a range of network topologies and

lengths.

We applied the above regression analysis to the mean Tn and its standard devi-

ation data obtained for the case when the flow was affecting the agent’s decision

making process only and that when it was affecting both the agents’ decision mak-

ing process and robots’ speed. This enabled us to determine the values of coeffi-

cients a and b in eq. (2) as a function of the communication and flow conditions

and decision process. The results are shown in Figures 7 and 8 where the two

coefficients are plotted against the normalized robots’ speed for a range of com-

munication conditions. In these figures the robots’ speed (S ) was normalized by

the maximum flow velocity (V f ) in the network: V f = 0.7744 ms−1 for the branch-

ing network; and V f = 2.0775 ms−1 for the looping network. The results shown in
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(a) Branching Network - Flow affecting decision only
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(b) Branching Network - Flow affecting decision and driving speed
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(c) Looping Network - Flow affecting decision only
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(d) Looping Network - Flow affecting decision and driving speed

No Comms

Constant Comms

Node Comms

Junction

0.1% + Node

Junction

1.0% + Node

Junction

10.0% + Node

Junction 0.1%

Junction 1.0%

Junction 10.0%

Figure 6: Log-log plots of the mean (left) and standard deviation (right) in the normalized TBI as

a function of the number of agents and communication conditions taken over a 24-hour flow cycle.

The robots’ speed is 0.1 ms−1.
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these figures correspond to the regression model fit with the coefficient of deter-

mination R2
≥ 95%. A few of the robot driving speeds produced results for which

the fit was poorer than that so were excluded from these figures. The full data set

and plots of Tn versus N for each S , and the Matlab code used to perform this

analysis, can be found in the supplementary material that accompanies this paper

(Parrott et al. (2019)).

Figures 7 and 8 show that the flow condition affects more strongly the values

of the two coefficients at a relatively low robots’ speed. This observation is true

for the regression coefficients obtained both for the mean Tn and its standard de-

viation. At a higher robots’ speed this effect is reduced, particularly on the values

of the two coefficients obtained from the regression analysis of mean Tn data. The

point at which this transition occurs is around 32% and 14% of the maximum flow

velocity for the branching and looping network, respectively. It should be noted

that the transition points of the two networks were the same for both flow scenar-

ios tested, suggesting that simulations where only the decision making process of

the robots is affected by flow are sufficient for determining this value. However,

when looking at results lower than the transition point, features that are observed

when flow affects both decision making and driving speed are not reproduced by

the scenario where driving speed is not affected, meaning those results are of lim-

ited value. An example of this is the peak of the standard deviation coefficient a

at S/V f = 0.226 in Figure 7(b), which is not present in Figure 7(a).

Overall, the results from the simulations suggest that although in-pipe inspec-

tion robots need to be able to drive against the flow in order to successfully per-

form inspection with the proposed behavior, they do not need to be capable of

driving against all flow velocities that can occur in the pipe network.

5. Conclusions

In this paper we have demonstrated that from an intelligence perspective au-

tonomous robots are a viable method of future inspection of realistic buried pipe

networks. This can be achieved with a relatively compact swarm of robots (1 ≤ N

≤ 32) replicating a biologically-inspired behavior that allows for complete and

consistent coverage of a realistic pipe network without the need for a centralized

planner, control system, or high certainty prior knowledge of the network layout.

In the future, these swarms of robots can be developed and equipped with the

right sensors to detect leaks in clean water pipes, blockages and structural damage

in wastewater pipes, and gas escape in gas pipes. The buried pipes can also be

retrofitted with communication nodes to convey this information from robots to

the control center.

The principle of this behavior has been detailed and simulations have been

performed for two artificial and two real clean water networks of pipes. These
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(a) Flow affecting decision only
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(b) Flow affecting decision and driving speed
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Figure 7: The values of the two regression coefficients a and b from equation log(Tn) = b log(N)+

log(a) as a function of the normalized robots’ speed and communication conditions derived for

the branching pipe network: fitted to the mean normalized TBI data (left); fitted to the standard

deviation in the normalized TBI data (right).
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(a) Flow affecting decision only
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(b) Flow affecting decision and driving speed
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Figure 8: The values of the two regression coefficients a and b from equation log(Tn) = b log(N)+

log(a) as a function of the normalized robots’ speed and communication conditions derived for the

looping pipe network: fitted to the mean normalized TBI data (left); fitted to the standard deviation

in the normalized TBI data (right).
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simulations have enabled us to study the effects of communication and flow ve-

locity on the robots’ behavior given its relatively simple decision rules. We have

applied a regression analysis to the data obtained from our simulations. This anal-

ysis resulted in two regression coefficients that relate to the time between inspec-

tions and to the rate at which this time reduces with the increase in the number of

robot agents inspecting the pipes. These coefficients provide a good mathematical

estimate of how the time between inspections and its statistics would change with

the change in the conditions in a realistic pipe network.

The presented results for the robots’ behavior scale with the number of robots

introduced, network topology and length. The work shows the importance of

communication to reduce the standard deviation in the time between inspections.

It has been shown that the ability of robots to communicate between each other

even within a limited range helps them perform better and to cover the pipe net-

work more uniformly. It has been discovered that having robots communicate

exclusively via communication node locations is not a viable method of sharing

behavior data and should be avoided unless paired with in-pipe communication. It

has been shown that the mean normalized time between inspections, Tn, for all the

networks follows the same linear trend in log-log space irrespective of the commu-

nication condition chosen. The reason for this is currently unclear and deserves a

separate mathematical interpretation. The introduction of additional robots to the

system exponentially reduces the Tn required to inspect the network. Tn is in an

inverse relationship with the number of robots deployed in the pipe network. The

dependence of the mean Tn on the type of network is marginal. It has also been

shown that the robots’ behavior can adapt to a 24-hour flow cycle in which the

flow velocity can change significantly and prevent robots from travelling through

the pipes. There are clear benefits from having a percentage of robots being able

to travel against the flow in a realistic pipe network. Future work will involve

introducing more physical attributes to the simulation such as size and weight re-

strictions, analysis of the relative efficiency of various propulsion methods, power

management, and methods of controlling the swarm to allow for priority pipes to

be inspected more frequently.
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