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Abstract 

A study into acoustic parameter inversion in the presence of a non-moving, homogeneous atmosphere and grassland 

impedance ground is carried out using methods of likelihood maximisation. Measured frequency-dependent sound pressure 

level and power spectra for a blank firing pistol are used to generate simulated data with added Gaussian error to represent 

variations usually present in real life experiments. Inference is carried out using maximum likelihood estimation (MLE) and 

maximum a priori (MAP) where model parameters are either given as known or restricted to some uncertain distribution 

bounded by realistic conditions. The quality of inference is assessed visually and statistically as the error between the true and 

inferred predictions for a given propagation range. Application of a prior (MAP) greatly improves inference accuracy 

compared to the sole maximisation of the likelihood function (MLE). It is shown that the use of a single octave band frequency 

window does not improve the quality of inference, whereas combinations of several low frequency octave bands do. Exact 

quantification of the true values of the ground and source height are seemingly less important as range increases beyond 500𝑚. 

Although the techniques presented in this paper are for military/security applications, they are readily applicable to other 

acoustical problems, e.g. source characterisation in engineering noise control. The methods adopted are likely to benefit from 

higher-dimensional models, i.e. inhomogeneous atmospheres, complex terrain or urban environments.  
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1  Introduction 

Predicting outdoor sound is a complex problem particularly when there is an uncertainty in the parameters 

involved. This makes the inverse problem, or the inference of the non-acoustical parameters affecting outdoor 

sound propagation from the acoustical data a rather difficult task. This is the situation where an array of statistical 

concepts and methods can be used to infer a parameter while adjusting for the uncertainty present [1]. Only 

recently has significant works been published by D. K. Wilson et al, removing some of the ambiguity surrounding 

uncertainty quantification within outdoor sound propagation [2]. Two cases were studied: a simple homogenous 

atmosphere then a near-ground propagation in a turbulent atmosphere. It showed which sampling methods proved 

more accurate, dependant on which parameter uncertainty was more dominant. Citing this work, further research 

by T. Van Renterghem and D. Botteldooren looked at quantifying the variation in downwind sound propagation 

over a grassland impedance ground [3]. A large variation was found, strongly dependent on sound frequency, 

source height, receiver height, and propagation distance. The variation ranges give insight to this systematic 

uncertainty when performing short-range measurements. However, the effect of the uncertainties and their 

interactions is still not well understood.  

These works suggest to use statistics in combination with outdoor acoustics to understand the uncertainty the 

problem presents. The art of using statistically justified methods in the already complex outdoor setting usually 

requires high-level statistical knowledge combined with thorough understanding of acoustical principles. 

Otherwise, the inference is likely to yield statistically insignificant results. Extending this work to specific sources 

can complicate matters further, i.e. gun fire sources which spectrum is limited to very low frequencies of sound. 

Work on gun detection is of obvious importance in defense applications, yet it is still an understudied area 

particularly in the case of large-scale outdoor situations. There has been works (e.g. [4]) in which methods for 

localization of small arms fire using acoustic measurements of muzzle blast with, and without, ballistic shock 

wave arrivals were studied. It was found that accuracy of detection was greatly dependant on the classification of 

the firearm and bullet themselves, making wider applicability limited. A more recent paper by one of authors of 

[4] attempted to expand the model using the miss angle, i.e. the angle in which the bullet from a small arms fire 

passed the acoustic sensor node, to infer the range over a given 2-D space [5]. This method improved by only 
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having to know a known approximate range for the acoustic impulses i.e. gun barrelling, caliber, rather than 

requiring exact classification of the firearms and components as in the authors former study. It was shown that the 

error greatly increased with the increase in miss angle, and it was suggested that the method would be relatively 

accurate for known stationary geometric areas, i.e. counter-sniper zone. This is an improvement for stationary 3D 

capture, but there was lot of inherent reliance on known parameters, like impedance ground, and a fair amount of 

information about the firearm source. More recent work by J. A. Parry et al used a simple excess attenuation 

model, with and without a priori knowledge to infer the source range and simulated data for sound propagation 

from a blank firing pistol [6]. The ground in this instance was assumed to be vegetative, creating an acoustically 

softer ground. It was found that errors could be reduced when a priori was applied. A greater accuracy (~ ± 5𝑚) 

of range detection was achieved when the likelihood space was filtered in octave bands in the infrasonic frequency 

range. It was noted that measuring the value of excess attenuation directly would require some extra mathematical 

computation, but this study still showed the powerful accuracy of this method specifically and also how these 

statistical techniques could be expanded directly to other models.  

This paper aims to study the effect of geometrical uncertainties on outdoor sound propagation of a gunshot and 

performance of some parameter inversion methods. We show that a relatively simple outdoor propagation model 

and maximum likelihood method can be applied effectively to infer the location of the gunshot with limited prior 

knowledge at a short and medium range. The study assumes a grassland impedance, more similar to wilder areas 

of United Kingdom. The methods applied also aim to show the effect of specific interactions of uncertainties in 

the parameters of the model. This paper makes use of two differing statistical ideologies to maximise the likelihood 

function: frequentist and Bayesian. The frequentist method of maximum likelihood (or log-likelihood) estimation 

(MLE) makes use of the likelihood function in combination with the mean and variance to gather estimates of 

given parameters [7]. MLE methods have been successfully used in acoustical research, with good examples in 

the forward case to evaluate models for impulsive noise propagation [8] or for acoustic source localisation in 

wireless sensor networks [9]. These works are a good example of how MLE methods can be applied to given 

uncertain scenarios and used to improve understanding of the effects of a given uncertainty on sound propagation, 

while also being used for direct parameter inference.  

The Bayesian Maximum a Posteriori (MAP) method also makes use of the likelihood function, but it also 

incorporates a prior, which is the quantification of beliefs or known knowledge [10]. The use of Bayesian methods 

is more novel in outdoor sound propagation. A recent study successfully used Bayesian inference to optimise the 

selection of parameters in models used for sound propagation outdoors [11] and in porous media [12]. They 

however did not successfully detail the uncertainty itself, perhaps because some departure from model simplicity 

in their approach [11]. The work by Xiang and Fackler [12] defines the power of Bayesian statistics in application 

to acoustics in general rather than for outdoor sound propagation. This work demonstrates how Bayesian statistics 

can be used to improve model selection and parameter inference techniques in acoustics. This work suggests that 

Bayesian methods have their advantages when applied correctly, but they can easily be misused or 

overcomplicated meaning that intricacies of the physical effects can be overlooked.  

Our paper aims to illustrate how these statistical ideas can be effectively applied to study the uncertainty in outdoor 

sound propagation and how two different statistical approaches can influence the effectiveness of the inference 

process and quantified in terms of the inversion error. Simulations are used to mimic the repeated measurement 

to inform the inference process. It is assumed that sound propagates in a non-moving homogenous atmosphere 

over a grassland impedance ground. The impedance ground, and other source geometry parameters are studied 

under known and uncertain conditions, solely and in combination, to establish whether or not some particular 

uncertain conditions have a significant influence on the inference process. 

Observed data are synthesised using a popular model for short-/mid-range sound propagation that is assumed to 

be perfect, i.e. given a set of geometrical, ground and source parameters this model would predict the exact true 

value of the sound pressure at the receiver position. Gaussian (normal) noise is then added to simulate the 

uncertainties present in the measurements. Observation sample size is kept small (𝑛 = 10) to test the effects of 

limiting information on the performance of the model. Estimates of the range are gathered from each sample data 

set either solely from the maximisation of the log-likelihood or via Maximum a Posteriori by applying some prior 

beliefs as a statistical function. Estimations are performed for a combination of the parameters being given as 

known, or uncertain. The uncertainty here is some flat uniform distribution where no information on which 

parameter values are more likely is given. The prior considered here is chosen selectively around the true 

parameter value with a normal distribution, 𝑁(𝜇, 𝜎2), with a mean (𝜇) and constant variance (𝜎2). Prior beliefs 
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are only applied to the range parameter. The function will also have its frequency range restricted to specific 

octave bands to further assess whether inference or parameter interactions change compared to the initial 

broadband frequency range. 

The primary question of this paper is: How well can a simple method recover an unknown range in an outdoor 

sound propagation setting? We are also asking: (i) Which, if any, combinations of uncertainty inside parameters 

cause more errors than others? (ii) What is the effectiveness of simple statistical techniques in inferring the source 

range? (iii) How effectively the source of a gunshot could be detected, over a grassy floor, using these methods? 

The answer to the primary question is likely to have an immediate impact on current practices while the other 

specific questions will help improve the basic understanding of the uncertainty in outdoor sound propagation. This 

work will also pave the way to further statistical improvements to acoustic inversion methods in the presence of 

uncertainties, with direct application to improving gunshot detection practices. 

This paper is structured in the following manner. Section 2 describes the acoustical model and source 

characterisation. Section 3 details the statistical likelihood methodologies. Section 4 reviews the results from the 

simulations, firstly for broadband sounds and then at octave filtered frequency bands. Finally, Section 5 is the 

conclusions from this study. 

2  Research Methods 

2.1  Gun source evaluation 

Acoustical characterisation of gunfire shows it has three main components: (i) muzzle blast, (ii) mechanical action; 

and (iii) supersonic projectile [14]. The gun used in this study is a Bruni Mod. 92 Top Venting 8mm Blank Pistol. 

A blank pistol must be used due to the obvious security issues and to obey with the statutory gun law in the UK.  

This means that the third contributing sound source of the projectile is not present in this experiment. Acoustic 

recordings of the gunfire are taken in the anechoic chamber at the University of Sheffield. The hilt of the gun is 

placed on the floor and 3𝑚 away from a GRAS 46AN 1/2'' Microphone which is also placed on the floor. The 

frequency range of this microphone is 0.5 – 10000 Hz. The microphone is connected to a NI DAQ PC and digitised 

at 1 kHz without any filtering except the anti-aliasing filter provided as standard in the NI DAQ PC. The level of 

background noise in the chamber was negligibly small in comparison with the level of the gunshot (with the SNR 

> 100 dB). Recordings made were narrowed down to four clean recordings to study the reproducibility of the 

source spectrum with minimum interference. Figure 1 presents the Fourier spectra plotted against the frequency 

(𝜔) in Hertz of the four clean (i.e. without unwanted sounds heard during recording) gunshots. The frequency 

spectra show strong peaks around < 5Hz and 50Hz which level is consistent within < ±1 dB between individual 

gunshots. Frequencies over 500 Hz were omitted due to their lack of energy. The time and Fourier spectra look 

remarkably alike to other experimental data recorded for other types of gunfire [15,16]. 

 
 

Figure 1: Sound pressure level spectra (𝐿�̅�) of the gunshot recordings (left) and the mean sound power level (𝐿𝑊) spectrum (right). 
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An important quantity that can be established form these recordings is the sound power level (SWL or 𝐿𝑤  for 

hereon) of the gunshot. The SWL of the source placed on the ground can be defined as 𝐿𝑤(𝜔) = 𝐿�̅�(𝜔) + 10 log(2𝜋�̅�2) , (1) 

where �̅� is the range from the sound source and 𝐿�̅� is the sound pressure level (SPL from hereon). The range from 

the source is known to be 3m, resolving the second term in eq. (2.1). The SPL is a measure of the frequency-

dependent pressure measured against the reference pressure (𝑝𝑟𝑒𝑓 = 20 × 10−6 Pa). The SPL is calculated from 

𝐿�̅�(𝜔) = 10 log (𝑝𝑎𝑣2 (𝜔)𝑝𝑟𝑒𝑓2 ) , (2) 

where 𝑝𝑟𝑒𝑓 = 20 𝜇𝑃𝑎 is the reference sound pressure. The mean is taken from the measured pressures (𝑝𝑎𝑣), as 

seen in the left of Fig.1, to then obtain a given SPL. This gives us a representative frequency dependent SWL of 

the gunshot (see RHS of Figure 1) ready to be used to generate long range observations.  

2.2  Acoustical Predictions 

Acoustical predictions are made with one receiver across a 2-D plane as shown in Figure 2. Ignoring problems, 

such as angle detection for a 3-D sound propagation case allows for better investigation into the underlying 

uncertainties. In practical applications the measured quantity at the receiver is the SPL. The calculated SWL is 

used to simulate the SPL (𝐿𝑝) that would be measured at a given range. According to the constraints from the 

assumptions of the homogenous atmosphere and from impedance ground, the frequency dependent SPL at a given 

range 𝑟 can be calculated as [17] 𝐿𝑝(𝜔) = 𝐿𝑊(𝜔) − 10 log(4𝜋𝑟2) + Δ𝐿(𝜔) , (3) 

where Δ𝐿 is the excess attenuation. Atmospheric absorption is omitted due to its negligible effect at the given 

lower frequencies. The excess attenuation for a non-moving, homogeneous atmosphere is a measure of the ground 

effect only and it is calculated as [17] Δ𝐿 = 10 log |1 + 𝑄 𝑅1𝑅2 exp(𝑖𝑘(𝑅2 − 𝑅1))| , (4) 

where 𝑘 and 𝑄 are the wavenumber and spherical wave reflection coefficient, respectively. The distances 𝑅1 and 𝑅2 can be defined as 𝑅1 = √𝑟2 + (𝑧 − 𝑧𝑠)2 , (5) 𝑅2 = √𝑟2 + (𝑧 + 𝑧𝑠)2 , (6) 

for given source (𝑧𝑠) and the receiver (𝑧) heights. The spherical wave reflection coefficient (𝑄) accounts for the 

effect of the impedance ground on the acoustic pressure amplitude and phase. The equation for the spherical wave 

reflection coefficient is 𝑄 = (𝑍 cos𝜃 − 1𝑍 cos𝜃 + 1) + (1 − (𝑍 cos𝜃 − 1𝑍 cos𝜃 + 1)) 𝐹(𝑤) . (7) 

The angle 𝜃 is the incident angle as shown in Figure 2. The function 𝐹(𝑤) accounts for the boundary loss factor 

and it is defined as 𝐹(𝑤) = 1 + 𝑖𝑤√𝜋 exp(−𝑤) erfc(−𝑖𝑤) , (8) 

with erfc(−𝑖𝑤) being the complimentary error function erfc(𝑧) = 1√2𝜋 ∫ exp(−𝑡2) 𝑑𝑡 .∞
𝑧 (9) 
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Figure 2: Acoustic scenario in the (𝑟, 𝑧) geometry

The parameter 𝑍 in eq. (7) is the normalised impedance of the ground, which depends greatly on the ground 

characteristics. The impedance 𝑍 is determined using the model proposed by Horoshenkov et al [18]. This model 

calculates the acoustic properties of the impedance ground by considering the ground as a porous media with 

pores of non-uniform cross-section with the median radius �̅�.  

In outdoor sound propagation studies, it is common to refer to the effective flow resistivity of the ground (𝜎𝑔). 
The acoustic impedance model proposed in [18] relates the effective flow resistivity to the median pore size as 

𝜎𝑔 = 8𝜂𝛼∞�̅�2𝜙 𝑒6(𝜎𝑠 log 2)2  , (10) 

where 𝜂 is the dynamic viscosity of air. In the above equation it is common to set the values of porosity (𝜙) and 

tortuosity (𝛼∞) to unity and standard deviation in pore size (𝜎𝑠) to zero, because for a majority of outdoor ground 

types their influence on the value of effective flow resistivity is relatively small in comparison with that of the 

median pore size.  

Examples of the excess attenuation spectrum for the given true values, the varying range and grassland impedance, 

of the input parameters are shown in Figure 3. It is seen how the value of excess attenuation (Δ𝐿) is varies across 

frequency (𝜔), exhibiting an oscillatory behaviour with the increase of frequency (𝜔). The initial geometry effects 

the interaction pattern, with more oscillations occurring as the range is decreased. 

 
Figure 3: Excess attenuation (Δ𝐿) spectra of due to each combination of parameters and impedance (𝜎𝑔 = 100 kPasm−2) over a logarithmic scale up to a frequency (𝜔) of 16 kHz. The ranges given are 250𝑚 

(black line) and 500𝑚 (magenta line) .

2.3  Generating Observed SPL 

Observations are generated by assuming that our acoustical model is perfect, or that with given parameters the 

model would predict the exact observable value i.e. SPL measurement. This assumption allows observations to 

then be generated by using the predictive model itself with some given noise. Initial observations are generated 

using the SPL model (eq. (3)) with the true heights of the source (ℎ𝑠) and receiver (ℎ𝑟) set to 2 m and the 
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impedance ground has the effective flow resistivity (𝜎𝑔) of 100 kPasm-2, which is the typical for grassland [19]. 

The range (𝑟) is assessed at either 250 m or 500 m. The predicted SPL spectrum for the set parameters including 

the range (𝑟), are shown in Figure 4 as black lines. These predicted SPL show a strong resemblance with the 

experimental data recorded for similar settings using a 9mm handgun [20], with the differences expected to be 

due to 1mm decrease in the pistol calibre and lack of projectile in the case of our pistol. The sound propagation 

model, eq. (3), can be expressed as a function of the input parameters 𝑦 = 𝑓 (𝜔, ℎ𝑠 , 𝑟, ℎ𝑟 , 𝜎𝑔 , 𝐿𝑊(𝜔)) . (11) 

Simulated observations are then repeatedly generated by adding a random, but controlled, artificial error to mimic 

noise within data collection, thus observations,𝑦, are generated via 𝑦 = 𝑓 (𝜔, ℎ𝑠 , 𝑟, ℎ𝑟 , 𝜎𝑔 , 𝐿𝑊(𝜔)) + 𝜀𝑠  . (12) 

The error applied at every simulation is randomly drawn from the distribution 𝜀𝑠 ∼ 𝑁(0, 𝜎𝜀2), with a fixed variance (𝜎𝜀2) set to 5dB. This error term remains constant across frequency (𝜔). Normal (Gaussian) error is an acceptable 

error term to use being supported by the central limit theorem. The added term creates observations that can be ±5dB away from the true value. However, the probability of observing data with such an error decreases the 

further it moves from the true value. This error value is approximately equal to 10% of the difference between 

the highest and lowest observable SPL. The range for which the generated observations can be measured are seen 

via the dashed limits in the plots of the true SPL (dashed lines in Figure 4).  

For our investigations a small amount of observations (𝑛 = 10) are used to test how effective the parameter 

estimation can be using each statistical technique and little information present in the model. It is known that 

smaller sample sizes increase the uncertainty present in the estimation techniques. This is a key part in the 

investigation to compare how applicable this methodology is in practice in the presence of such systematic 

uncertainty. 

 
Figure 4: Predicted SPL (𝐿𝑝) against frequency (𝜔) for the different ranges (𝑟) over a logarithmic scale (solid 

line). Error margins for observation generation are superimposed (dashed lines). 

In practice it is common to analyse the sound pressure level in octave bands. This analysis will become useful as 

shown in the following sections. The octave bands used in our analysis are defined in Table 1 in accordance with 

the ISO 266 [21]. Each band is denoted as 𝐵 with a relevant subscript. This is merely to improve ease during 

visual analysis and scission. 

 

Octave 1/1 

Band (𝐵𝑛) Lower 

Limit (Hz) 

Centre 

Frequency (Hz) 

Upper 

Limit (Hz) 𝐵0 (Band 0) 0.24 1 1.41 𝐵1 (Band 3) 1.41 2 2.82 𝐵2 (Band 6) 2.82 4 5.62 𝐵3 (Band 9) 5.62 8 11.2 
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𝐵4 (Band 12) 11.2 16 22.4 𝐵5 (Band 15) 22.4 31 44.7 𝐵6 (Band 18) 44.7 63 89.1 𝐵7 (Band 21) 89.1 125 177 𝐵8 (Band 23) 177 250 355 𝐵9 (Band 25) 355 500 710 
 

Table 1: Octave bands, in keeping with ISO 266. 

 

3 Statistical techniques 

3.1  Maximum Log-likelihood Estimation (MLE)  

The first statistical method uses the frequentist ideology of maximising the likelihood function at a given 

parameter. For this, we assume that the observations are distributed normally. This allows us to describe the 

observations with a normal probability density function (PDF for hereon), the familiar bell-shaped curve, defined 

as 𝑓𝑁 (𝑥𝑗|𝜇𝑜 , 𝜎𝑜2) = (2𝜋𝜎𝑜2)−12 exp (− 12𝜎2 (𝑥𝑗 − 𝜇𝑜)2) . (13) 

The mean (𝜇𝑜) and variance (𝜎𝑜2) in this case are the true and known values that describe how the observations, 

e.g. sound pressure or sound pressure level, are distributed. The set of parameters then define a normal distribution, 𝜃 = (𝜇, 𝜎), are the values that objective variables the likelihood function attempts to maximise simultaneously. 

The remaining information required by the likelihood function is the observables, i.e. recorded data. Each new 

observable brings information into the function, allowing for the likelihood to define a better set of 𝜃 that describes 

the likelihood’s of new data [7]. If we define our sample group of observations as 𝒙 = (𝑥1, … , 𝑥𝑗)  the likelihood 

function can be written as 

ℒ(𝜃|𝒙) = ∏ 𝑓𝑁 (𝑥𝑗|𝜇, 𝜎2)𝑛
𝑗=1  , (14) 

where 𝑛 is the total number of observables (𝑥). The function in eq. (14) can be further simplified with some 

manipulation to 

ℒ(𝜃|𝒙) = ∏(2𝜋𝜎2)12𝑛
𝑗 exp (− 12 (𝑥𝑗 − 𝜇)2𝜎2 ) . (15) 

ℒ(𝜃|𝒙) = (2𝜋𝜎2)−𝑛2 exp (− 12𝜎2 ∑(𝑥𝑗 − 𝜇)2𝑛
𝑗 ) . (16) 

Taking the log transform log(ℒ(𝜃|𝒙)) → ℓ(𝜃|𝒙), gives the log-likelihood function, a better-defined function 

which is also algebraically easier to compute. The log-likelihood ℓ(𝜃|𝒙) can be rewritten as log(ℒ(𝜃|𝒙)) = ℓ(𝜃|𝒙) = − 𝑛2 log(2𝜋) … … − 𝑛2 log(𝜎2) − 12𝜎2 ∑(𝑥𝑗 − 𝜇)2𝑛
𝑗  . (17) 

It is important to note at his stage the key relationship, and differences between likelihood and probability. The 

following relationship is known to be true 𝑃(𝒙|𝜃) ≡ ℒ(𝜃|𝒙) . (18) 

While colloquial in use, the terminology is equally misused as the same thing in daily life whereas each function 

is doing something different. For any given distribution, 𝑃(𝒙|𝜃) defines the probability for observing data 𝒙, for 
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given set of parameters 𝜃. Meanwhile, ℒ(𝜃|𝒙) describes the how likely taking the set of parameters inside 𝜃 is for 

given values of the observables 𝒙. The important difference is that each function is asking question about the data 

or parameters values. Manipulation of these statistical ideas is what allows us to perform inferences on our 

observables and thus study the effects of error and uncertainty on our given, or in a matter of fact any, acoustical 

scenario. 

Our study manipulates the 𝜃 set in combination with the model that generates 𝒙, to infer parameters from inside 

the later model. The variance (𝜎2) is given as known being assumed equal to the initial variance inside our 

observations. Thus, the variance of ℓ(𝜃|𝒙) is equal to 𝜎𝜀2 which was set to 5 dB in eq. (12). The mean (𝜇) is also 

given as known, but uses the given acoustical model in perfect conditions. The mean (𝜇) is calculated using the 

same method that generates our sample data, requiring the situation-dependant true values of frequency (𝜔), 

source geometry (ℎ𝑠 , 𝑟) and effective flow resistivity of the ground  (𝜎𝑔), but no noise added. This can be used 

as it is still assumed that, given a set of parameters, the model would predict the perfect result which would also 

be equivalent to the mean of a data set containing noise. The inference process then relies on the values inside our 

predictive model (eq. (3)) would maximise the likelihood to these given set of 𝜃, i.e. which set of parameter values 

would be most likely. 

It is well understood that Bayesian methods become equivalent to frequentist methods as the number of 

observations becomes large. Limiting the initial information available to the likelihood function allows for 

investigation into the performance of the MLE (and soon to be discussed MAP) method. The increase in 

observation size, albeit small, will assess if any improvements can be detected with such a smaller addition of 

initial information. 

The 𝜔 − 𝑟 space is generated by using given values of each parameter. Frequency points (𝜔) cover the frequency 

range for sound generated by the gunshot (see Section 2.2), usually  1 ≤ ω ≤  500Hz. The 𝑟 space covers the 

range of 100m ≤ 𝑟 ≤ 650m. The definition of the 𝑟 space should not be confused with the application of a prior 

previously discussed in Section 3.2. Other parameters, specifically the source height (ℎ𝑠) and effective flow 

resistivity of the ground  (𝜎𝑔),  are allowed to be distributed, i.e. incorporate uncertainty, for further study into 

their interactions. In the most uncertain case, with both parameters unknown, draws are taken from a uniform 

distribution for each parameter for every individual simulation run. A uniform distribution, U~[𝑎, 𝑏], creates a 

distribution between a lower bound (𝑎) and upper bound (𝑏) with an equally weighted probability of drawing any 

number between these limits. This allows for the physical constraints of reality to be applied without any a priori 

knowledge, while simulating complete uncertainty around the parameter. The distributions drawn from are ℎ̃𝑠 ∼ 𝑈[0.1,10] , (19) �̃�𝑔 ∼ 𝑈[20000,200000] . (20) 

The distribution of the height (eq. (19)) has its upper bound at 10m as higher source heights are also known to be 

subjected to atmospheric influences [17] which the model adopted here does not account for. The distribution of 

the flow resistivity of the impedance ground (eq. (20)) is chosen to encompass variations in the experimental data 

recorded for this type of grassland [19] we are assuming to be present.  

The values of the 𝜔 − 𝑟 space that best maximise the given combination of likelihood parameters (𝜃) can now be 

located. According to the most uncertain case, eq. (17) can be rewritten as 

ℓ(𝜃|𝒚, 𝜔, ℎ𝑠 , 𝑟, 𝜎𝑔) = − 𝑛2 log(2𝜋) − 𝑛2 log(𝜎𝜀2) …
… − 12𝜎𝜀2 ∑ ∑ ∑ (𝑦𝑗 − 𝑓(𝜔𝑎 , ℎ̃𝑠 , 𝑟𝑏 , �̃�𝑔))2𝑛

𝑗=1
𝑛𝑟

𝑏=1
𝑛𝜔

𝑎=1  . (21) 

In the case when the source height (ℎ𝑠) and/or impedance (𝜎𝑔) are known they simply have the distributions (ℎ̃𝑠 , �̃�𝑔) replaced with the respective true, and unchanging, values (2m, 100kPasm−2). This likelihood function 

uses 𝑛 observations to generate a 𝑛𝜔 × 𝑛𝑟 space over 𝑛𝜔 and 𝑛𝑟 points for frequency (𝜔) and range (𝑟), 
respectively. In simple terms, the maximised value is located in the space related to the best estimate of 𝑟, at a 

specific frequency for given or unknown source height and impedance.  
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3.2  Semi-Bayesian Maximum a Posteriori (MAP) 

The second method requires the understanding of Bayes’ theorem. Bayes' theorem is defined as [10] 𝑃(𝜃|𝒙) = ℒ(𝜃|𝒙) × 𝑃(𝜃)𝑃(𝒙)  , (22) 

where 𝑃(𝜃|𝒙) is the posterior, 𝑃(𝒙) is the evidence, 𝑃(𝜃) is the prior and  ℒ(𝜃|𝒙) is the likelihood function. The 

likelihood function is defined the same way as in Section 3.1, while the prior is the PDF of beliefs about 𝜃. The 

application of a prior is used to import knowledge, or the absence, into the given statistical procedure. The 

posterior is the PDF that uses these beliefs in combination with the likelihood to generate a probability function 

of 𝜃 for a given set of data. The evidence term normalises the function to a true PDF, however is generally difficult 

and expensive (computational) to compute. The MAP procedure avoids this by disregarding this term. The only 

value of interest to us in the posterior is the best estimate which happens to be the easily-obtainable peak of the 

distribution, which is proportional to the combination of the prior and likelihood. This method reduces eq. (22) 

to 𝑃(𝜃|𝒙) ∝ ℒ(𝜃|𝒙) × 𝑃(𝜃) . (23) 

Removal of the evidence term greatly reduces computational time, without removing the ability to gather a best 

estimate of a parameter. Similar to the MLE method, the reduced Bayes equation (eq. (23)) can be log-transformed 

to log(𝑃(𝜃|𝒙)) ∝ ℓ(𝜃|𝒙) + log 𝑃(𝜃) . (24) 

The log-transformed prior can be better interpreted here as a penalty term. The log of a probability is always 

negative, increasing in magnitude for a decreasingly small probability. The application of log here reduces the 

likelihood function at positions where the prior is less-confident. It also reduces the likelihood to −∞ in areas 

outside of the coverage of the prior, due to the log of zero [10]. 

 

The prior applied in this instance is a normal, centred around the mean (𝜇0 = 250𝑚, 500𝑚) with a standard 

deviation of 15𝑚, thus the distribution covers approximately  ±50𝑚 either side of the given mean. A completely 

flat prior could have been used in principle, especially in situations where reality constraints motivate it i.e. a 

uniform distribution that installs cut-offs at values that are known physical impossibilities. However, a flat normal 

is already applied, thus uniform priors are deemed unnecessary to the narrative of this paper. 

 

3.3  Performance Metrics 

To investigate the effectiveness of the inference process and the effects of uncertainties in parameters, we study 

the errors in relation to the predicted values and the true value. We make use of MATLABTM (and the ShARC 

supercomputer facilities at the University of Sheffield) to repeatedly simulate a small set of observations (𝑛 =10), maximise the likelihood over the 𝜔 − 𝑟 parameter space for given parameter values, either known or 

randomly drawn from given distributions, then find the best-estimate before and after a prior is applied. The 𝜔 

space is also analysed in the octave band bounds defined in Table 1. 

The error (𝜀𝑟) is then found as the difference between a simulation’s estimate of the range and the true value of 

range (𝜀𝑟)𝑖 = (𝑟)𝑖 − 𝑟∗   for   𝑖 ∈ [11000]. (25) 

The error is investigated in both relative and absolute terms. The relative error will allow insight into the direction 

of the incorrect estimations (i.e. whether an under or over estimation was made) while the absolute error is 

independent of direction. 

A substantial number of errors (𝑛𝜀 = 1000) are generated to allow the error set to be explored visually and 

numerically and to minimise the error from the sampling process. Additionally, two more statistics can be 

investigated: (i) mean absolute error (MAE); and (ii) root mean squared error (RMSE). Both use the previously 

defined 𝜀𝑟 to analyse the inference process across the entire set of errors. The MAE is the arithmetic mean of the 

modulus of the errors (eq. (26)), while the RMSE is the root of the arithmetic mean of the square of the errors (eq. 

(27))  
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MAE = 1𝑛𝜀 ∑|(𝜀𝑟)𝑖|𝑛𝜀
𝑖=1  , (26) 

RMSE = √ 1𝑛𝜀 ∑((𝜀𝑟)𝑖)2𝑛𝜀
𝑖=1   . (27) 

The MAE allows for an insight into the overall average error, while the RMSE is another way of calculating the 

average error, but it is far more punishing to larger errors, i.e. more weight is given to larger errors. Both errors 

are independent of direction, i.e. whether the average estimate overestimates or underestimates the given true 

value. Visual analysis will be used to assess the under and/or overestimations that may occur 

4  Results 

4.1 Inference Using Broadband Data 

The results of the analysis of errors using broadband sound pressure level data is presented in Table 2. This table 

shows the MAE, RMSE and absolute maximum error for the simulations for the combinations of known or 

unknown parameter. These data were drawn from the respective error distribution. The results from each statistical 

method are also compared.𝒓∗ (𝐦) 𝒉𝒔 (𝐦) 𝝈𝒈 (𝐤𝐏𝐚𝐬𝐦−𝟐) Method MAE (𝒎) RMSE (𝒎) Abs. Max. (𝒎) 

250 

2 

100 
MLE 124.74 127.26 150 

MAP 23.53 30.1634 96.05 �̃�𝑔 
MLE 122.55 125.64 150 

MAP 23.53 30.16 96.05 

ℎ̃𝑠 

100 
MLE 123.24 126.48 150 

MAP 23.58 30.21 96.05 �̃�𝑔 
MLE 120.89 124.71 150 

MAP 37.85 48.25 202.9 

500 

2 

100 
MLE 294.43 300.21 500 

MAP 44.63 57.81 211.71 �̃�𝑔 
MLE 295.1 301.21 399.45 

MAP 44.67 57.83 211.72 

ℎ̃𝑠 

100 
MLE 295.9 302.47 400 

MAP 44.72 57.87 211.72 �̃�𝑔 
MLE 300.29 306.63 400 

MAP 44.77 57.91 211.71 

Table 2: Collated statistics of error (𝜀𝑟) from each simulation. Each row follows the selection of initial 

parameters, known or drawn from a given distribution, then for the given statistical method used. 

Overall errors estimated while using MLE alone are relatively large, being on average 50% and 60% of the true 

range when the true range (𝑟∗) is 250m and 500m, respectively. Application of a priori, using the MAP method, 

greatly reduced errors to within 10% of the true range.  

The differences in the MAE and RMSE are negligibly small (< 0.05 𝑚) between most simulations where the true 

range (𝑟∗) is 250m. In addition, the difference between error statistics when the true range is 500 m are also 

negligibly small (< 0.1 𝑚) when using the MAP method in all conditions. However, when the true range is 250m, 

and both the flow resistivity of the ground (𝜎𝑔) and source height  (ℎ𝑠) where initially unknown, a large jump in 

error can be seen when the MAP method is used. The MAE increased by ~15m, the RMSE by ~20m and the 

absolute maximum error increased by ~100m.   It is likely that the increase in extreme outliers has dragged the 

average errors particularly in the case when both the source height (ℎ𝑠) and flow resistivity of the ground (𝜎𝑔) 

have varied due to the uncertainty present. This effect is not seen when the true range (𝑟∗) is increased to 500m, 

which indicates the interaction effects of these uncertainties may either be increased by reducing range, or the 

opposite, the interfering effects of the uncertainties being reduced as the true range (𝑟∗) is increased. 
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The negligible differences between the statistics of error when uncertainties are imported to various parameters, 

may be influenced by a relatively small sample of observed data (𝑛 = 10) in the model. Studying interactions 

with various levels of initial data in the model is outside the scope of this paper, and it would require repetition of 

the methods used here with such variations present. They also would inherently be affected by the distribution 

choice, specifically the effective flow resistivity of the ground (𝜎𝑔) being a distribution that covers various 

recorded values for grassland. More acoustically harder grounds urbanised areas, water, can have different 

effects.  

4.2  Visualisation of Errors 

Visualisation of errors (𝜀𝑟) is done using three different plots: (i) a PDF of estimates; (ii) a PDF of the absolute 

errors; and (iii) the cumulative distribution function (CDF from hereon) of the absolute errors. The first allows for 

insight into the general distribution of where estimates were made in relation to the true value and differences in 

over and underestimations. The second plot of absolute error defines the probability of the error, no matter whether 

it is over or under. The CDF of absolute error can be used to visualise the cumulative probability of the defined 

error. Kernel density estimation (ksdist function in MATLABTM) is used to produce smoothed curves that are 

visually easier to assess. This is deemed acceptable due to the large sample size in each case (𝑛𝜀 = 1000). 

Visualisations are presented in Figure 5 (𝑟∗ = 250𝑚) and Figure 6 (𝑟∗ = 500𝑚). Each subplot of a given 

PDF/CDF contains multiple lines, each representing the results for simulations with the varying input uncertainty, 

i.e. either only 𝑟 is unknown, or 𝑟 and  𝜎𝑔 are unknown or 𝑟,  𝜎𝑔 and ℎ𝑠 are unknown. The results presented 

in Figure 5 suggest that in the short-range case (𝑟∗ = 250𝑚) the ineffectiveness of the sole maximisation of the 

likelihood (MLE) is obvious (as also seen in Table 2). Estimates are centred around the minimum possible value 

of 𝑟 set in the model, with a positive skew allowing for a smaller proportion of better estimates, as well as over-

estimations (top-left in Figure 5). The PDF of absolute error (top and mid rows in Figure 5) shows that the majority 

of errors are greater than 100m, which is confirmed by the CDF of absolute error (top-right in Figure 5) where 

there is a 20% chance of getting an error of less than ~100𝑚 and 80% chance of getting an error of smaller than ~140𝑚. The differences between the simulations when all to none of the initial parameters are known are not 

clear for the MLE method for the true range (𝑟∗) of 250m (top row in Figure 5). However, there is some indication 

that allowing the effective flow resistivity of the ground (𝜎𝑔) to vary may decrease the error slightly, but the 

magnitude in which the peak (and distributions generally) is flattened here is too small to state as fact. 

The application of a prior (MAP method) greatly improves estimations (bottom row of Figure 5). The spread of 

estimates (bottom-left of Figure 5) is more symmetric around the true range (𝑟∗ = 250𝑚), with a negative skew 

away from this value. When the source height (ℎ𝑠) and effective impedance of the ground (𝜎𝑔) are unknown, the 

distribution of estimates is far flatter, yet more symmetric around the true value, showing tails containing more 

overestimations than the related simulations while using the MLE. This confirms the findings (see Table 2) that 

the error is increased in the most uncertain simulation due to the allowance of larger overestimations rather than 

underestimations. The MAP method leads to the PDF of absolute error (bottom and mid row in Figure 5) becoming 

flipped, peaking around zero error with tail decreasing toward larger errors. The most uncertain case is less 

strongly peaked leading to an increase in size and frequency of large errors. All other simulations seem to be 

highly probable to be less than ~30𝑚, with a large drop to a step appearing to around ~50𝑚. The likelihood of 

an error larger than 50m lower substantial, before tailing out to the maximum error. The CDF (bottom-right of 

Figure 5) shows the reduction in error compared to the MLE, with a 20% chance of error of less than ~5𝑚 and 

80% chance of an error less than ~40𝑚. These probabilities are weakened by the case where initial parameters 

are unknown, with only an 80% chance of less than ~55𝑚, yet this is substantially better than the MLE case with 

the least uncertainty. Practical application shows how effective a single simulation could be for inference, giving 

a user with data ready a value within seconds, with great confidence while using the MAP method. More 

simulations would be needed for confident predictions with the MLE 

All MAP simulations (see bottom row in Figure 5) show far less difference between each distribution, with each 

plot being smoother and almost exactly alike when compared to the MLE results (see top row in Figure 5) where 

each plot oscillates over one other i.e. each distribution is higher and lower than the others at multiple points. This 

indicates that the MAP method may itself smooth out small artefacts from varying the uncertainty in other 

parameters in the model that are not the direct object of the inference. The MAP method does highlight a reduction 

in likleihood in the most uncertain case (see blue plot at the bottom row in Figure 5), which is not seen in any 
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other simulations. It is not clear what causes this simulation to be so different, but it seems that the increase in 

degree of uncertainty is the most likely reason for this difference.

 

Figure 5 : Kernel distributions for the PDF of estimates (first column), PDF of absolute errors (second column) 

and CDF of absolute errors (last column) for each simulation of varying uncertainty at 𝑟∗ = 250𝑚. Top and 

bottoms rows show the results from using the MLE and MAP methods, respectively. The true range value is 

superimposed (dashed line) in the PDF plot of estimates. Each line represents which initial parameters were 

uncertain as defined in each legend. 

Increasing the true range to 𝑟∗ = 500𝑚 leads to the results shown in Figure 6. The performance of the MLE 

method is similar to that observed in the case of 𝑟∗ = 250𝑚 (see top-left graph in Figure 5) with a similar 

distribution of the range and error estimates (see top-left graph in Figure 6). There is a strong peak at the lowest 

range that the model accepts, with a decreasing probability as the estimate value increases. The distribution of 

absolute error (top-mid rows in Figure 6) shows a strong peak around 300m tailing off with some negative skew 

towards small errors. The CDF of absolute error (see top-right in Figure 6) shows that an increase in range reduces 

performance, where now there is only a 20% chance of the range being less than ~250m out and 80% chance of 

being greater than ~250m. Differences between simulations in the three plots (see top row in Figure 6) are due to 

the fact that the uncertainties present are less erratic (or less oscillatory). The peak in each of distribution becomes 

increasingly flatter as more uncertainty is present (from initial parameters). 

The MAP method at this range improves the estimation and reduces the discrepancies between the differing levels 

of uncertainties from initial parameter selection. The distribution of estimates (see bottom-right graph in Figure 

6) shows a distribution around the true value (𝑟∗) close to normal with a negative skew. There is evidence of 

another peak in the distribution around 450m range. The distribution of the absolute error (see bottom-middle 

graph in Figure 6) is strongly centred around 5m, with the second peak around 50m. There is a long tail in the 

distribution showing that larger errors (100m+) are highly unlikely in this case. The CDF (bottom-right graph in  

Figure 6) shows the effectiveness of the MAP method for errors with a 20% chance of being within 5m and an 

80% chance of being within 50m. All of the simulations, of any given initial uncertainty, are near-identical (see 

bottom row in Figure 6). Even the most uncertain case (source height (ℎ𝑠) and impedance ground (𝜎𝑔) being 

uncertain) is now no longer a visible different distribution, unlike when the true range was less (𝑟∗ = 250𝑚) 

(bottom row in Figure 5). A recent study by the authors highlighted how the impedance in particular uncertain 

geometries and statistical behaviour can affect inferences using certain methods [22]. This is likely why the 

simulations with multiple uncertainties are more strongly affected in the MAP methods at the shorter range (𝑟∗ = 250𝑚),  yet the increase in range reduces this effect.
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Figure 6 : Kernel distributions for the PDF of estimates (first column), PDF of absolute errors (second column) 

and CDF of absolute errors (last column) for each simulation of varying uncertainty at 𝑟∗ = 500𝑚. Top and 

bottoms rows show results from using the MLE and MAP methods, respectively. The true range value is 

superimposed (dashed line) in the PDF plot of estimates. Each line represents which initial parameters were 

uncertain as defined in each legend.

4.3  Interactions of Uncertainties 

Since draws were taken from distributions for the unknown parameters, source height (ℎ𝑠) and/or effective flow 

resistivity of the ground (𝜎𝑔), they can be compared to the final estimate determined via the inference. This will 

enable us to study the sensitivity of such parameter/s while using MLE/MAP methods with the given conditions, 

i.e. differing range, low initial data source, grassland impedance ground against the final inferred range. Scatter 

plots are used to compare when either the flow resistivity of the ground (𝜎𝑔) or source height (ℎ𝑠) are uncertain 

to their relevant error from the inference (see Figures 7 and 8). The dots shown in Figures 7 and 8 correspond to 

the realisations simulated with the proposed statistical methods. When both the effective flow resistivity of the 

ground (𝜎𝑔) and source height (ℎ𝑠) are uncertain, a grayscale surface plot is used (see Figure 9) to show maps 

for the error as a function of the range and flow resistivity. These graphs highlight behaviour patterns in the 

uncertainty that are affecting such inference processes. 
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Figure 7: Draws from �̃�𝑔 against their related 𝜀𝑟 for both statistical methods for 𝑟∗ = 250𝑚 (left) and 𝑟∗ =500𝑚 (right). The true value of the effective flow resistivity (𝜎𝑔 = 100kPasm−2) is superimposed (dashed 

line). 

The first parameter investigated is the effective flow resistivity of the ground (𝜎𝑔) taken across all possible 

values (�̃�𝑔) against its related absolute error (𝜀𝑟). This is achieved by taking the absolute difference from the 

inferred value and true value while using a drawn value of 𝜎𝑔 (see Figure 7). The MAP method is shown to be 

far more effective than the MLE method in terms of the value of error. This is true for the both true ranges (𝑟∗) 

studied in this work. The results presented in Figures 7 and 8 show that the error is not sensitive to the initial 

draw of 𝜎𝑔. Although, the MLE results for a true range 𝑟∗ = 500m tend to have smaller errors when a higher 

value of the effective flow resistivity (𝜎𝑔) is drawn (see right plot in Figure 7). It is not thoroughly clear why 

this would be the case. 

 

Figure 8: Draws from ℎ̃𝑠 against their related 𝜀𝑟 for both statistical methods for 𝑟∗ = 250𝑚 (left) and 𝑟∗ =500𝑚 (right). The true value of the source height (ℎ𝑠 = 2𝑚) is superimposed (dashed line). 

Plotting the draws from the source height (ℎ𝑠) instead of the flow resistivity of the ground (𝜎𝑔) shows similar 

behaviour (see Figure 8). The MAP method again has greater accuracy than the MLE, with no obvious 

sensitivity to the draw of the source height (ℎ𝑠) at initialisation.  There is some indication that at the range of 

500m the MLE method performs slightly worse as the drawn value of source height (ℎ𝑠) increases. It is known 

that the increased height would greatly affect the ground interference patterns, yet an overestimation of 8m (as 

10m is the maximum overestimated source height allowed) does not seem to prevent the model from inferring 

the true range (and close to it).  
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Figure 9: The absolute error plotted as a function against the draws of source height (ℎ𝑠) and effective flow 

resistivity of the ground (𝜎𝑔) for the two ranges. Error is depicted using a colour gradient. Top and bottom rows 

show 𝑟∗ as 250m and 500m, with left and right columns the MLE method and MAP method respectively. 

The interactions between the draws and the given error (𝜀𝑟) are harder to visualise. Figure 9 plots the error against 

the source height and effective flow resistivity of the ground. The absolute error is depicted using a colour map 

with white being no error and black being the maximum error of 180m and 350m for the true range of 250m and 

500m, respectively. Horizontal bands can be seen in the surface plots in Figure 9.  This means that small variations 

in the source height (ℎ𝑠) for a given effective flow resistivity of the ground (𝜎𝑔) do not strongly affect the quality 

of inference, whereas small variations in the effective flow resistivity of the ground (𝜎𝑔) for a selected source 

height (ℎ𝑠) do. This hints that quantification of the ground impedance may be more important than the source 

height in situations where both are unknown quantities. These findings are supported by the fact that the so-called 

"ground effect" is more important for low-height sources than sources at higher altitude, a well-known fact in 

acoustics, with greatly developed definitions and reasoning explained in well by Solomons [17]. 

4.3  Inference Using Octave Band Data 

Additionally, inference is studied in octave frequency bands and compared against that obtained for the broad 

band spectrum. This enables us to assess the effect that specific frequency restrictions would have on the inference 

quality. Table 3 presents the error statistics for each combination of known or unknown (and therefore drawn from 

the respective distribution) parameters. Only the best and worst performing bands (using bandwidths defined in 

Table 1) are shown. Best and worst are taken to be the smallest and largest values of error respectively. Unlisted 

bands are only assessed visually later. 
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𝒓∗ (𝐦) 𝒉𝒔 (𝐦) 𝝈𝒈 (𝐤𝐏𝐚𝐬𝐦−𝟐) Method 
MAE (𝒎) RMSE (𝒎) 

Best Worst Best Worst 

250 

2 

100 
MLE 𝐵0: 55.3 𝐵3,7,8,9: 150 𝐵0: 70.96 𝐵3,7,8,9: 150 

MAP 𝐵0: 34.16 𝐵3,7,8,9: 150 𝐵0: 41.66 𝐵3,7,8,9: 150 

�̃�𝑔 
MLE 𝐵0: 55.04 𝐵3,7,8,9: 150 𝐵0: 70.82 𝐵3,7,8,9: 150 

MAP 𝐵0: 55.04 𝐵3,7,8,9: 150 𝐵0: 41.67 𝐵3,7,8,9: 150 

ℎ̃𝑠 

100 
MLE 𝐵0: 56.42 𝐵3,7,8,9: 150 𝐵0: 72.18 𝐵3,7,8,9: 150 

MAP 𝐵0: 56.42 𝐵3,7,8,9: 150 𝐵0: 41.67 𝐵3,7,8,9: 150 

�̃�𝑔 
MLE 𝐵0: 56.73 𝐵3,7,8,9: 150 𝐵0: 72.55 𝐵3,7,8,9: 150 

MAP 𝐵0: 56.73 𝐵3,7,8,9: 150 𝐵0: 48.24 𝐵3,7,8,9: 150 

500 

2 

100 
MLE 𝐵0: 190.21 𝐵7,8,9: 400 𝐵0: 233.66 𝐵7,8,9: 400 

MAP 𝐵0: 62.63 𝐵8,9: 400 𝐵0: 76.7 𝐵8,9: 400 

�̃�𝑔 
MLE 𝐵0: 188.27 𝐵8,9: 400 𝐵0: 231.83 𝐵8,9: 400 

MAP 𝐵0: 62.63 𝐵8,9: 400 𝐵0: 76.7 𝐵8,9: 400 

ℎ̃𝑠 

100 
MLE 𝐵0: 187.06 𝐵8,9: 400 𝐵0: 230.16 𝐵8,9: 400 

MAP 𝐵0: 62.63 𝐵8,9: 400 𝐵0: 76.7 𝐵8,9: 400 

�̃�𝑔 
MLE 𝐵0: 189.02 𝐵8,9: 400 𝐵0: 232.57 𝐵8,9: 400 

MAP 𝐵0: 62.64 𝐵8,9: 400 𝐵0: 76.7 𝐵8,9: 400 

Table 3: Collated statistics of error (𝜀𝑟) from each simulation, portraying the best and worst performing octave 

bands. Each row follows the selection of initial parameters, known or drawn from a given distribution and for 

the given statistical method. 

As expected, for both the MAE and RMSE, the equally worst performing bands are 𝐵8 and 𝐵9 for all the cases 

considered in this study. These are higher frequency bands in which the sound power of the gun shot is relatively 

low (see Figure 1). At the shorter range (𝑟∗ = 250𝑚), bands of 𝐵3 and 𝐵7  are also relatively poor performing. 

Band 𝐵7 also appears as the worst for the least uncertain MLE in the longer range (𝑟∗ = 500𝑚). All of these are 

the result of the model choosing the lowest value possible, the lowest value for 𝑟 that was used in the computation 

of the likelihood, a problem that was also seen in the MLE for broadband.  

The best performing band is the infrasonic band 𝐵0 , no matter which method is used or error statistic analysed. In 

this range the MAP method remains mostly effective. In general, the same bands (𝐵3 , 𝐵7, 𝐵8 , 𝐵9) underperform 

as in the MLE, albeit with some small differences. Unlike for the broadband results, the MAEs for the MLE and 

MAP methods are equivalent when either the effective flow resistivity (𝜎𝑔) or source height (ℎ𝑠) is unknown. 

The RMSE data suggest that the MLE is underperforming against the MAE and that outlying inferences are 

present in simulated data. 

Comparing the broadband results (see Table 2) to the octave band results (see Table 3) suggests that overall the 

broadband inference is likely to outperform inference via specific octave bands for the considered acoustic and 

statistical models. This does not however rule out that combinations of octave band windows would allow for 

better inferences for some types of sources, specifically 𝐵0 , 𝐵1 and 𝐵2 for gunshot sources. 

4.3  Octave Band Visualisations 

Visualisations are completed to assess more in-depth the effects of filtering to octave bands (see Figures 10-13). 

Each figure is for a particular statistical method and value of the true range. Each subplot is for a given octave 

band where each of the plots follow the same rules as before, with each representing the given initial 

uncertainties. The PDF of estimates are used to assess the octave bands, so both under and over estimates can be 

detected. 

Figure 10 depicts the PDFs for the MLE method when the true range (𝑟∗) is 250m. Octave bands 𝐵3 , 𝐵7 , 𝐵8 and 𝐵9 perform poorly picking up estimates at the minimum value entered into the model. Bands 𝐵4 and 𝐵6  also 
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perform poorly but have tails extending towards to true value (𝑟∗). The distributions created for bands 𝐵2 and 𝐵5 have  their peaks at slightly above the minimum value, but their tails have no coverage of the true range (𝑟∗ = 250𝑚).  The remaining bands, 𝐵0 and 𝐵1 cover much more accurately the true range (𝑟∗) with band 𝐵0 

being the best choice for having the most likely point close to the true value. Interestingly, there is a bimodal 

(i.e. double peaked) PDF present for 𝐵0 , with an earlier peak around 120𝑚 which can be associated with strong 

variations in the gunshot spectrum (see Figure 1). 𝐵1  has the majority of estimate below the true value but 

extends to the true value also. It is seen that while using the MLE method (see Figure 5) inferences can be 

improved by choosing the best estimates from these top-performing bands (𝐵0 , 𝐵1). Variation between 

simulations of differing input uncertainty is negligible in the case of the MLE method. 

Figure 11 presents the PDFs for the error estimated using the MAP method for the true range 𝑟∗= 250m. These 

results follow the same behaviour as seen in the case of the MLE (see Figure 10) but with some improvements. 

The poor performing bands remain the same as in the case of the MLE, while the better performing bands (𝐵0 , 𝐵1) 

have larger probabilities of capturing the true range (𝑟∗). In comparison with the MLE, the PDF for band 𝐵1  is 

shifted closer to the true range. The PDF for band 𝐵0  is accurately centred around the true value, but the bimodality 

observed in the case of MLE is now removed. The increased accuracy in the lower bands could be due to the 

physical interactions, i.e. excess attenuation, remaining constant at the lower frequency ranges. 

 

Figure 10: Kernel distributions for the PDF of estimates, using the MLE method at each octave band from 

smallest (top-left) to largest (bottom-right) for each simulation of varying uncertainty at 𝑟∗ = 250𝑚. The true 

range value is superimposed (dashed line) in the PDF plot of estimates. 
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Figure 11: Kernel distributions for the PDF of estimates, using the MAP method at each octave band from 

smallest (top-left) to largest (bottom-right) for each simulation of varying uncertainty at 𝑟∗ = 250𝑚. The true 

range value is superimposed (dashed line) in the PDF plot of estimates. 

Increasing the true range to 𝑟∗ = 500m changes the PDFs considerably especially when using the MLE (see Figure 

12). The PDFs for bands 𝐵0, 𝐵1  and 𝐵2 exhibit bimodality. The two bands that can cover well the true estimate (𝐵0, 𝐵1) exhibit relatively strong bimodality. In the case of band 𝐵0  the dominant peak is around 200𝑚 whereas 

the secondary peak is close to the true range. This behaviour can hinder the convergence to the true estimate.  

The application of a prior in the MAP addresses the issues experienced with the MLE method. Figure 13 illustrates 

that the use of limited prior knowledge removes the bimodality and leaves only one peak in the PDF for bands 𝐵0 

and 𝐵1  close to the true estimate. The great increase in accuracy is even more likely to be due to the physical 

interaction patterns, which become even more constant at the extended range. The application of the MAP to other 

bands does not offer any improvement and results in a relatively large error. 

 

Figure 12: Kernel distributions for the PDF of estimates, using the MLE method at each octave band from 

smallest (top-left) to largest (bottom-right) for each simulation of varying uncertainty at 𝑟∗ = 500𝑚. The true 

range value is superimposed (dashed line) in the PDF plot of estimates. 
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Figure 13: Kernel distributions for the PDF of estimates, using the MAP method at each octave band from 

smallest (top-left) to largest (bottom-right) for each simulation of varying uncertainty at 𝑟∗ = 500𝑚. The true 

range value is superimposed (dashed line) in the PDF plot of estimates. 

The existence of the bimodal distribution is believed to be created by the generation of two distinct normal 

distributions, from the normal likelihood function (not the uncertainty – as a data doped with uniform uncertainty 

most times still produce normally distributed data) that are interfering with each other. Their appearance is likely 

due to strong interactions present at such combinations of parameters in the model. 

5  Conclusions 

The application of a prior to infer the true range from the sound pressure level data of a gunshot recorded on a 

single microphone in the presence of porous ground reduces the average error from almost 50% to within 10% of 

the true range event when initial information is limited to a small number of observations, e.g. 𝑛 = 10.  The MLE 

performs poorly because it has the tendency to choose repeatedly the smallest range possible in the model. There 

is a possibility for this method to become more accurate as more data for a wider range of porous grounds is made 

available. Application of a prior, even a flat one like in this study, greatly reduces the hindrance of parameter 

uncertainties. Although at the shorter range (𝑟∗ = 250𝑚), the average error was only reduced to ~15% when all 

parameters were uncertain, indicating that shorter ranges are still more influenced by high uncertainty.  Both the 

MLE (as long as the observation size was greatly increased) & MAP techniques are widely applicable to other 

acoustical settings, yet would provide a substantially effective basis to methods that incorporate learning 

algorithms.  

The study of the interactions between uncertain parameters reveals that exact quantification of individual unknown 

parameters is not always necessary. Only at the shorter range (𝑟∗ = 250𝑚) either the source height (ℎ𝑠) or 

impedance ground (𝜎𝑔) needs quantifying to improve the inference quality as it was shown that when the both 

parameters (ℎ𝑠 , 𝜎𝑔) were uncertain a notable increase in error could be observed. Further investigation into this 

dual uncertainty shows that the effective flow resistivity of the ground would be the preferential parameter to be 

quantified. This parameter seems more significant. An increasing degree of uncertainty in the adopted acoustical 

model becomes more influential as the range shortens.  

Use of octave filtering reveals those bands which are responsible for poor or more efficient inferences. In general, 

limiting the analysis to a single octave band results in poor performance in terms of the MAE and RMSE in 

comparison with a broadband spectrum analysis. However, the PDFs of the infrasonic bands (see 𝐵0, 𝐵1  in Table 

1) exhibit strong likelihoods on, and closely around, the given true range, especially for the MLE method, than 

when using the broadband spectrum. Combinations of these octave bands would likely be more effective for the 

inference. A large portion of energy output of a firearm exists in the infrasonic frequency range. As highlighted 

in recent works [6], there is strong evidence to suggest that combining octave windows between in the low and 
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infrasonic, frequency range will greatly improve parameter inference for firearms. Usual techniques try to use 

information from the supersonic projectile (bullet) which is good for 3D problems (location via miss angle), but 

may not actually be the best method. The lower frequency output of the firearm going off is likely to less effected 

by possible interferences that can generate mid and high frequency noises. This could also improve detection in 

more realistic environments (i.e. inhomogeneous atmosphere). 

The real-life application to small arms fire is apparent. Unlike current practices [4,5], this technique does not rely 

on the make, model, barrel rifling etc. This makes it appropriate to such defensive security programs where 

quantification of the firearm would likely be implausible, but prior information of the detection zone would be 

readily accessible. Study into larger firearms, and other small arms fire, will help confirm the best combination of 

octave bands suitable for specific purposes. The main benefit of this approach is that it relies on a single receiver 

which can be a smartphone or low-cost microphone connected to a basic microcontroller. It should also be stated 

that these methods would be effective for other low frequency sources, such as the natural occurrences of 

earthquakes, volcanic eruptions and thunder, or man-made sources like windfarms. Further study of applications 

to a broader range of sources would be beneficial to test this idea further and expand it to cases where an array of 

receivers is used.  

This study was limited to grassland. Other harder grounds can have different effects on the quality of inference 

methods proposed here. These proposed inference methods are not specifically exclusive to application to 

firearms. These can be extended to other low frequency sources such as drones and sources of environmental 

noise. Higher frequency sources deserve more extensive studies to assert such claims.  
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