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Abstract We compare top‐of‐atmosphere (TOA) radiative fluxes observed by the Clouds and the Earth's

Radiant Energy System (CERES) and simulated by seven general circulation models forced with observed

sea‐surface temperature (SST) and sea‐ice boundary conditions. In response to increased SSTs along the

equator and over the eastern Pacific (EP) following the so‐called global warming “hiatus” of the early 21st

century, simulated TOA flux changes are remarkably similar to CERES. Both show outgoing shortwave

and longwave TOA flux changes that largely cancel over the west and central tropical Pacific, and

large reductions in shortwave flux for EP low‐cloud regions. A model's ability to represent changes in the

relationship between global mean net TOA flux and surface temperature depends upon how well it

represents shortwave flux changes in low‐cloud regions, with most showing too little sensitivity to EP SST

changes, suggesting a “pattern effect” that may be too weak compared to observations.

Plain Language Summary Earth's radiation budget describes the balance between radiation

from the sun intercepted by Earth and radiation returned back to space through reflection of solar

radiation and emission of terrestrial thermal infrared radiation. This balance is a fundamental property of

Earth's climate system as it describes how Earth gains and sheds heat. Here we use observations from the

Clouds and the Earth's Radiant Energy System (CERES) to evaluate how seven state‐of‐the‐art climate

models represent changes in Earth's radiation budget during and following the so‐called global warming

“hiatus” of the early 21st century. The models were provided observed sea‐surface temperature and sea‐ice

boundary conditions as well as natural and anthropogenic forcings. We find remarkable agreement

between observed and simulated differences in reflected solar and emitted thermal infrared radiation

between the post‐hiatus and hiatus periods. Furthermore, a model's ability to correctly relate Earth's

radiation budget and surface temperature is found to depend upon how well it represents reflected solar

radiation changes in regions dominated by low clouds, particularly those over the eastern Pacific ocean.

1. Introduction

A key measure of radiative feedback in the climate system, and therefore climate sensitivity, is the rela-

tionship between net top‐of‐the‐atmosphere (TOA) radiation and global mean surface air temperature

change. From climate model simulations in which CO2 is quadrupled instantaneously, the climate

©2020. American Geophysical Union.

All Rights Reserved. This article has

been contributed to by US Government

employees and their work is in the

public domain in the USA.

RESEARCH LETTER
10.1029/2019GL086705

Key Points:

• There is good agreement between

radiation budget variations observed

by CERES and simulated by seven

state‐of‐the‐art climate models

• The relationship between global

mean net TOA radiation and surface

temperature is sensitive to changes

in regions dominated by low clouds

• Most models underestimate

shortwave flux changes in response

to SST changes over the east Pacific,

suggesting too weak a “pattern

effect”

Supporting Information:

• Supporting Information S1

Correspondence to:

N. G. Loeb,

norman.g.loeb@nasa.gov

Citation:

Loeb, N. G., Wang, H., Allan, R.,

Andrews, T., Armour, K., Cole, J. N. S.,

et al. (2020). New generation of climate

models track recent unprecedented

changes in earth's radiation budget

observed by CERES. Geophysical

Research Letters, 47, e2019GL086705.

https://doi.org/10.1029/2019GL086705

Received 18 DEC 2019

Accepted 14 FEB 2020

Accepted article online 18 FEB 2020

LOEB ET AL. 1 of 10

https://orcid.org/0000-0002-2538-9644
https://orcid.org/0000-0001-7320-247X
https://orcid.org/0000-0003-0264-9447
https://orcid.org/0000-0002-8248-8753
https://orcid.org/0000-0002-6833-5179
https://orcid.org/0000-0003-0450-2748
https://orcid.org/0000-0003-4764-9600
https://orcid.org/0000-0002-8284-2599
https://orcid.org/0000-0002-8312-9963
https://orcid.org/0000-0003-1418-4077
https://orcid.org/0000-0002-5324-1305
https://orcid.org/0000-0002-7092-241X
https://orcid.org/0000-0001-8355-0662
https://orcid.org/0000-0001-9752-3454
https://doi.org/10.1029/2019GL086705
https://doi.org/10.1029/2019GL086705
http://dx.doi.org/10.1029/2019GL086705
http://dx.doi.org/10.1029/2019GL086705
http://dx.doi.org/10.1029/2019GL086705
mailto:norman.g.loeb@nasa.gov
https://doi.org/10.1029/2019GL086705
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2019GL086705&domain=pdf&date_stamp=2020-03-02


feedback parameter can be determined from the slope of a linear regression fit between net flux and sur-

face temperature change, with the intercept yielding the imposed forcing (Gregory et al., 2004). This lin-

ear framework assumes that the climate feedback parameter is constant in time, so that variations in net

flux and surface temperature are related by a constant of proportionality. However, numerous modeling

studies have shown that for transient warming, global radiative feedback is time‐varying (Murphy, 1995;

Senior & Mitchell, 2000; Winton et al., 2010; Armour et al., 2013; Andrews et al., 2015; Paynter and

Frölicher, 2015; Gregory & Andrews, 2016; Zhou et al., 2016; Armour, 2017; Proistosescu & Huybers,

2017; Marvel et al., 2018; Silvers et al., 2018). This is primarily due to temporal changes in surface warm-

ing patterns, which induce changes in global radiation that differ from those associated with global warm-

ing (Andrews et al., 2015; Andrews et al., 2018; Andrews & Webb, 2018; Armour et al., 2013; Ceppi &

Gregory, 2017; Dong et al., 2019; Haugstad et al., 2017; Rose et al., 2014; Silvers et al., 2018; Zhou

et al., 2016, 2017). These “pattern effects” (Stevens et al., 2016) can be a result of both internal variability

and climate forcing (Mauritsen, 2016).

The “pattern effect” is the reason why general circulation models (GCMs) driven with historical patterns of

sea‐surface temperature (SST) and sea‐ice concentrations (SIC) yield climate feedback parameters that are

more stabilizing—implying a lower climate sensitivity—compared to simulations that are forced with pro-

jected long‐term increases in greenhouse gas concentrations (Andrews et al., 2018; Marvel et al., 2018;

Zhou et al., 2016). While global mean surface temperatures have been continuing to increase in recent

decades, there has been relatively less warming (or even cooling) over the eastern tropical Pacific

(e.g., McGregor et al., 2014) and Southern Oceans (e.g., Armour et al., 2016). These regional patterns have

been shown to produce greater low‐level cloud cover and reflection to space, explaining why there was a

more stabilizing climate feedback parameter observed during the past 40 years compared to that of future

warming (Andrews et al., 2018; Dong et al., 2019; Zhou et al., 2016, 2017). Zhou et al. (2016) further argue

that SST pattern‐induced low‐cloud cover anomalies may have also contributed to reduced warming

between 1998 and 2013, a period that has come to be known as the global warming “hiatus”

(e.g., McGregor et al., 2014). More recently, Fueglistaler (2019) demonstrated the influence of SST pattern

changes on observed tropical mean SW cloud radiative effect using data from the Clouds and the Earth's

Radiant Energy System (CERES).

In this study, we use CERES observations to evaluate how state‐of‐the‐art climate models represent changes

in Earth's radiation budget following a large change in SST patterns. The CERES data reveal a 0.83 Wm−2

reduction in global mean reflected shortwave (SW) flux during the 3 years following the hiatus, resulting

in an increase in net energy into the climate system (Loeb, Thorsen, et al., 2018). Furthermore, decreases

in low‐cloud cover are found to be the primary driver of the decrease in SW flux. The low‐cloud cover

decreases are associated with increases in SST reaching 2 °C on average in some locations over the eastern

Pacific Ocean following a change in the sign of the Pacific Decadal Oscillation from negative to

positive phase.

In light of these dramatic changes, we ask the question: Can climate models reproduce the changes observed

by CERES if they are provided observed SSTs and SIC? Such a comparison serves as a “reality check” on the

models used to study the pattern effect, low‐cloud feedbacks, and changes in total climate feedback during

the historical period. We caution that there is no attempt here to provide an “emergent constraint” on future

climate (Klein &Hall, 2015) that can be used to constrain long‐term climate feedback and climate sensitivity.

Rather, the goal is to determine whether or not current atmospheric models are capable of reproducing the

TOA radiative response to a large‐scale and well‐observed event that arguably involves processes relevant to

the representation of both current and future climates.

2. Data and Methods

2.1. Observations

We use observational data from the CERES EBAF Ed4.1 product (Loeb, Doelling, et al., 2018; Loeb et al.,

2019) for March 2000–December 2017. EBAF provides monthly mean TOA and surface SW and longwave

(LW) radiative fluxes on a 1° × 1° grid. Here, only the TOA fluxes are considered. TOA radiative fluxes in

EBAF are derived from CERES SW and LW radiance measurements.
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Also considered are atmospheric and surface data from the European Centre for Medium‐Range Weather

Forecasts ERA5 reanalysis product (Hersbach et al., 2018). We use near‐surface air temperature (Ts), surface

pressure, 700 hPa air temperature, and SST. The first three parameters are used to calculate the estimated

inversion strength (EIS) (Wood & Bretherton, 2006).

2.2. CMIP6 AMIP Simulations

TOA radiative fluxes, Ts, and EIS from seven models participating in the Coupled Model Intercomparison

Project Phase 6 (CMIP6; Eyring et al., 2016) are considered (Table 1). The simulations are forced with

monthly time‐varying observationally derived fields of SST and SIC using the Atmospheric Model

Intercomparison Project (AMIP) boundary conditions (Gates et al., 1999; Hurrell et al., 2008; Taylor

et al., 2000). Between the start of the CERES record in 2000 and the official end‐date of CMIP6 AMIP

in 2014, all simulations have time‐varying natural and anthropogenic forcings. We have run AMIP simu-

lations three more years, through the end of 2017. In those simulations, radiative forcings are held fixed

at 2014 levels between 2015 and 2017 for all models except EC‐Earth3‐Veg, which used the Shared

Socioeconomic Pathways (SSP2‐4.5) radiative forcings (Riahi et al., 2017). The time‐dependent forcings

beyond 2014 have small perturbations that are not expected to influence the results. The main influence

on TOA flux variability is from SST, which is time dependent through 2017 in all models. Monthly

time‐varying observed fields of SST and SIC are either from merged Reynolds/HADISST (Hurrell et al.,

2008) or HadISST1 (Rayner et al., 2003) (Table 1). All AMIP simulation output are spatially interpolated

onto a 1° × 1° grid.

Since AMIP simulations use observed SSTs and SIC boundary conditions, the model atmosphere responds to

SSTs, but there is no equivalent ocean surface response to atmospheric changes. This is in contrast to obser-

vations, which include two‐way atmosphere‐ocean interactions. A reasonable question to ask, therefore, is

whether it is reasonable to evaluatemodels by comparing AMIP simulations and observations. This has been

addressed in several studies with different models (Andrews et al., 2015; Haugstad et al., 2017; He & Soden,

2016; Mauritsen & Stevens, 2015). The studies find that time‐varying net feedback parameters simulated by

atmosphere‐ocean GCMs (AOGCMs) and AMIP‐style simulations for the same models forced using the

AOGCM SST and SIC boundary conditions are consistent, suggesting that AMIP‐style simulations and

observations should also show consistent results.

2.3. Methods

Deseasonalized monthly anomalies are determined by differencing the average in a given month from

the average of all years of the same month. We consider TOA flux differences between means for the

post‐hiatus and hiatus periods, where the hiatus period is defined as July 2000–June 2014 and the

post‐hiatus period is July 2014–June 2017. The corresponding SST difference pattern (Figure 1) shows

marked SST increases during the post‐hiatus period along the entire coast of North America, central

Pacific Ocean, and to a lesser extent along the coast of South America. In addition to examining global

results, we also investigate how the models capture flux changes in a domain dominated primarily by low

clouds over the eastern Pacific (EP) (see box in Figure 1).

Table 1

List of CMIP6 Models Considered in This Study

Model (short name) Model (long name) Country Resolution (°) (lon × lat) SST/SIC data set Reference

CESM2 CESM2 AMIP USA 1.25 × 0.94 Merged Reynolds/HADISST Gettelman et al. (2019)

CanESM5 CanESM5 AMIP Canada 2.8 × 2.8 Merged Reynolds/HADISST Swart et al. (2019)

EC‐Earth3‐Veg EC‐Earth3‐Veg AMIP Europe/EC 0.7 × 0.7 Merged Reynolds/HADISST Davini et al. (2017)

ECHAM6.3 echam6.3.05‐LR AMIP Germany 1.875 × 1.86 HadISST1 Mauritsen et al. (2019)

GFDL‐AM4 GFDL‐AM4 AMIP USA 1.25 × 1.0 HadISST1 Zhao et al. (2018)

HadGEM3 HadGEM3‐GC31‐LL AMIP UK 1.875 × 1.25 HadISST1 Williams et al. (2018)

IPSL‐CM6A IPSL‐CM6A‐LR AMIP France 2.5 × 1.27 Merged Reynolds/HADISST Hourdin et al. (2013)
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3. Results

3.1. Global TOA Flux Anomalies

A comparison between SW flux anomalies from CERES and the seven CMIP6 models is provided in

Figures 2a–2g, with positive numbers indicating anomalous upward radiation at the TOA. The correspond-

ing comparisons for LW upward and net downward fluxes are shown in supporting information Figures S1

and S2. The CERES observations show appreciable positive SW and negative LW anomalies at the beginning

of the CERES record, following a period of prolonged La Niña conditions that started in mid‐1998 and ended

in mid‐2001. Anomalies remain fairly weak between 2002 and 2013. Starting in 2014, a marked trend toward

negative SW anomalies occurs that reaches a minimum value in January 2017, 1 year after the peak of the

2015/2016 El Niño event (one of the largest on record). SW anomalies return to near‐normal levels at the

end of 2017.

The CanESM5 and HadGEM3 models track the observed SW anomalies remarkably well during the entire

period. All models except ECHAM6.3 capture the large negative SW flux anomalies during the post‐hiatus

period, but three models fail to reproduce the large positive anomalies at the beginning of the CERES record.

While the overall mean correlation coefficient between model and observed monthly SW anomalies is only

0.33 ± 0.098, the standard deviation in CMIP6 SW monthly anomalies is consistent with CERES (Table S1).

For LW and net, most of the models closely track the CERES 12‐month running average, but they are less

successful at capturing monthly variations. When annual anomalies are considered, model‐observed corre-

lation coefficients increase by a factor of 2 (Table S1). This is likely because more of the variability at annual

timescales is driven by interannual variability in the SST boundary conditions, whereas significant

sub‐annual variability is due to atmospheric stochastic variability, which is poorly correlated between mod-

els and observations (Proistosescu et al., 2018).

3.2. Post‐Hiatus—Hiatus Differences

We find encouraging similarities between regional patterns of post‐hiatus—hiatus flux difference for CERES

and the mean of the seven CMIP6 models (Figures 3a–3f). The CERES observations show a marked SW

decrease during the post‐hiatus period off the west coast of North America (Figure 3a), a region character-

ized by persistent marine stratocumulus. Surface warming in the East Pacific reduces the vertical stratifica-

tion, which reduces low‐cloud cover (Klein &Hartmann, 1993) and reflected solar radiation. Large decreases

in low‐cloud cover in this region are thought to have played a significant role in causing record‐breaking

warm SST anomalies after 2014 (Johnson & Birnbaum, 2017; Myers et al., 2018). In the tropics, CERES

Figure 1. Post‐hiatus—hiatus difference in sea‐surface temperature. The black box shows the EP domain defined by

10°N‐40°N and 150°W‐110°W.

10.1029/2019GL086705Geophysical Research Letters

LOEB ET AL. 4 of 10



shows positive SW and negative LW differences in the central Pacific, and differences of the opposite sign in

the western Pacific (Figures 3a and 3c). These patterns are consistent with an eastward shift in the location of

tropical convection during the 2015/2016 El Niño event. The marked SW and LW tropical differences largely

cancel, however, and are thus less prominent in the regional distribution of net flux differences (Figure 3e).

Large positive net flux differences appear off the west coasts of the Americas since cancellation between SW

and LW is weaker there.

The flux difference pattern for the mean of the seven CMIP6 models is similar to CERES (Figures 3b, 3d, and

3f). Like CERES, the CMIP6 mean SW flux decreases in the region of large SST increase off the west coast of

North America (Figure 3b). However, the magnitude of the decrease is weaker than CERES. Results for the

individual models show that CanESM5 and HadGEM3 produce SW flux decreases that are larger than the

seven‐model mean and occur in the same location as CERES (Figure S3). Large decreases also occur for

IPSL‐CM6A and CESM2, but the locations differ from CERES. The SW flux decrease with SST off the west

coast of North America is qualitatively consistent with other satellite studies that found a negative correla-

tion between low‐cloud cover and SST from passive (McCoy et al., 2017; Myers & Norris, 2015; Qu et al.,

2015; Yuan et al., 2018) and active sensors (Cesana et al., 2019; Myers & Norris, 2015).

In the tropics, the locations of negative SW and positive LW anomalies in the South Pacific Convergence

Zone (SPCZ) and Maritime Continent, and positive SW and negative LW anomalies in the central Pacific,

coincide with CERES (Figures 3a–3d). However, the magnitudes of the CMIP6 model anomalies are larger

than CERES both for the seven‐model mean (Figures 3a and 3b) and most of the models individually

(Figures S3 and S4). The CMIP6 model mean reproduces the large positive net downward flux anomalies

off the west coast of North America and along the equator seen in CERES (Figures 3e, 3f, and S5).

When averaged globally, all CMIP6 models except ECHAM6.3 show negative SW and positive LW upward

flux differences between the post‐hiatus and hiatus periods, consistent with CERES (Figure S6). The

ECHAM6.3 model underestimates the magnitude of negative SW differences associated with decreases in

low clouds off the west coast of North America and convection over the western tropical Pacific yet shows

strong positive SW (and negative LW) differences in the central tropical Pacific and over North America,

resembling a slight geographical shift of tropical convection in the zonal direction (Figures S3e and S4e).

Figure 2. Deseasonalized anomalies in global mean TOA SW upward flux for CERES and each of the seven CMIP6 mod-

els considered in Table 1. Thin lines correspond to monthly anomalies; thick lines are 12‐month running averages.

Correlation coefficients (r) between model and observed monthly anomalies are also shown.
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Excluding ECHAM6.3, the root‐mean‐square difference of the other six CMIP6 models relative to CERES is

0.3 and 0.15 Wm−2 for SW and LW, respectively. The model most consistent with CERES is HadGEM3,

which in addition to producing very similar global mean post‐hiatus—hiatus differences reproduces

observed regional patterns rather well.

In the EP domain, the post‐hiatus—hiatus difference in reflected SW flux is almost entirely associated with

changes in Ts, based upon a multivariate regression analysis of SW against Ts and EIS (see supporting infor-

mation). All of the models have a Ts contribution to the SW flux difference that is too weak compared to the

observations (Figure S7). We also find little correlation between how well a model represents the SW flux

post‐hiatus—hiatus difference in the EP domain and the corresponding climatological mean value

(Figure S11). The CESM2 model shows the greatest climatological mean bias (−10 Wm−2) yet its bias in

the post‐hiatus—hiatus difference is only 1 Wm−2. In contrast, EC‐Earth3‐Veg shows a climatological mean

bias of 2 Wm−2 and a post‐hiatus—hiatus difference of 4 Wm−2. Notably, all of the models but two

(ECHAM6.3 and IPSL‐CM6A) have negative biases in the climatological mean SW flux. This is consistent

with earlier studies that have shownmodels having a tendency to underestimate low‐cloud cover in the sub-

tropical stratocumulus regions off the west coasts of North and South America and Africa (Zhao et al., 2018).

These results imply that good agreement between observed and model climatology does not necessarily

imply good agreement in climate variability.

Figure 3. Post‐hiatus—hiatus difference in (a, b) SW upward, (c, d) LW upward, and (e, f) net downward TOA flux for

CERES (left column) and average of seven CMIP6 model simulations (right column).

10.1029/2019GL086705Geophysical Research Letters

LOEB ET AL. 6 of 10



3.3. Pattern Effect

To examine the influence of the SST pattern change during the CERES

period (Figure 1) on the relationship between net flux and surface tem-

perature, we use an approach similar to Andrews et al. (2018), who

demonstrated the influence of the pattern effect on the net climate feed-

back parameter (λN) for the historical record (1871–2010) and long‐term

CO2 forcing. We refer to a radiative restoring coefficient (Lutsko &

Takahashi, 2018) for the CERES period (βN) instead of λN in order to

emphasize that βN is primarily a response to internal variability in the cli-

mate system whereas λN is primarily a response to external radiative for-

cing. We define βN as βN = (δN − δF)/δTs, where δN is net flux

anomaly, δF is the effective radiative forcing anomaly, and δTs is the sur-

face temperature anomaly. Here, δ are annual anomalies over the CERES

period. F is obtained from the Intergovernmental Panel on Climate

Change (IPCC) Fifth Assessment Report (AR5) forcing time series

updated and extended following Dessler and Forster (2018). We deter-

mine βN for 2001–2017 and 2001–2014 from CERES and each of the seven

CMIP6 models by calculating the slope of δN − δF against δTs using a

standard ordinary least squares fit. To calculate δF, the same

time‐varying F is assumed for CERES and each CMIP6 model through

2014. For 2015–2017, F is held fixed at the 2014 value for the CMIP6 mod-

els but is time‐varying for CERES. The uncertainty in the regression slope

is represented by its 95% confidence interval.

For CERES, βN becomes dramatically less stabilizing when the three

post‐hiatus years are included (Figure 4a), changing from −2.1 Wm−2

K−1 (−5.5 to 1.3 Wm−2 K−1) for 2001–2014 to −0.53 Wm−2 K−1 (−1.9 to

0.83Wm−2K−1) for 2001–2017. The change in βN is mainly due to a strong

positive SW feedback (Figure S12) associated with the large decrease in

global mean reflected SW flux during the post‐hiatus period. We note that

the 95% confidence intervals in βN for these short periods are large owing

to the short record of CERES. With the exception of ECHAM6.3, all of the

model βN values for 2001–2017 fall within the 95% confidence interval of

the observations. Excluding ECHAM6.3, the mean of the other six models have a less stabilizing βN com-

pared to CERES for 2001–2014 by 0.3 Wm−2 K−1 and a more stabilizing βN by approximately the same mag-

nitude for 2001–2017.

We quantify the pattern effect during the CERES period as the ratio of βN for 2001–2017 to that for

2001–2014. This ratio is plotted against the post‐hiatus—hiatus difference in SW upward flux for the EP

domain in Figure 4b. The IPSL‐CM6A model shows remarkable agreement with CERES, whereas the other

models have both a βN ratio that is too large, indicating too weak a pattern effect, corresponding to too weak

a SW response in the EP domain. The positive correlation in Figure 4b suggests that at least for these periods,

a model's ability to represent changes in the relationship between global mean net flux and surface tempera-

ture (and therefore the pattern effect) depends critically upon how well it represents SW flux changes in

low‐cloud regions.

4. Conclusions

The general agreement between TOA radiation changes simulated by the seven CMIP6 AGCMs considered

in this study, and CERES is encouraging as it suggests that the models' atmospheric response to large‐scale

SST pattern changes resulting from a combination of internal and forced variations is realistic. We find that a

model's ability to represent changes in the relationship between global mean flux and surface temperature

depends critically upon how well it represents SW flux changes in regions dominated by low clouds, such

as the EP domain considered here. Part of the reason is because there is less cancellation between SW and

Figure 4. (a) Global net climate feedback parameter for 2001–2017 against

that for 2001–2014. (b) Ratio of 2001–2017 and 2001–2014 global net cli-

mate feedback parameters against NE Pacific region post‐hiatus—hiatus SW

up difference. Dashed lines correspond to one‐to‐one line in (a) and linear

regression fit to all points in (b).
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LW flux changes in these regions compared to the west and central Pacific, where marked SW and LW dif-

ferences are quite similar in magnitude but opposite in sign. Over longer timescales, coupled climate model

simulations also suggest an important role for low clouds in determining the future climate state. However,

model biases could play a critical role (McGregor et al., 2018) in explaining why coupled models are not able

to simulate the observed SST pattern during the hiatus (Coats & Karnauskas, 2017; McGregor et al., 2014).

We thus caution that consistency between AGCM simulations and observations at interannual timescales is

not a guarantee of success in projecting future climate, as other processes operating at longer timescales

likely also matter.
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