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Abstract
In 2018 Sterman et al (2018a) published a simple dynamic lifecycle analysis (DLCA)model for
forest-sourced bioenergy. Themodel has beenwidely cited since its publication, including
widespread reporting of themodel’s headline results within themedia. In adapting a successful
replication of the Sterman et al (2018a)model with open-source software, we identified a number of
changes to input parameters which improved the fit of themodel’s forest site growth functionwith
its training data. These relatively small changes to the input parameters result in relatively large
changes to themodel predictions of forest site carbon uptake: up to 92 tC.ha−1 or 18%of total site
carbon at year 500. This change in estimated site carbon resulted in calculated payback periods
(carbon sequestration parity)which differed by up to 54 years in a clear-fell scenario when
compared with results obtained using previously published parameters. Notably, this uncertainty
was confined to forests which were slower growing andwhere themodel’s training dataset was not
sufficiently long for forests to reachmaturity.We provide improved parameterisations for all forest
types usedwithin the original Sterman et al (2018a) paper, and propose that these provide better fits
to the underlying data.We also providemargins of error for the generated growth curves to indicate
the wide range of possible results possible with themodel for some forest types.We conclude that,
while the revisedmodel is able to reproduce the earlier Sterman et al (2018a) results, the headline
figures from that paper depend heavily on how the forest growth curve is fitted to the training data.
The resulting uncertainty in payback periods could be reduced by either obtainingmore extensive
training data (includingmature forests of all types) or bymodification of the forest growth
function.

Introduction

The use of biofuels is a significant element in global climate changemitigation strategies (Smith et al 2014, Rogelj
et al 2018). These fuels have been attractive because, while biofuels do release CO2 on combustion, the
regeneration of biofuel feedstocks can result in the absorption of an equal quantity of CO2. This regenerative
ability in biofuels (unlike fossil fuels which do not regenerate during anymeaningful timeframe: Rose et al 2014)
has historically led to an assumption of ‘carbon neutrality’ of energy frombiofuels (Buchholz et al 2016, Smith
et al 2014).

While this assumption can be broadly true (assuming that the feedstock regenerates as expected, omitting
supply chain emissions, and depending on the definition of ‘carbon neutral’:Malmsheimer et al 2011) a period
of elevated atmospheric CO2may still exist because of the disparity between the rates of carbon emission and
uptake relative to a counterfactual scenario. This has been described as a ‘carbon debt’ (Fargione et al 2008) site
carbon is ‘spent’ on combustion, and takes a period of time to be ‘repaid’. The time required to pay back the debt
varies depending on the carbon emissions of the relevant supply chains, and recovery of the forest where the
feedstock originated.
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An extensive array of possiblemethodological choices (Buchholz et al 2016, Breton et al 2018) terminology
(Malmsheimer et al 2011,Mitchell et al 2012, Bentsen 2017) and accounting assumptions (Lamers and
Junginger 2013, Ter-Mikaelian et al 2015, Bentsen 2017) as well as the possibility of long periods of carbon debt,
has led to awide range of estimated payback periods (the time taken for a biomass scenario to outperform a
counterfactual in terms of emissions over time: described as Carbon Sequestration Parity inMitchell et al 2012)
and conflicting opinions about the advisability of using forest biomass for energy. Variability in the results
available from the literature, debate about the inclusion of different factors, and over-simplified communication
of the benefits and costs of biomass use (Searchinger 2012, Searchinger andHeimlich 2015,Moomaw2018a,
Isaacs 2019) has been interpretedmorewidely as a lack of consensus. This has resulted in a range of responses in
the policy sphere (e.g. FERN2011, RSPB 2012, Brack 2017)which are not necessarily fully informed (Slade et al
2018).

In 2018 Sterman et al (2018a) published a simple dynamic lifecycle analysis (DLCA)model (Sterman et al
2018a) as an addition to an existingmodelling framework (C-Roads Sterman et al 2012). Their intent was to
allowpolicymakers to rapidly compare the climate effect of different policy alternatives over time, and to
provide indicative results to guide regulatory development (Rooney-Varga et al 2019). Themodel has been
widely cited since its publication (e.g. Norton et al 2019, Kalt et al 2019, Boumanchar et al 2019, Reid et al 2020,
Maxwell et al 2020, Schlesinger 2018, Teske 2018). This publicity has includedwidespread reporting of the
model’s results within themedia (Moomaw2018b, Beeler andMorrison 2018, Smith 2020, Beswick 2018).
Given the lack of clarity, agreement, and the degree of uncertainty which already exists in attempting to estimate
payback periods, and thewidespread acceptance of thefindings of the Sterman et al (2018a)model: described as
‘well documented and thorough’ (Prisley et al 2018), we developed a replication of the Sterman et al (2018a)
model in an open source framework to serve as a common foundation for future work, addressing the effects of
differing assumptions, parameterisations, and scenarios.

While others have identified a number of potential weaknesses in the assumptionsmade by Sterman et al
(2018a) (silvicultural practice Prisley et al 2018, responded to in Sterman et al 2018b, and biomass end-use
efficiencyDwivedi et al 2019) little attention has been paid to the parameters governing simulated forest site
regrowth. In testing our replication of themodel, we identified uncertainties in themodelled forest growth
curves, which have a profound impact on the reliability of results from five of the eight region/species
combinations previously published by Sterman et al (2018a).

Research objectives
Theworkwas carried outwith reference to two key research objectives:

Firstly, the paper by Sterman et al (2018a) has beenwidely cited in the academic literature, policy briefings/
recommendations and the press (as described above).We produced amodel based on a similar framework
which is simple/easy tomodify; fully open source; and easy to calibrate to different assumptions. This tool was
intended to facilitate comparisons between thewide range of different techniques, experimental decisions and
assumptionswhich already exist in the literature.

Secondly, ourwork identified a level of uncertainty in the results as obtained by Sterman et al (2018a) that
they did not discuss.We draw attention to this discrepancy, identify possible solutions, and caution against
undue reliance on the affected results.

Method

Sterman et al (2018a)model analysis
The Sterman et al (2018a)model is available under an open access licence, although it operates inside a closed-
source frameworkwhich requires a full, ‘professional’, licenced copy of theVENSIM software (Venata
Systems 2017) towork. Themodel is formed of two key components: (1) equations describing the supply chain,
which are used to calculate the emissions associatedwith fuel production and use (a life cycle assessment: LCA
calculation) and (2) a sitemodel which calculates ongoing changes in carbon on a forest site and in the
atmosphere after felling has taken place (a dynamic component to the LCA).While closer analysis of the supply
chain variables and calculationmay bewarranted, herewe focus on the forest sitemodel.

The sitemodelmakes use of the flexible Chapman-Richards growth function (Richards 1959, Pienaar and
Turnbull 1973, Zhao-gang and Feng-ri 2003) parameterised to represent aboveground carbon in forest sites.
This function is used to represent gross primary productivity (GPP) of a forest site, while simplemultiplication
by dimensionless constants is used to approximate forest respiration; organic carbon deposition; and
heterotrophic respiration.
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Themodel was parameterised for eight different forest types in theUSA (listed in table 1) by using a least-
squares non-linear regressionmethod, which is common (‘invariably’ used: Burkhart andTomé 2012, p 239)
within forestmodel development. Themethod uses a solution-finding algorithm tofit amathematical
representation of the forest growth curve to representative data-points with theminimumdegree of error. This
provides an approximation of actual forest growth behaviourwhich can be used to predict forest growth values
where actual data is not present (e.g. in different time-steps, or over extended time periods). In this case, the
model was trained using average values for forest and soil carbon produced by theUSDA (Smith et al 2006). This
dataset has been constructed using a combination of sample plots, and interpolation of data using the
FORCARB2model (Smith et al 2006, p 13).While uncertainties exist, and the data is unsuitable for smaller scale
(stand-level)modelling, (Smith et al 2006, p 17) this data has beenwidely used in other projects (e.g. Jenkins et al
2010, Pan et al 2011, Lawler et al 2014, Adams et al 2018) for high-level estimates of carbon storage. The resulting
model represents a high-level statistical approximation of forest growth (defined inWeiskittel et al 2011)which
allows interpolation of values between the 5-year intervals in the data and extrapolation beyond the end of the
dataset.

This approach has limitations, specifically resolution and predictive capacity. Generalisation implicit in the
training data (average forest growth over awide range of local site types) limits the applicability of themodel to
individual stands or spatially explicit areas - providing only high-level estimates. The lack of process-based
calculation limits themodel’s ability to take account of varying site conditions (climate, soil, exposure), complex
silvicultural systems (thinning, or selection fellings), and stochastic factors (e.g. fire or pest outbreak). This
method does, however, have value as a tool to look at the approximate effect ofmanagement of large areas of
forest to simple silvicultural systems in amore abstract/theoretical setting. This is particularly useful when
looking at the carbon dynamics of biomasswhere a number ofmisconceptions persist (Ter-Mikaelian et al 2015,
Bentsen 2017).

Replicating the Sterman et al (2018a)model
We recreated themodel developed in Sterman et al (2018a) in a general-purpose, object-oriented, high-level
programming language: Python. This was carried out using the Anaconda Python distribution (available from
www.anaconda.com)which is alreadywidely used in the research community and is distributedwith an
extensive ecosystemof open-source libraries andmodules.

Our implementation: the ‘Simple Biomass ComparisonModel’ (SBCM: included as supplementary
material,most recent version downloadable from github.com/Priestley-Centre/SBCM) follows the same
pattern as described above. SBCMcompares emissions over time resulting from1) fossil fuel production and
use, and 2) biomass production, use, and subsequent forest site recovery.

Themodel was initially compared to the results published by Sterman et al (2018a) to check the success of the
replication, this was carried out using a scenario based on a clear-fell of forest in order to supply biomass
(equivalent to scenario S3 in Sterman et al 2018a). The biomass supply scenario was comparedwith a
counterfactual (fossil fuel) scenario with energy derived from coal with an implicit assumption that therewould
be no emissions from the forest site in the absence of biomass production.While thismay not always be an
appropriate comparison (Ter-Mikaelian et al 2015, Koponen et al 2018) it was used to allow a direct comparison
of results with those obtained by Sterman et al (2018a).

Table 1. Species/region types covered by the Sterman et al
(2018a)model.

Region ofUSA Commonname

Maple/beech/birch

North East Oak/hickory

Oak/pine

Oak/hickory

SouthCentral Oak/pine

Short-leaved/loblolly pine plantation

South East Short-leaved/loblolly pine plantation

Long-leaved/slash pine plantationa

a Occasionallymislabelled in Sterman et al (2018a) supple-
mentary information as long-leaved/loblolly pine.
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Agreement between SBCMand the Sterman et al (2018a)model (using the same parameters) in terms of
forest growth over the first hundred years is very good (<1tC.ha−1) but not exact in terms ofmaximumvalues
for carbon over extended time periods (varying by up to 36tC.ha−1 for above-ground carbon at year 500). In
view of this uncertainty, a curvefitting approachwas developed in Python software to seewhether
improvements to themodel parameterisation could bemade, andwhether a better fit of the training data would
result in a closer agreement with Sterman et al (2018a).

Sterman et al (2018a)use the [optimizer] function inVensim toapply least squaresnon-linear regressionand
MarkovChainMonteCarlomethods todeterminemodel parameters. This is described indetail in their
supplementarymaterial (Sterman et al2018a available online at stacks.iop.org/ERC/2/045001/mmedia)but, in
summary, they restricted thematching algorithmtoparameterswhichgenerate valueswhich satisfy two set conditions:

1. The initial values for forest and soil carbonmust equal year zero values in the trainingdata (fromSmith et al2006)

2. The curve must result in the smallest achievable root mean squared error (RMSE) values between the data
andmodelled output.

We used a similar approach in our replication of themodel, using the [scipy]Python library. The [scipy.
optimize] function for Python contains a number of different algorithms for curve fitting (table 2) and for the
weighting given to outlying data (table 3). The training data produced by theUSDA (Smith et al 2006)which in
turnwere based on a series of estimates from the Forestry Inventory andAnalysis Database (USDAForestry
Service 2005) contains values for forest and soil carbon for forests over thefirst 90 or 125 years of growth
(depending on forest type). This contains the full growth curve (planting tomaturity) of plantation forests;
however, natural forests (and forest soils) take far longer to reach equilibrium and data over this timescale was
not present. This projection of the growth curve beyond the length of the fitting data results in additional
uncertainties (as discussed below).

A full range of possible combinations of algorithm and loss functionwere attempted in two permutations:
firstly, with themodel parameters unconstrained (simply looking for the bestfit possible, with very loose limits
on possible parameter values) and, secondly with constraints applied—requiring thefirst value in the results to
equal thefirst value in theUSDA training data (±1 tC.ha−1). In both cases the fit of themodelled output to the
training datawas assessed by calculating the RMSE.

Using a subset of possible parameterisations (40 of 240)which resulted in an improved RMSE score over
Sterman et al (2018a) SBCMwas run to determine: the changes over time in forest and soil carbon storage, the
carbon storagewhenmature (at ‘equilibrium’ as discussed by Sterman et al 2018a–assumed to be reachedwhen
forest and soil carbon is 99%of the potentialmaximumvalue) and the effect that parameter changes have on
payback period.

In each case, the supply-chainmodel used the original parameterisation for supply chain efficiencies and
emissions (fromSterman et al 2018a)without incorporating themodification of the efficiency parameter used
byDwivedi et al (2019) to allow a comparisonwith the originalmodel results.

Table 2.Algorithms from the [scipy.optimize.leastsquares] function.

Algorithm Notes

lm Levenberg-marquardt algorithm (Moré 1978).
trf Trust region reflective (Branch et al 1999).
dogbox A trf implementation using a rectangular trust region

(Voglis and Lagaris 2004,Nocedal and
Wright 2006).

Table 3. Loss functions providing different weight to
outliers (Scipy.org 2019).

Loss function Formula

Linear r =z z( )
Soft_l1 r = ´ + -z z2 1 10.5( ) (( ) )
Huber r = ´ -z z if z else z1 2 10.5( )
Cauchy r = +z zln 1( ) ( )
Arctan r =z zarctan( ) ( )
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Results

SBCMevaluation
Results for forest growth obtained by running SBCMusing the standard parameters in Sterman et al (2018a)
supplementary information table S3 show good agreement with values published by Sterman et al (2018a) over a
modelled period of 100 years (as shown infigure 1). Notably; however, the forest carbon levels at equilibrium
(maturity) are consistently higher than those reported by Sterman et al (2018a as shown infigure 2). This raises
questions, as SBCMalso returns lower RMSE values thanwere originally published in some cases (figure 3).

The effect of re-parameterisation
Of the 240 permutations assessed using ourmethod (30 per forest type) 40 returned results with a better RMSE
error than that reported by Sterman et al (2018a) shown infigure 4 (the full range of results are available online).

The increased range of possible parameterisations, while achievingmarginal improvements in RMSEover
the original Sterman et al (2018a)model resulted in a high degree of uncertainty in terms of the changes in forest

Figure 1. Forest and soil carbon values extrapolated using SBCMand the parameterisation used by Sterman et al. (2018a) Small
discrepancies do exist, but growth over thefirst hundred years is visually indistinguishable from results published by Sterman et al
(2018a supplementarymaterialfigure S2 page 11). Plantations are denotedwith*.
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and soil carbon predicted by SBCM (which is unsurprising due to the numerical instability of theChapman -
Richards growth function: Ratkowsky 1983, Burkhart andTomé 2012). Infive of the eight forest types assessed,
revised parameterisation resulted in substantial expansions of the uncertainty associatedwith site carbon,
particularly in levels of soil carbon (see figure 5, which shows the range of possible outcomes using improved
parameterisations). It is notable that this increase in uncertainty is confined to slower growing speciesmixtures

Figure 2.A comparison between forest carbon equilibrium values published by Sterman et al (2018a) supplementary information
table S3 and results fromSBCMusing the same parameters. All values are of forest carbon at year 500 (plantations are denotedwith*).

Figure 3.A comparison betweenRMSE values published by Sterman et al (2018a supplementary information table S3) and SBCM
using the same parameters. Some variability exists betweenmodels which prompted further work. Plantations are denotedwith*.
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where the entire growth curvewas not present within the training dataset. In contrast, all three plantation forests
show very similar outcomes regardless of parameterisation (figure 5 below). This supports the assertion in
Burkhart andTomé (2012) that the Chapman—Richards growth curve can result inmore accurate outcomes
when an estimated asymptote is added, as these forest types contain values close to the asymptotewithin the
training data.

Changes in payback periods
Taking the range of growth curves into account and running themodel for the full range of improved
parameterisations (again using a 95% clear-fell scenario: equivalent to Sterman et al 2018a scenario S3)we found
that the range of possible payback periods expands (figure 6). In each case, the values obtained using the Sterman
et al (2018a) parameterisation fall at the top of the range of possible outcomes, andmultiple estimates of shorter
payback periods alsofit the available data to a comparable degree. This is due primarily to the rate of emission to
the atmosphere from the soil carbon pool. The rate of emission is directly proportional to the carbon pool size
and, since this size and the time required for the pool to saturate are uncertain, this has a strong effect on the net
emissions of the system shortly after felling.

There is a considerable difference between forests labelled by Sterman et al (2018a) as ‘natural’
(predominantly naturally regenerated hardwoods) and plantations (planted pine forests in the southernUSA).
Natural forests showed greater variation in terms of the time taken to reachmaturity, the embodied carbon in a
mature forest site, and the payback times associatedwith their use for biomass fuel. In contrast, plantation
forests exhibited very low levels of uncertainty throughout.We argue that this pattern is due to extension of
growth curves beyond the end of the fitting data. Of the forest types studied, all of the natural forests required
long periods of time to reachmaturity (equilibrium). The length of the datasets available to train themodel were
either 90 or 125 years, and this often fell short of capturing the entire growth curve. The faster growing
plantation forests reachedmaturity comfortably within the timeframe available. A summary of the dataset
length and years required to reachmaturity is shown in table 4.

A further illustration of this effect can be seen in figure 7. There is a statistically significant correlation
(p=6.26×10−6) between the degree towhich data has been extrapolated and standard deviation of the site
carbon at equilibrium.

Figure 4.A comparison of RMSE values published by Sterman et al (2018a) supplementary information table S2) and those obtained
by re-parameterisation of themodel. All values are restricted to parameterisationswith a better fit than Sterman et al (2018a) (40 in
total) for clarity. Plantations are denotedwith*.
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Discussion and conclusions

While there are small discrepancies between the forest sitemodel results from the newly developed SBCMand
Sterman et al (2018a) the overallmatch is good (figure 1), andwe conclude that SBCMreplicates the earlier
model well.

In investigating disagreements between previously published results (Sterman et al 2018a) and the output of
SBCM,wewere not able to adjust themodel parameterisations to achieve a large improvement in thefit with the
training data (figure 4). It is significant, however; that the small improvements that were achieved, resulted in
substantial changes to carbon uptake estimates generated by themodel (figure 5). Newparameterisations
revealed large uncertainties in terms of the time carbon stocks take to reach equilibrium aswell as the quantity of
carbon stored on forest sites. This is believed to be due to the sensitivity of the growth function usedwithin the
model tominor changes in input parameters (numerical instability: discussed in Ratkowsky 1983).

Figure 5. Full uncertainty of forest and soil carbon levels under all improved parameterisations Shaded areas contain the full range of
outcomes possible from extrapolating parameterisationswith a better fit than those obtained by Sterman et al (2018a)±RMSE. Solid
lines indicate the results obtained from SBCMunder the Sterman et al (2018a) parameterisation. Plantations are denotedwith*.

8

Environ. Res. Commun. 2 (2020) 045001 WRolls and PMForster



It is notable that thewide variation in possible growth rates exists only in the forests described by Sterman
et al (2018a) as ‘natural’. The common feature in these forests is that the full growth curve is not fully represented
within the training data, as forest growth tomaturity takes longer than the 125 years available fromSmith et al
(2006). This failure to specify a value on or near the asymptote of the curve is known to provide less accurate
results when using theChapman—Richards growth function (Burkhart andTomé 2012). Faster growing
‘plantation’ forests do not suffer from this problem: the entire growth curve (including the asymptote) is
containedwithin the training dataset; and consequently, the variation in output is very low.We conclude that
themodelled outputs for these site types aremore reliable and less prone to error than those from slower

Figure 6.Carbon payback period (carbon sequestration parity)under different parameterisations. Once again, the variation between
minimumandmaximumvalues is far lower in the plantation forests (*).

Table 4.Comparison of time taken for forests to reachmaturity and the length of the dataset used to train themodelNB. The time required
for forest soils to reach an equilibrium is substantially longer.

Region/species Min Mean Max Length of training dataset

(years)

NEmaple/beech/birch forest 263 316 342 125

soil 513 1118 2403

NEoak/hickory forest 374 476 573 125

soil 480 602 768

NEoak/pine forest 212 235 250 125

soil 477 709 1073

SCoak/hickory forest 196 223 271 90

soil 713 1310 3309

SCoak/pine forest 247 261 271 90

soil 946 1796 4176

SC shortleaf/loblolly pine (plantation) forest 35 35 35 90

soil 148 160 169

SE shortleaf/loblolly pine (plantation) forest 34 34 35 90

soil 256 281 324

SE longleaf/slash pine (plantation) forest 34 34 35 90

soil 244 278 305
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growing forests. In all forest types, the degree of variation is well correlated with the degree towhich the growth
curve has been extrapolated beyond the available training data (as shown infigure 7).

The variability exhibited by the ‘natural’ forest types is significant given the reliance of the originalmodel on
the assumption that forests are biologicallymature (at equilibrium) before felling and that this has occurred by
year 500. In the absence of an extended input dataset, we conclude that it is not possible to determinewhich
parameterisation for ‘natural’ forests ismost appropriate when using the current growth function (indeed, the
values preferred by Sterman et al (2018a)may be the bestfit with real-world situations).

We acknowledge the argument by Prisley et al (2018) that the lack ofmore nuanced silvicultural systems is a
weakness in themodel.We suggest that this, when combinedwith the uncertainty inherent in the slower
growing ‘natural’ forests, raises important questions about the ability of themodel to accurately predict payback
times in these forest types. Based on our range of possible parameterisations, the range of possible carbon
payback periodswhenmodelling ‘natural’ forests expanded by between 21 and 54 years. This is in contrast to
range of possible payback periodswhenmodelling ‘plantation’ forests, which in each casewaswithin one year
(figure 6).We found that in every case the values published by Sterman et al (2018a) represented themaximum
payback period achieved, suggesting a potential bias in their parameterisation.We conclude that, while the
paper produced by Sterman et al (2018a) has beenwidely cited and discussed, its headline figures contain a level
of uncertainty which is not apparent. This uncertainty can be limited by use of a growth functionwhich does not
suffer from the same instability, or collection of an extended dataset for very old forests (to provide an
asymptote, limiting the range of possible growth curves produced).

We recommend the inclusion of robust error/uncertainty reporting (included in tables 5a and 5b)when
discussing the climate effect of biomass fuel production from these site types when using thismodel.We have
provided a summary of our best parameterisations below (table 6) and these are also available in the
supplementary information.

This work sits within awider programme of research to address the large uncertainties in the literature when
calculating the carbon dynamics of forest growth and biomass fuel use. This work is ongoing, and is being
carried out through expansion of the SBCMmodel framework. In the short termwe intend tomitigate the
uncertainty addressed in this paper by restricting assessments to either time horizons which do not extrapolate
beyond the training data (max 125 years) or are based on forest types which are not affected (the ‘plantation’
forests). Futureworkwill be based around incorporation of an alternative growth function, development of a
wider range of silvicultural options (as per Prisley et al 2018), modification of the scenarios available (as per
Dwivedi et al 2019) and better reflection the effect of biomass production on different forested sites andwider
landscapes.

Figure 7.Comparison of the change in site carbon storagewith extent towhich values have been extrapolated beyond the training
data. Values on the x axis is equal to the time taken for the site to reach fullmaturity (including soil), minus the number of years for
which thefitting data is available. Error bars represent standard deviation. Plantation forests (denotedwith*) show very low variation,
and the error bars are obscured by the data-point. The dotted line is a linear bestfit for the data points (r2=0.986).
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Table 5a.Calculated values for soil and forest carbonwithmargins of error based on the range of parameterisations identified above.Margins of error were calculated using highest and lowest estimates± appropriate RMSE value.

year
NEmaple/beech/birch forest (tC.ha−1) NEoak/hickory forest (tC.ha−1) NEoak/pine forest (tC.ha−1) SC oak/hickory forest (tC.ha−1)

forest soil forest soil forest soil forest soil

62.4
+4.2

117.9
+13.0

84.6
+3.5

86.6
+8.8

59.1
+3.9

118.5
+3.9

57.3
+2.9

56.4
+1.4

25
−7.5 −13.3 −6.9 −10.0 −8.4 −17.2 −1.5 −6.7

101.7
+4.3

116.1
+15.3

138.9
+3.7

79.6
+9.5

100.0
+3.9

117.4
+4.0

102.4
+2.3

59.3
+1.4

50
−6.5 −15.1 −6.8 −10.6 −6.2 −20.3 −1.6 −7.5

150.3
+4.6

128.5
+11.0

215.8
+3.6

87.9
+6.1

150.9
+3.8

127.9
+3.9

162.9
+4.6

71.6
+1.4

100
−5.0 −10.1 −5.2 −6.8 −5.4 −13.3 −1.7 −4.7

174.5
+6.1

149.0
+5.3

263.8
+6.9

107.3
+5.9

173.1
+3.9

145.3
+3.7

184.4
+13.6

87.7
+8.0

150
−6.9 −8.3 −6.9 −5.4 −9.1 −8.7 −1.4 −3.1

186.4
+7.6

169.9
+6.8

293.8
+11.8

126.9
+6.4

181.6
+4.0

162.9
+5.8

189.9
+20.9

104.1
+12.4

200
−9.6 −12.0 −11.0 −6.3 −11.9 −6.9 −1.4 −3.2

192.2
+8.7

188.1
+4.7

312.4
+16.6

143.2
+4.6

184.7
+4.1

178.6
+3.7

191.2
+24.7

119.8
+13.3

250
−11.7 −15.4 −15.7 −5.2 −13.4 −8.0 −1.4 −5.5

197.4
+10.4

235.5
+15.0

340.1
+30.4

177.5
+16.5

186.4
+4.2

224.7
+4.2

191.6
+27.5

185.0
+1.4

500
−14.5 −26.2 −28.4 −17.3 −14.5 −32.5 −1.4 −34.0

197.5
+10.5

249.7
+60.3

342.9
+34.1

182.5
+24.3

186.5
+4.2

246.7
+5.1

191.6
+27.5

265.2
+1.4

1000
−14.6 −38.0 −30.5 −21.1 −14.5 −52.9 −1.4 −98.6
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Table 5b.Calculated values for soil and forest carbonwithmargins of error based on the range of parameterisations identified above.Margins of error were calculated using highest and lowest estimates±appropriate RMSE value.

year
SC oak/pine forest (tC.ha−1) SC shortleaf/loblolly pine plantation (tC.ha−1) SE shortleaf/loblolly pine plantation (tC.ha−1) SE longleaf/slash pine plantation (tC.ha−1)

forest soil forest soil forest soil forest soil

58.5
+1.5

64.6
+1.0

125.3
+1.1

64.5
+1.0

132.4
+1.2

97.4
+1.1

121.2
+1.3

133.2
+4.5

25
−2.0 −5.4 −2.3 −3.7 −2.4 −4.4 −2.6 −4.4

50 97.8
+1.4

66.9
+1.0

134.2
+1.2

65.0
+1.0

141.9
+1.3

98.1
+1.1

130.4
+1.3

133.7
+4.1

−1.8 −6.2 −1.2 −3.0 −1.3 −3.7 −1.3 −3.9

146.9
+1.3

76.1
+1.0

134.2
+1.2

66.0
+1.0

141.9
+1.3

99.7
+1.1

130.5
+1.3

135.1
+3.3

100
−2.0 −4.6 −1.2 −2.0 −1.3 −2.9 −1.3 −3.0

169.6
+1.5

88.2
+4.7

134.2
+1.2

66.5
+1.0

141.9
+1.3

100.8
+1.1

130.5
+1.3

136.1
+2.8

150
−3.5 −4.3 −1.2 −2.1 −1.3 −3.0 −1.3 −3.0

179.2
+1.6

101.2
+7.6

134.2
+1.2

66.8
+1.0

141.9
+1.3

101.6
+1.1

130.5
+1.3

136.9
+2.4

200 −4.9 −4.5 −1.2 −2.1 −1.3 −3.2 −1.3 −3.1

183.1
+1.7

114.3
+8.0

134.2
+1.2

67.0
+1.0

141.9
+1.3

102.2
+1.1

130.5
+1.3

137.5
+2.1

250
−5.8 −5.6 −1.2 −2.1 −1.3 −3.3 −1.3 −3.2

185.6
+1.9

172.9
+1.0

134.2
+1.2

67.3
+1.0

141.9
+1.3

103.5
+1.1

130.5
+1.3

138.9
+1.8

500
−6.7 −21.4 −1.2 −2.2 −1.3 −3.7 −1.3 −3.6

185.6
+1.9

256.5
+1.0

134.2
+1.2

67.3
+1.0

141.9
+1.3

103.8
+1.1

130.5
+1.3

139.4
+1.9

1000
−6.7 −87.2 −1.2 −2.2 −1.3 −3.9 −1.3 −3.8
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Table 6.Best achieved values formodel variables. NB these values have been rounded to 5 decimal places (the [scipy.optimize.leastsquares] function operates to 35 decimal places). Themodel is highly sensitive to input parameters, and full
values obtained are available with the supplementary information. Plantations are highlighted.

Variable

NEmaple/beech/

birch

NEoak/

hickory NEoak/pine

SC oak

/hickory SCoak/pine

SC shortleaf /loblolly pine

(plantation)
SE shortleaf /loblolly pine

(plantation)
SE longleaf /slash pine

(plantation)

Initial forest carbon (tC.ha−1) 0.00000 0.00000 0.34027 5.42946 3.65256 4.01355 4.28585 4.08908

Initial soil carbon (tC.ha−1) 118.44336 99.35253 112.43524 50.74496 59.95396 71.49007 102.08017 139.90835

Forest carbonmax (tC.ha
−1) 381.41778 999.97326 245.82447 525.90193 207.35840 174.73552 146.11936 158.35607

jab (d’less) 0.00000 0.00092 0.00635 0.05255 0.00367 0.28448 0.20793 0.26133

k (d’less) 0.00591 0.00292 0.00793 0.00299 0.00943 0.00275 0.00299 0.00101

v (d’less) 1.38027 0.92458 1.30275 1.50000 1.22833 0.72667 0.90271 0.81340

jba (d’less) 0.00000 0.00000 0.00000 0.05000 0.00000 0.05000 0.00153 0.03644

jbs (d’less) 0.00753 0.00656 0.00562 0.00243 0.00199 0.00562 0.00453 0.00590

jsa (d’less) 0.00594 0.01232 0.00420 0.00133 0.00093 0.01121 0.00619 0.00553

RMSE (tC.ha−1) 3.75833 3.50038 3.70652 1.38643 1.04564 0.95397 1.05174 1.04512

Recommendedmargins of error and parameters.
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