

This is a repository copy of *Energy budget constraints on historical radiative forcing*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/159980/

Version: Accepted Version

Article:

Andrews, T and Forster, PM orcid.org/0000-0002-6078-0171 (2020) Energy budget constraints on historical radiative forcing. Nature Climate Change, 10. pp. 313-316. ISSN 1758-678X

https://doi.org/10.1038/s41558-020-0696-1

© Crown 2020. This is an author produced version of a paper published in Nature Climate Change. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Energy budget constraints on historical radiative forcing			
2	Timothy Andrews ¹ and Piers M. Forster ²			
3	¹ Met Office Hadley Centre, Exeter, UK.			
4	² School of Earth & Environment, University of Leeds, Leeds, UK.			
5	Submitted: 24 th May 2019;			
6	Revised: 9 th September 2019; 8 th November 2019; 6 th January 2020.			
7				
8	Radiative forcing is a fundamental quantity for understanding anthropogenic and natural drivers			
9	of past and future climate change ¹ . Yet significant uncertainty remains in our quantification of			
10	radiative forcing and model representation of it ²⁻⁴ . Here, we use instrumental measurements of			
11	historical global-mean surface temperature change and Earth's total heat uptake, alongside			
12	estimates of the Earth's radiative response, to provide a top-down energy budget constraint on			

historical (1861-1880 to near-present) effective radiative forcing of 2.3 (1.7 to 3.0) [5-95%] Wm⁻².
This represents a near 40% reduction in the 5-95% uncertainty range assessed by the IPCC Fifth
Assessment Report². Although precise estimates of effective radiative forcing in models do not
widely exist, our results suggest that the effective radiative forcing may be too small in as many as
one third of CMIP5 climate models. Improving model representation of radiative forcing should
be a priority for modelling centres. This will reduce uncertainties in climate projections that have
stubbornly remained for decades^{4,5}.

- Radiative forcing is a measure of the extent to which anthropogenic activities (such as emissions of carbon dioxide or other greenhouses gases) or natural events (such as volcanic eruptions) alter the flows of energy entering and leaving the Earth's climate system⁶. It is the driver of most other climate changes that follow - whether these be changes in temperature, rainfall or extreme events. It is useful for predicting changes in global-mean surface-air-temperature, ΔT (K), due to its representation in the Earth's energy budget⁷, where in response to an effective radiative forcing, *F* (Wm⁻²), the change in planetary energy imbalance, ΔN (Wm⁻²), is given by,
- $\Delta N = F \lambda \Delta T \quad (1)$

where λ (Wm⁻² K⁻¹) is the climate feedback parameter and measures the extent to which the climate system radiates heat back out to space in response to ΔT . Note that here we regard *F* as an 'effective radiative forcing' that is consistent with recent developments in the forcing-feedback paradigm^{2,7} (Methods).

32 Typically Eqn (1) has been used to constrain λ and the Earth's effective climate sensitivity from observed changes in ΔT and ΔN over the historical record^{8,9}, assuming some estimate of historical *F*. 33 Here we turn this around^{3,10}, utilizing new estimates of λ in conjunction with observed estimates of 34 ΔT and ΔN to constrain F. Importantly the generality of Eqn (1) has recently been questioned, since 35 ΔN and λ have been shown to depend on the spatial structure of surface temperature change¹¹⁻¹⁶, 36 37 but our approach uniquely accounts for this by using λ estimates that are consistent with the 38 observed geographical patterns of historical climate change, which we call λ_{hist} . λ_{hist} is also estimated 39 independently of F. This is important because previous studies that employed Eqn (1) to estimate 40 radiative forcing have necessarily needed to fit F and λ_{hist} together, leading to difficulty constraining either term accurately from the historical record¹⁷. 41

42	Table 1: Comparison of historical (1861-1880 to 2011) effective radiative forcing (ERF) values
----	--

43 assessed by IPCC AR5² and inferred from CMIP5 climate models^{3,29} against our energy budget

44 constraint (1861-1880 to 2005-2015). Uncertainties are 5 to 95%. Also shown are sensitivity tests

45

to assumptions in our methodology (Methods).

	Total forcing	Aerosol forcing
IPCC AR5 assessed range of ERF	2.2 (1.0 to 3.2)	-0.7 (-1.7 to +0.1)
CMIP5 climate model range of inferred ERF	1.9 (1.0 to 2.8)	-1.2 (-1.7 to -0.7)
This study's historical energy budget constraint on ERF	2.3 (1.7 to 3.0)	-0.8 (-1.6 to +0.1)
This study with 1850-1900 baseline	2.3 (1.7 to 3.1)	-0.7 (-1.5 to +0.1)
This study with 2005-2017 present-day	2.4 (1.7 to 3.1)	-0.7 (-1.5 to +0.2)
This study with blended SST and SAT anomalies	2.2 (1.5 to 2.9)	-0.9 (-1.7 to -0.1)
This study with +0.1 Wm ⁻² larger pre-industrial heat uptake	2.2 (1.6 to 2.9)	-0.9 (-1.7 to 0.0)
This study with 50% inflation in λ_{hist} uncertainty	2.3 (1.5 to 3.2)	-0.8 (-1.7 to +0.3)

46

We define our pre-industrial baseline as 1861-1880 (inclusive)¹⁸ and present-day to be 2005-2015 47 (inclusive) in order to agree with the time period of recently observed energy flows¹⁹ and readily 48 allow comparisons to Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC 49 AR5) 'present-day' (year 2011) assessed radiative forcings and their uncertainties². For ΔT we use 50 global-annual-mean temperature anomalies derived from blended sea-surface-temperatures (SST) 51 (over oceans) and surface-air-temperatures (SAT) (over land) with complete global coverage²⁰ scaled 52 to a SAT anomalies (see Methods). For 2005-2015 minus 1861-1880, this gives $\Delta T = 0.98 \pm 0.20$ [5-53 95%] K, where the uncertainty accounts for both instrumental errors and internal variability^{9,18}. For 54 the Earth's energy imbalance we take the present-day (2005 to 2015) observed value of 0.71 ± 0.10 55 [5-95%] Wm⁻² from Johnson et al.¹⁹, derived from in-situ ocean observations with near-global 56 coverage. For the change in imbalance, ΔN , we allow for a pre-industrial value of 0.10 Wm⁻² 57 following Forster²¹, giving $\Delta N = 0.61 \pm 0.35$ [5-95%] Wm⁻², where the uncertainty is based on model 58 59 ensemble spread (see Methods). For λ_{hist} we use a suite²² of Atmospheric General Circulation Models (AGCMs) forced with observed 60 (AMIP II boundary conditions²³) changes in monthly SST and sea-ice variations from 1871 to 2010. 61 AGCMs forced in this way – while keeping all forcing agents such as greenhouse gases and aerosols 62 63 constant – allows a straightforward way of calculating the radiative response to changes in observed SST and sea-ice that occurred over the historical period from a single linear fit between ΔN and ΔT 64 over the entire historical period^{13,14,22} (Methods). When constrained by real world SST and sea-ice, 65 66 AGCM radiative feedbacks represent the flux anomalies that occur in response to real world historical SST and sea-ice variations, and compare extremely well against observations over a range 67 of surface temperature patterns on interannual (e.g. in response to ENSO) to decadal timescales^{14,24-} 68 ²⁶. While no single model can be assumed to reproduce λ_{hist} precisely, Andrews et al.²² give λ_{hist} = 69 1.74 \pm 0.48 [5-95%] Wm⁻² K⁻¹ across a model ensemble of eight AGCMs, which we use here for our 70 λ_{hist} and its uncertainty. While this uncertainty is derived from model spread from a limited set of 71

72 models, it is expected to cover a similar uncertainty to that which would arise from a larger model

resemble, but it does not include structural uncertainties related to model error (Methods).

The principle value of using λ_{hist} derived from AGCMs forced with the observed patterns of SST and sea-ice variations is that it ensures that the resulting λ_{hist} is consistent with the geographical patterns of historical temperature change that gave rise to the non-radiative forcing component of the observed ΔN values (i.e. $\lambda \Delta T$). This is crucial since ΔN and λ have been shown to depend on the spatial structure of surface temperature change¹¹⁻¹⁶. Our approach ensures λ_{hist} and ΔN are consistent with the same observed SST pattern, regardless of how the pattern of historical

- 80 temperature change arose whether it be affected by internal variability, different timescale
- 81 responses in the climate system or due to specific impacts of spatiotemporal variations in
- 82 anthropogenic or natural forcings (Methods). Our approach assumes that applying our method to
- 83 different realisations of internal variability in historical climate change would result in the same *F*
- 84 (Methods). In contrast, assuming a λ derived from any non-observed pattern of climate change, such
- as from CO₂ forced climate sensitivity experiments, may be inaccurate for use over the historical
- 86 record due to differences in temperature patterns and so feedbacks between the observed
- historical record and those simulated under long-term CO_2 forced climate change^{13,14,16}.
- To generate our constraint on F we randomly sample (with replacement) 1 million times from the 88 Gaussian distributions of ΔT , ΔN and λ_{hist} to calculate $F = \Delta N + \lambda_{hist} \Delta T$. The resulting values are binned 89 into intervals of 0.02 Wm⁻² and normalised to produce a probability density function (PDF), excluding 90 values outside ± 10 Wm⁻² (this choice has no impact on our results). The resulting PDF (Figure 1, 91 92 black line) gives a total forcing (median) of 2.3 (1.7 to 3.0) [5-95%] Wm⁻² (Table 1) and is very nearly though not quite - Gaussian. IPCC AR5 assessed various lines of evidence on radiative forcing, 93 94 including (but not exclusively) (i) line-by-line radiative transfer calculations and laboratory 95 measurements of spectral absorption; (ii) bottom-up process understanding of radiative forcing and 96 rapid 'adjustment' mechanisms; (iii) satellite observations of radiative fluxes and aerosol-cloud 97 properties; and (iv) a range of climate modelling from high resolution cloud-resolving simulations to 98 complex global AGCMs. They assessed the anthropogenic radiative forcing (corrected to an 1861-1880 baseline, see Methods) to be 2.2 (1.0 to 3.2) [5-95%] Wm⁻². We have independently arrived at 99 100 a similar best estimate, derived simply from a top-down energy budget constraint, but with a near 40% reduction in the 5-95% uncertainty range and a substantial reduction in the probability of 101 102 radiative forcings at the lower end of the IPCC AR5 range (the 5th percentile increases from 1.0 to 1.7 103 Wm^{-2}) (Table 1 and Figure 1).
- 104 How well do climate models represent effective radiative forcing? Radiative forcings are not 105 currently directly calculated in models and so must be inferred indirectly. Forster et al.³ estimated 106 the historical F of 23 Atmosphere Ocean General Circulation Models (AOGCMs) that participated in 107 CMIP5 using a similar energy budget approach to that used here, but with the limitation of 108 necessarily having to assume a λ diagnosed from long-term CO₂ quadrupling climate sensitivity 109 experiments (λ_{4x}) rather than a more accurate model specific λ_{hist} . This has the potential to bias model estimates of F low if $\lambda_{4x} < \lambda_{hist}$ in AOGCMs (see Methods). They inferred a modelled F of 1.9 110 111 (1.0 to 2.8) [5-95%] Wm⁻². This falls within the IPCC AR5 5 to 95% uncertainty (Table 1; Figure 1), but compared to our tighter constraint the effective radiative forcing may be too small in as many as one 112 third (8 out of 23) CMIP5 AOGCMs (Table 1; Figure 1), i.e. below our 5th percentile (1.7 Wm⁻²). 113 114 However no model has an *F* above our 95^{th} percentile (3.0 Wm⁻²).
- The radiative effect of changes in anthropogenic aerosol forcing in particular from aerosol-cloud 115 116 interactions – has long been identified as the largest source of uncertainty in anthropogenic radiative forcing² and some argue^{27,28} it is overly negative in models. Our top-down energy budget 117 constraint does not distinguish between individual drivers of climate change. However by assuming 118 119 a distribution on the non-aerosol forcings $(3.06 \pm 0.45 [5-95\%] \text{Wm}^{-2}$, Methods) we arrive at a residual aerosol forcing of -0.8 (-1.6 to +0.1) [5-95%] Wm⁻². This is in good agreement with the IPCC 120 AR5 assessment (Table 1; Figure 1), providing further confidence in this range. In comparison to 121 nine CMIP5 models assessed by Zelinka et al.²⁹ (see Methods) nearly all (8 out of 9) models have an 122 123 aerosol forcing in the lower (strongly negative) half of this distribution (Figure 1; Table 1).

124 We check the robustness of our energy budget constraint on F to various assumptions and structural uncertainties with sensitivity tests (Methods and Table 1). For example using different time-periods 125 for the pre-industrial or present-day increases F by no more than 0.1 Wm^{-2} (Methods and Table 1). 126 127 Allowing for a larger pre-industrial energy imbalance, for example up to the maximum estimate of 0.2 Wm⁻² suggested by Gregory et al.⁸, simply shifts our forcing distributions by a corresponding 128 129 amount (i.e. -0.1 Wm⁻² in this case, Methods and Table 1). Inflating our uncertainty in λ_{hist} by 50% (to 130 test the sensitivity of our results to unknown structural model errors) changes our constraint by no 131 more than ±0.2 Wm⁻² (Methods and Table 1) and even against this increased 5-95% confidence 132 interval nearly one third (7 out of 23) of CMIP5 models still have estimated forcings below this range. 133 Here we have provided a top-down energy budget constraint on effective radiative forcing since pre-134 industrial times. The novel step is to recognise that instrumental measurements of historical global-135 mean surface temperature change and Earth's total heat uptake can be combined with 136 reconstructions of the Earth's radiative response – derived from AGCMs forced with observed spatial 137 patterns of historical SST and sea-ice change - to constrain historical effective radiative forcing. 138 AGCMs constrained in this way provide a useful constraint on the Earth's radiative feedback over the 139 historical period and compare extremely well against observations over a range of surface temperature patterns on interannual to decadal timescales^{14,24-26}. However the use of models 140 inevitably leaves the potential for structural errors in our constraint, such as unknown model bias in 141 142 $\lambda_{\text{hist.}}$ Still, our energy budget constraint suggests that as many as one third of CMIP5 climate models 143 may have historical radiative forcings that are too small, and nearly all have an aerosol forcing in the lower (strongly negative) half of our aerosol forcing constraint. It has been suggested²⁷ that aerosol 144 145 forcing is overly negative in models, perhaps due to missing liquid water path 'buffering' processes seen in comparisons to observations^{28,30}. Alternatively a potentially weak total forcing could 146 additionally arise from positive greenhouse gas forcings that are too weak in models³¹ or other 147 uncertainties such as a strong negative land-use forcing seen in some Earth system models³². 148 149 If historical forcing is too weak in models then they may struggle to accurately simulate historical temperature trends^{3,33} or have compensating inaccuracies in their historical heat uptake or effective 150 climate sensitivities³⁴. Inaccuracies in coupled atmosphere-ocean simulations of λ_{hist} might be 151 expected given AOGCMs struggle to simulate recent decadal temperature trends in the Pacific^{14,16}, 152 but does not necessarily imply their long-term sensitivity to CO₂ is inaccurate²². Improved simulation 153 154 of historical effective radiative forcing benchmarked against our energy budget constraint would 155 help reduce one aspect of uncertainty in simulated historical temperature trends; improving the detection and attribution of climate change³⁵ and better illuminating model diversity in transient 156 heat uptake and climate sensitivity processes that could be more readily evaluated against observed 157

158 temperature trends. Since effective radiative forcings are not routinely diagnosed directly in models 159 various methods have been developed to infer them, and some assumptions – such as assuming invariance in feedbacks³ – may lead to inaccuracies or even biases in the inferred model forcings, 160 such as those reported for CMIP5 models. In the future, participation by modelling centres in the 161 162 Radiative Forcing Model Intercomparison Project⁵ (RFMIP) will relieve this issue, since historical 163 effective radiative forcing will be directly diagnosed from models. This will reveal model uncertainty 164 in radiative forcing in a more accurate and comprehensive way, enabling a rigorous comparison to 165 process understanding, observations and top-down energy budget constraints as presented here. Significant uncertainty in the model representation of radiative forcing remains³⁻⁵ and our energy 166 167 budget constraint will enable model improvements aimed at reducing this spread, thus reducing

uncertainty in projections of 21st century radiative forcing and climate change⁴.

169

170 **References**

- 171 [1] Shine, K.P., and P.M.Forster, 1999: The effect of human activity on radiative forcing of climate 172 change: a review of recent developments. *Glo. Plan. Ch.*, 20, 4, doi:10.1016/S0921-8181(99)00017-X.
- 173 [2] Myhre, G., et al., 2013: Anthropogenic and natural radiative forcing. In Climate Change 2013: The
- 174 Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
- 175 Intergovernmental Panel on Climate Change. T.F. Stocker, et al., Eds. Cambridge University Press, pp176 659-740.
- 177 [3] Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating
- adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of
- 179 climate models. J. Geophys. Res., 118, 1139–1150, doi: 10.1002/jgrd.50174.
- [4] Soden, B.J., W.D. Collins and D.R. Feldman, 2018: Reducing uncertainties in climate models.
 Science, 326-327, doi: 10.1126/science.aau1864.
- 182 [5] Pincus, R., P.M. Forster and B. Stevens, 2016: The Radiative Forcing Model Intercomparison
- 183 Project (RFMIP): experimental protocol for CMIP6, *Geosci. Model Dev.*, 9, 3447-3460, doi:
- 184 10.5194/gmd-9-3447-2016.
- 185 [6] National Research Council, 2005: Radiative Forcing of Climate Change. *National Academies Press*,207 pp.
- 187 [7] Sherwood, S. C., et al., 2015: Adjustments in the forcing–feedback framework for understanding
 188 climate change. *Bull. Amer. Meteor. Soc.*, 96, 217–228, doi: 10.1175/BAMS-D-13-00167.1.
- [8] Gregory, J.M., R.J. Stouffer, S.C. Raper, P.A. Stott, and N.A. Rayner, 2002: An Observationally
 Based Estimate of the Climate Sensitivity. *J. Climate*, 15, 3117–3121.
- 191 [9] Otto., A., et al., 2013: Energy budget constraints on climate response. *Nature Geoscience*. 6, 415416, doi:10.1038/ngeo1836.
- [10] Forster, P.M. and K.E. Taylor, 2006: Climate Forcings and Climate Sensitivities Diagnosed from
 Coupled Climate Model Integrations. *J. Climate*, 19, 6181–6194, doi: 10.1175/JCLI3974.1.
- 195 [11] Andrews, T., J.M. Gregory and M.J. Webb, 2015: The dependence of radiative forcing and
- feedback on evolving patterns of surface temperature change in climate models. J. Climate, 28,
 1630-1648, doi:10.1175/JCLI-D-14-00545.1.
- [12] Andrews, T., and M.J. Webb, 2018: The dependence of global cloud and lapse rate feedbacks on
 the spatial structure of tropical pacific warming. J. Climate, 31, 641–654, doi:10.1175/JCLI-D-170087.
- [13] Gregory, J.M., and T. Andrews, 2016: Variation in climate sensitivity and feedback parameters
 during the historical period. *Geophys. Res. Lett.*, 43, 3911–3920, doi:10.1002/2016GL068406.
- [14] Zhou., C., M.D. Zelinka and S.A. Klein, 2016: Impact of decadal cloud variations on the Earth's
 energy budget. *Nature Geoscience*, 9, 871-874, doi:10.1038/ngeo2828.
- 205 [15] Xie, S.-P., Y. Kosaka, and Y.M. Okumura, 2016: Distinct energy budgets for anthropogenic and
- 206 natural changes during global warming hiatus. *Nature Geoscience*, 9(1), 29–33.
- 207 https://doi.org/10.1038/ngeo2581.
- 208 [16] Dong, Y., C. Proistosescu, K.C. Armour, and D.S. Battisti, 2019: Attributing Historical and Future
- 209 Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green's Function Approach:
- 210 The Preeminence of the Western Pacific. J. Climate, 32, 5471–5491, doi: 10.1175/JCLI-D-18-0843.1

- 211 [17] Forest, C.E., et al., 2002: Quantifying uncertainties in climate system properties with the use of
- recent climate observations. *Science*. 295: 113-117. doi: 10.1126/science.1064419.
- 213 [18] Richardson, M., K. Cowtan, E. Hawkinsand M.B. Stolpe, 2016: Reconciled climate response
- estimates from climate models and the energy budget of Earth. *Nature Climate Change*, 6, pages931–935.
- [19] Johnson, G.C, J.M. Lyman and N.G. Loeb, 2016: Improving estimates of Earth's energy
 imbalance. *Nature Climate Change*. 6, 639–640.
- [20] Cowtan, K. and Way, R. G. (2014), Coverage bias in the HadCRUT4 temperature series and its
 impact on recent temperature trends. Q.J.R. Meteorol. Soc., 140: 1935-1944. doi:10.1002/qj.2297.
- [21] Forster, P.M., 2016: Inference of Climate Sensitivity from Analysis of Earth's Energy Budget.
 Annual Review of Earth and Planetary Sciences, 44:85-106, doi: 10.1146/annurev-earth-060614 105156.
- 223 [22] Andrews, T., et al., 2018: Accounting for changing temperature patterns increases historical
- estimates of climate sensitivity. *Geophysical Research Letters*, 45, 8490– 8499, doi:
- 225 10.1029/2018GL078887.
- [23] Hurrell, J., et al., 2008: A New Sea Surface Temperature and Sea Ice Boundary Dataset for the
 Community Atmosphere Model. *J. Climate*, 21, 5145–5153, doi: 10.1175/2008JCLI2292.1.
- 228 [24] Allan, R. P., C. Liu, N. G. Loeb, M. D. Palmer, M. Roberts, D. Smith and P.-L. Vidale, 2014:
- 229 Changes in global net radiative imbalance 1985-2012, Geophys. Res. Lett., doi:
- 230 10.1002/2014GL060962.
- 231 [25] Smith, D. M., Allan, R. P., Coward, A. C., Eade, R., Hyder, P., Liu, C., Loeb, N. G., Palmer, M. D.,
- Roberts, C. D. and Scaife, A. A., 2015: Earth's energy imbalance since 1960 in observations and
- 233 CMIP5 models. *Geophys. Res. Lett.*, 42: 1205–1213. doi: 10.1002/2014GL062669.
- [26] Ceppi, P., and J.M. Gregory, 2017: Relationship of tropospheric stability to climate sensitivity
 and Earth's observed radiation budget. *PNAS*, 114(50), doi:10.1073/pnas.1714308114.
- [27] Stevens, B., 2015: Rethinking the Lower Bound on Aerosol Radiative Forcing. *J. Climate*, 28,
 4794–4819, doi:10.1175/JCLI-D-14-00656.1.
- [28] Sato, Y., et al., 2018: Aerosol effects on cloud water amounts were successfully simulated by a
 global cloud-system resolving model, *Nat. Commun.* 9(1), 985, doi:10.1038/s41467-018-03379-6.
- [29] Zelinka, M. D., T. Andrews, P. M. Forster, and K. E. Taylor, 2014: Quantifying components of
 aerosol-cloud-radiation interactions in climate models. *J. Geophys. Res.*, 119, 7599–7615, doi:
 10.1002/2014JD021710.
- 243 [30] Toll, V., Christensen, M., Gassó, S., & Bellouin, N., 2017: Volcano and ship tracks indicate
- excessive aerosol-induced cloud water increases in a climate model. *Geophysical Research Letters*,
 44, 12492–12500. doi: 10.1002/2017GL075280.
- [31] Etminan, M., G. Myhre, E.J. Highwood and K.P Shine, 2016: Radiative forcing of carbon dioxide,
- 247 methane, and nitrous oxide: A significant revision of the methane radiative forcing. *Geophys. Res.*248 *Lett.* 43, 12, 614-12, 623, doi: 10.1002/2016GL071930.
- 249 [32] Andrews, T., R.A. Betts, B.B.B. Booth, C.D. Jones and G.S. Jones, 2016: Effective radiative forcing
- from historical land-use change. *Climate Dynamics*, doi:10.1007/s00382-016-3280-7.

- 251 [33] Golaz, J.-C., et al., 2019: The DOE E3SM coupled model version 1: Overview and evaluation at
- standard resolution. Journal of Advances in Modeling Earth Systems, 11, 2089–2129, doi:
- 253 10.1029/2018MS001603.
- [34] Kiehl, J. T., 2007: Twentieth century climate model response and climate sensitivity, *Geophys. Res. Lett.*, 34, L22710, doi:10.1029/2007GL031383.
- 256 [35] Hegerl, G. and F. Zwiers 2011: Use of models in detection and attribution of climate change.
- 257 *WIREs Clim Change*, 2: 570-591. doi:10.1002/wcc.121.
- 258

259 Figure Captions

- Figure 1: Historical effective radiative forcing (1861-1880 to near-present) derived from an energy
- 261 budget constraint compared to that assessed by IPCC AR5 and inferred from CMIP5 climate
- 262 **models.** (black) Historical effective radiative forcing (1861-1880 to near-present) probability
- 263 distribution function derived from historical energy budget constraints (Eqn 1). (Blue) the aerosol
- 264 component. (Red) IPCC AR5 assessed range² of historical effective radiative forcing and (gray)
- 265 inferred CMIP5 climate model effective radiative forcings^{3,29}. Gray dots represent individual CMIP5
- 266 models. Lines and bars represent the best estimate and 5-95% confidence interval.

267

268 Methods

269 **Effective radiative forcing (ERF):** Radiative forcing can be measured in different ways and ERF is now 270 a widely adopted definition^{2,5,7}. ERF not only includes the instantaneous radiative effect of a change 271 in forcing agent (such as the immediate reduction in outgoing radiation to space in response to 272 increased greenhouse gases) but also any other responses to forcing that are not mediated by the 273 global-mean surface-air-temperature change, ΔT . Examples of such 'adjustments' include aerosol-

- 274 cloud interactions and stratospheric temperature adjustment. Sherwood et al.⁷ provide a
- 275 pedagogical review of these recent developments. We regard our constraint on *F* to be appropriate
- 276 to ERF since we use a feedback parameter (λ) consistent with the ERF framework, so that $\lambda\Delta T$ in Eqn
- 277 (1) accounts for ΔT -mediated component of ΔN .

Global surface-air-temperature data: We use the Cowtan and Way²⁰ global-annual-mean 278 temperature anomaly dataset derived from blended sea-surface-temperatures (SST) (over oceans) 279 280 and surface-air-temperatures (SAT) (over land) with complete global coverage (https://www-281 users.york.ac.uk/~kdc3/papers/coverage2013/had4 krig annual v2 0 0.txt; accessed 16th May 2019). Blended SST and SAT datasets will understate the magnitude of historical warming relative to 282 a SAT only definition^{18,36} of ΔT as demanded by Eqn (1). We allow for this following Richardson et 283 al.¹⁶, who found that climate models closely agreed on a scaling of \sim 1.09 from blended historical SST 284 and SAT anomalies to SAT anomalies. For 2005-2015 minus 1861-1880 (inclusive), the Cowtan and 285 Way²⁰ dataset gives a historical temperature anomaly of 0.90 K, which - after scaling to SAT - gives 286 $\Delta T = 0.98 \pm 0.20$ [5-95%] K, where the uncertainty is taken from Richardson et al.¹⁶ and Otto et al.⁹ 287 288 and accounts for both instrumental errors and internal variability.

289 Planetary energy imbalance data: For the present-day Earth's energy imbalance we use the 2005 to 2015 observed value of 0.71 ± 0.10 [5-95%] Wm⁻² from Johnson et al.¹⁹, derived from in-situ ocean 290 observations with near-global coverage. Since heat uptake was not observed in the 19th century, 291 climate and energy balance models must be used to infer the pre-industrial energy imbalance^{8,9,37,38}. 292 Forster²¹ summarise this be around 0.10 Wm⁻², which we use in our best estimate, but allow for a 293 large uncertainty which we also take from Forster²¹. They used 25 AOGCM simulations of historical 294 ΔN to arrive at a 5 to 95% uncertainty range of 0.33 to 1.04 Wm⁻², which we approximate as a 295 Gaussian of ± 0.35 Wm⁻². Hence we use $\Delta N = 0.61 \pm 0.35$ [5-95%] Wm⁻². The total uncertainty is 296 difficult to quantify formally, but we have allowed for more than most previous studies^{9,38}. The use 297 298 of models unavoidably leaves the potential for structural errors and uncertainties, for example from in the implementation and spin-up of volcanic forcing across models³⁹. Though the impact of 299 volcanism is partly minimised here, since Forster²¹ used a reference (1860-1880) and final (2000-300 2012) period that were both volcanically quiet periods. Note also that if the pre-industrial value was 301 to shift, for example from our assumed 0.1 Wm⁻² to the maximum estimate of 0.2 Wm⁻² given by 302 Gregory et al.⁸, then this simply shifts our forcing distributions by a corresponding amount (0.1 Wm⁻² 303 in this case, Table 1 and see Sensitivity tests in Methods). 304

305 **Climate feedback parameter data:** For the historical climate feedback parameter, λ_{hist} , we use the 306 mean and 5 to 95% uncertainty ($\lambda_{hist} = 1.74 \pm 0.48$ [5-95%] Wm⁻² K⁻¹) reported in Andrews et al.²² 307 (their λ_{amip} in Table 1), derived from eight AGCMs forced with observed (AMIP II boundary 308 conditions²³) changes in monthly SST and sea-ice variations from 1871 to 2010. λ_{hist} represents the

- 309 linear fit of ΔN and ΔT from these experiments, calculated from an ordinary least square regression
- over the entire time-period²² (i.e. 1871 to 2010). The uncertainty arising from differences in
- 311 atmospheric parameterisations across models is derived from the model ensemble spread but
- 312 does not account for structural uncertainties related to model error and any dependence on the

313 underlying SST and sea-ice historical datasets forcing the AGCMs (see Sensitivity tests in the

- 314 Methods). However the uncertainty range is of similar magnitude to that seen in traditional CO₂
- forced climate sensitivity experiments but shifted towards larger λ (smaller climate sensitivity)²² (the
- standard deviation in λ is 0.29 Wm⁻² across 8 models in Andrews et al.²², compared to 0.31 Wm⁻²
- across 23 CMIP5 AOGCMs forced by abrupt- $4xCO_2$ in Forster et al.³) Hence we have little reason to
- doubt that the small ensemble of models covers a similar uncertainty in feedback that would exist ina larger ensemble of models.

320 **Insensitivity of** *F* **to the pattern of change and variability:** Since λ_{hist} is derived using observed 321 patterns of surface temperature change our constraint on F will not depend on what that pattern is 322 or how it arose, by construction, assuming that the AGCMs can faithfully capture the radiative 323 response to it. For example, imagine another 'realisation' of the real world where global-mean ΔT 324 was the same but the spatial pattern of internal variability was different over recent decades, so that 325 the eastern Pacific was warming rather than cooling (with compensating changes elsewhere). Such a 326 scenario would plausibly lead to reduced cloudiness in the eastern Pacific due to the local warming of the marine stratocumulus decks and thus a greater observed $\Delta N^{12,14}$. However this hypothetical 327 328 eastern Pacific warming would not bias our estimate of F, since the eastern Pacific warming would 329 also be included in the boundary conditions to the AGCMs from which λ_{hist} was derived. Thus under 330 this scenario the inferred λ_{hist} would also be smaller (since the inferred cloud feedback to the 331 observed pattern of climate change would be different), compensating for the greater ΔN . By

- forcing AGCMs with the observed patterns of historical climate change this ensures λ_{hist} is
- 333 appropriate for the observed ΔN .
- 334 Put another way, different historical realisations will generate different values of ΔN and λ_{hist} for the 335 same historical F, as seen in the MPI-ESM1.1 100-member 'grande ensemble' of historical simulations analysed by Dessler et al.⁴⁰. Our approach is analogous to an inverse of this, retrieving 336 the same F for potentially different combinations of ΔN and λ_{hist} . A corollary of this interpretation is 337 338 that variability in surface temperature patterns affect heat uptake and feedbacks in a way that is 339 anti-correlated. This could be tested by applying our methodology to a grande ensemble of historical simulations, provided a corresponding ensemble of analogous *amip-piForcing*²² simulations 340 (but using the model ensemble generated SST and sea-ice boundary conditions) was generated to 341 diagnose each ensemble member's λ_{hist} . This approach might provide a useful way to further 342 343 explore the relationship between regional changes in surface temperature patterns, heat uptake and radiative feedbacks⁴¹⁻⁴³. 344
- 345 IPCC AR5 radiative forcings: IPCC AR5 assessed² the total anthropogenic effective radiative forcing
 over the industrial era (1750 to 2011) to be 2.3 (1.1 to 3.3) Wm⁻². To compare against our values we
 correct the baseline (i.e. 1750 to 1861-1880) by subtracting 0.09 Wm⁻² to account for the total
 anthropogenic forcing over this period (IPCC AR5 Table All.1.2). Similarly, IPCC AR5 assessed the
 total aerosol effective radiative forcing to be -0.9 (-1.9 to -0.1) Wm⁻², to which we add 0.21 Wm⁻² to
 account for the aerosol forcing between 1750 to 1861-1880 (IPCC AR5 Table All.1.2). We ignore the
 small component from natural forcings in this comparison.

CMIP5 model radiative forcings: The CMIP5 mean and 5-95% range of 23 CMIP5 models' total historical effective radiative forcings are taken from Forster et al.³ (their Table 2, 'hist 2003' column). An offset of 0.2 Wm⁻² has been applied, since Forster et al.³ calculated the CMIP5 historical forcings at year 2003 rather than 2011. The 0.2 Wm⁻² accounts (primarily) for the growth of CO₂ between 2003 and 2011, derived from the recent decadal trend in forcing of 0.25 Wm⁻² dec⁻¹ given by Myhre et al.² (i.e. adjusting to 2011 gives an offset of 8.0*0.25/10.0=0.2 Wm⁻²). Forster et al.³ estimated the model historical forcings by first diagnosing a feedback parameter from long-term (150yrs)

- abrupt-4xCO₂ experiments (λ_{4x}), and assuming it applied equally to the models' historical simulations (λ_{hist}). If $\lambda_{4x} < \lambda_{hist}$ (i.e. climate sensitivity larger in an AOGCMs abrupt-4xCO₂ simulations compared to its historical simulation⁴⁴) then this could bias low the model forcing estimates given in Forster et al.³
- 362 and so hamper the comparison to our energy budget constraint. However they showed their
- estimate of model radiative forcing was largely robust to this in a single model. Gregory et al.⁴⁵
- estimated the CMIP5 AOGCM-mean λ_{hist} to be 1.27 Wm⁻² K⁻¹, which is slightly larger than the mean
- λ_{4x} of CMIP5 AOGCMs given by Forster et al.³ (λ_{4x} =1.13 Wm⁻² K⁻¹). If this difference is representative
- of the 'pattern effect' between historical and abrupt-4xCO₂ simulations in AOGCMs it suggests the
- forcing estimates of Forster et al.³ may be biased low by ~ 0.14 Wm⁻² in the multi-model mean, given
- 368 their AOGCM-mean historical dT of ~1.0 K. Future participation by modelling centres in RFMIP⁵ will
- 369 address this bias uncertainty across the model ensemble in a more definitive way.
- 370 The CMIP5 mean and 5-95% range of 9 CMIP5 models' aerosol effective radiative forcings are taken
- directly from Zelinka et al.²⁹ (their Table 1). While Zelinka et al.²⁹ assessed the model aerosol
- 372 radiative forcing at year 2000, the total global-mean aerosol effective radiative forcing has changed
- 373 little² between then and 2011. The model aerosol forcing estimates have been derived from fixed-
- 374 SST experiments, and so do not suffer from the uncertainty arising from assuming an invariant
- 375 feedback parameter.

Non-aerosol radiative forcings: The non-aerosol radiative forcing distribution, calculated over 2005 2015 minus 1861-1880, is derived from the forcing dataset described in Dessler and Forster⁴⁶. This is
 an updated and improved version of the IPCC AR5 forcing and its uncertainty. For example the
 radiative forcing formula for CO₂, N₂O and CH₄ has been updated according to Etminan et al.³¹. See
 Dessler and Forster⁴⁶ for details.

Sensitivity Tests: We check the robustness of our energy budget constraint on F to various 381 382 assumptions and structural uncertainties with sensitivity tests. (1) The period regarded as 'preindustrial' is often ill-defined^{47,48}. We repeat our calculations using an 1850-1900 pre-industrial 383 baseline instead, which gives $\Delta T = 1.00 \pm 0.20$ [5-95%] K. (2) Updating our definition of 'present-day' 384 385 to include the most recent data (13 year average, 2005-2017, centred on 2011) gives ΔT = 1.02 ± 386 0.20 [5-95%] K. In either case, the slight upward revision of ΔT relative to the reference calculation increases the radiative forcing by no more than 0.1 Wm^{-2} (Table 1). (3) If we ignore the 1.09 scaling 387 from Richardson et al.¹⁸ to adjust the blended SST-SAT temperature dataset²⁰ to SAT, then ΔT = 0.90 388 \pm 0.20 [5-95%] K, but the forcing and its uncertainty is reduced by no more than 0.2 Wm⁻² (Table 1). 389 (4) If we allow for a larger pre-industrial energy imbalance than the 0.1 Wm^{-2} assumed here, for 390 391 example up to the maximum estimate of 0.2 Wm⁻² suggested by Gregory et al.⁸, then $\Delta N = 0.51 \pm$ 0.35 [5-95%] Wm⁻², but this simply shifts our forcing distributions by a corresponding amount (-0.1 392 393 Wm⁻², Table 1). There are other structural uncertainties harder to quantify. For example (5) the 394 fidelity of our distribution on $\lambda_{ ext{hist}}$ will somewhat depend on the underlying SST and sea-ice boundary conditions that forced the AGCMs from which λ_{hist} was derived. And rews et al.²² showed that in two 395 AGCMs λ_{bist} was largely insensitive to two different SST datasets, but did depend on assumptions on 396 the pre-industrial Antarctic sea-ice fractions that are extremely hard to constrain from 397 observations⁴⁹. For example HadISST2.1⁴⁹ sea-ice trends result in southern hemisphere radiative 398 399 feedbacks that are difficult to reconcile with physical understanding of surface albedo feedbacks and those found in AOGCMs^{22,50}. We therefore retain the λ_{hist} distribution from Andrews et al.²² based 400 on the AMIP II SST and sea-ice boundary conditions²³ as our best estimate. However even if we 401 402 inflate our uncertainty in λ_{hist} by as much as 50%, our constraints on radiative forcing change by no more than ±0.2 Wm⁻² (Table 1) and even against this increased 5-95% confidence interval nearly one 403 third (7 out of 23) of CMIP5 models still have forcings below this range. 404

405

406 **References (Methods only)**

407 [36] Cowtan, K., et al., 2015: Robust comparison of climate models with observations using blended
408 land air and ocean sea surface temperatures. *Geophys. Res. Lett.*, 42, 6526–6534, doi:
409 10.1002/2015GL064888.

- 410 [37] Armour, K.C., 2017: Energy budget constraints on climate sensitivity in light of inconstant 411 climate feedbacks, *Nature Climate Change*, 7, 331-335, doi: 10.1038/nclimate3278.
- [38] Lewis, N. and J. Curry, 2018: The Impact of Recent Forcing and Ocean Heat Uptake Data on
 Estimates of Climate Sensitivity. J. Climate, 31, 6051–6071, doi: 10.1175/JCLI-D-17-0667.1.
- [39] Gregory, J.M, 2010: Long-term effect of volcanic forcing on ocean heat content, *Geophys. Res. Lett.*, 37, L22701, doi:10.1029/2010GL045507.
- 416 [40] Dessler, A., T. Mauritsen and B.J. Stevens, 2018: The influence of internal variability on Earth's
- 417 energy balance framework and implications for estimating climate sensitivity. *Atmos. Chem. Phys.*,
 418 18, 5147–5155, doi:10.5194/acp-18-5147-2018.
- [41] Kang, S.M. and S. Xie, 2014: Dependence of Climate Response on Meridional Structure of
 External Thermal Forcing. J. Climate, 27, 5593–5600, doi: 10.1175/JCLI-D-13-00622.1.
- 421 [42] Rose, B.E.J., Armour, K.C., Battisti, D.S., Feldl, N., and Koll, D.D.B., 2014: The dependence of
- 422 transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake,
- 423 *Geophys. Res. Lett.*, 41, 1071–1078, doi:10.1002/2013GL058955.
- [43] Rugenstein, M.A.A., Caldeira, K., and Knutti, R., 2016: Dependence of global radiative feedbacks
 on evolving patterns of surface heat fluxes, *Geophys. Res. Lett.*, 43, 9877–9885, doi:

426 10.1002/2016GL070907.

- [44] Marvel, K., R. Pincus, G.A. Schmidt and R.L. Miller, 2018: Internal variability and disequilibrium
 confound estimates of climate sensitivity from observations. *Geophysical Research Letters*, 45, 15951601, doi:10.1002/2017GL076468.
- 430 [45] Gregory, J.M., T. Andrews, P. Ceppi, T. Mauritsen and M.J. Webb, 2019: How accurately can the 431 climate sensitivity to CO2 be estimated from historical climate change? *Climate Dynamics*, 1-29,
- 432 doi:10.1007/s00382-019-04991-y
- 433 [46] Dessler, A. E., and PM. Forster, 2018: An estimate of equilibrium climate sensitivity from 434 interannual variability. *JGR- Atmos.*, 123, 8634– 8645, doi: 10.1029/2018JD028481.
- [47] Schurer, A.P., et al., 2017: Importance of the pre-industrial baseline for likelihood of exceeding
 Paris goals. *Nature Climate Change*, 7, 563–567, doi: 10.1038/nclimate3345.
- [48] Hawkins, et al., 2017: Estimating Changes in Global Temperature since the Preindustrial Period. *Bull. Amer. Meteor. Soc.*, 98, 1841–1856, doi: 10.1175/BAMS-D-16-0007.1.
- [49] Titchner, H. A., and N. A. Rayner (2014), The Met Office Hadley Centre sea ice and sea surface
 temperature data set, version 2: 1. Sea ice concentrations, *J. Geophys. Res. Atmos.*, 119, 2864–2889,
- 441 doi:10.1002/2013JD020316.
- 442 [50] Schneider, A., M. Flanner, and J. Perket, 2018: Multidecadal variability in surface albedo
- feedback across CMIP5 models. *Geophysical Research Letters*, 45, 1972–1980, doi:
- 444 10.1002/2017GL076293.

- 445 [51] Andrews, Timothy, 2020: Release of Andrews and Forster (2020, NCC) Code (Version v1.0.0).
- 446 Zenodo. http://doi.org/10.5281/zenodo.3600258.
- 447

448 Acknowledgements

- 449 TA was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra.
- 450 PMF was supported by NERC SMURPHS project NE/N006054/1. Both TA and PMF were supported
- 451 by the European Union's Horizon 2020 research and innovation programme under grant agreement
- 452 No 820829 (CONSTRAIN project). We thank Mark Ringer and Jonathan Gregory for useful
- 453 discussions. We are also extremely grateful for positive and constructive reviews from two
- 454 anonymous reviewers that improved the clarity of the manuscript.

455 Corresponding author

- 456 Timothy Andrews, Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK.
- 457 Email: timothy.andrews@metoffice.gov.uk

458 Data availability

- 459 The Cowtan and Way²⁰ global-annual-mean temperature anomaly dataset was accessed (16th May
- 460 2019) via https://www-users.york.ac.uk/~kdc3/papers/coverage2013/had4 krig annual v2 0 0.txt.
- 461 All other data supporting the findings of this study are provided and/or referenced within this paper.

462 **Code availability**

463 The code used to produce the energy budget constraint and Figure 1 is available via the following 464 online repository: https://github.com/timothyandrews/historical-radiative-forcing⁵¹

465 **Author contributions**

TA and PMF conceived the study. TA performed the analysis and wrote the manuscript, with comments from PMF.

468 **Competing interests**

469 The authors declare no competing interests.

