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A critical evaluation of the Oscillayers methods and datasets  

Jason L. Brown, Daniel J. Hill, Alan M. Haywood 

Abstract 

Here we evaluate Oscillayers, a new method that aims to estimate palaeoclimates for the past 5.4 Myr, 

and discuss the associated theoretical and methodological issues. We show that the theoretical 

foundation of Oscillayers is inherently limited, because the method cannot incorporate spatio‐temporal 
variation and different forcing mechanisms into climate reconstructions. In addition, several 

methodological weaknesses are clarified that entrench the palaeoclimatic reconstruction of Oscillayers 

to patterns of climate change observed between the Last Glacial Maximum and current climates. We 

test the utility of the Oscillayers method to produce palaeoclimatic reconstructions that are similar to 

general circulation model (GCM)‐based estimates. On average, only 55.6% of values in the mean annual 
temperature datasets across the Pliocene and Pleistocene were within ±3°C when compared with 

corresponding GCM‐based datasets. Furthermore, on average only 75.3% of values in the mean annual 
precipitation datasets across the Pliocene and Pleistocene were within ±200 mm of rainfall of the GCM‐
based estimates. Our results demonstrate that the Oscillayers approach does not provide a robust 

approximation of palaeoclimatic conditions throughout the Plio‐Pleistocene. Thus, when these datasets 
are used for scientific analyses, the results should be interpreted with a full appreciation of their 

limitations, particularly for periods outside the last glacial cycle. 

Introduction 

High‐resolution, easily accessible palaeoclimatic data are essential for environmental, evolutionary and 
ecological studies. Recently, there has been an expansion in the number of palaeoclimatic databases 

produced for biological audiences (e.g., Brown, Hill, Dolan, Carnaval, & Haywood, 2018; Fordham et al., 

2017; Karger et al., 2017; Lima‐Ribeiro et al., 2015). A recent approach, Oscillayers (Gamisch, 2019), 

promises to fill the tremendous gaps in palaeoclimatic data spanning the last 5.4 Myr across the entirety 

of the Pleistocene and the Pliocene. A detailed understanding of these periods is important to gain a 

better understanding of how past climates affected biodiversity patterns and processes (Prates et al., 

2016). 

Oscillayers takes benthic stable oxygen isotope ratios from deep ocean cores, an established proxy for 

global palaeoclimate change (δ18O; Hansen, Sato, Russell, & Kharecha, 2013). These are then 

transformed to high‐resolution spatial predictions of a broad range of temperature and precipitation 

climatic variables (commonly call ‘bioclim’ variables), based on the simulated anomalies between 
surface air temperatures of the Last Glacial Maximum (LGM) and the pre‐industrial period. In 
palaeoclimatology, δ18O is a measure of the ratio of the stable isotopes oxygen‐18 and oxygen‐16 and is 
frequently sampled from sediment cores to provide a proxy for deep water temperatures through time, 

where deeper core samples characterize older periods (Hansen et al., 2013). 

Before the methods of Oscillayers, all widely available global palaeoclimate reconstructions were based 

on climate models called general circulation models (GCMs). These models couple oceanic and 

atmospheric processes with high fidelity in three dimensions, with spatially resolved surface boundary 

conditions and numerous parameters reflective of the period of interest, commonly called climate 

forcings. These forcing factors characterize the amount of energy that Earth's biomes receive from the 



sun (i.e., the eccentricity of the Earth's orbit and its axis of rotation) and how much energy is radiated 

back into space (e.g., the atmospheric composition: changes in CO2, CH4 and N2O). General circulation 

models have been widely used in predicting future and past climates (Haywood et al., 2013; Haywood & 

Valdes, 2004; Kirtman et al., 2013; Kutzbach, 1985; Singarayer & Valdes, 2010; Sloan & Rea, 1996). 

 

Oscillayers is a hybrid method that merges the continuous palaeoclimatic temperature measurements 

from δ18O with GCM‐based palaeoclimatic reconstructions of the LGM (c. 21 kya), which is extrapolated 
across 539 periods during the last 5.4 Ma. In this study, we critically evaluate the approach of Oscillayers 

and test the utility of this method to produce palaeoclimatic reconstructions that are similar to GCM‐
based estimates that have been set up to simulate past climates with appropriate forcing mechanisms. 

We first show that the theoretical foundations of Oscillayers are severely limited, because: (a) it does 

not allow climate to vary spatio‐temporally; and (b) it cannot incorporate important changes in 
palaeoclimatic forcing mechanisms, such as orbital forcing changes in palaeogeography. We also 

demonstrate several methodological errors that impeded the utility of generated bioclimatic variables, 

for example, a strict positive linear relationship is invoked between temperature and precipitation. 

Critically, these theoretical and methodological limitations prevent Oscillayers from characterizing 

meaningful temperature and precipitation reconstructions of palaeoclimatic periods outside the last 

glacial cycle, and thereby limit its use in scientific studies.  

Theoretical Issues 

OSCILLAYERS DOES NOT ALLOW DIFFERENT FORCING MECHANISMS AND SPATIO‐TEMPORAL VARIATION IN CLIMATES 

The core spatial relationship of Oscillayers was generated by calculating the difference between the 

corresponding temperature layers in a “current” and an LGM (21 kya) dataset (called a “delta layer”). 
Then the relative change measured in benthic stable oxygen isotope ratios (δ18O) is multiplied by the 

delta layer to scale climate change for each of the 539 time periods. Given that the calculations are 

based upon a single delta layer, individual pixels cannot vary independently across time periods. For 

example, imagine three values in our delta layer are: a = 0.1, b = 1 and c = 10. In all 539 time periods, the 

value in pixel “a” will always be 1/10 of pixel “b” and 1/100 of pixel “c”. Therefore, across every period 

in Oscillayers, the spatial relationships in temperature and precipitation covary across time in the exactly 

the same way and entrench all palaeoclimates to the pattern of climate change observed between the 

LGM and current climates. As shown in Figure 1, there has been incredible spatio‐temporal variation in 
temperature and precipitation during the period spanning LGM to modern times. Thus, the assumption 

that LGM–current climate anomalies are representative across Plio‐Pleistocene climates is inaccurate, 
and not even consistent during the most recent glacial cycle (Figure 1; Fordham et al., 2017). 

These issues became further conflated as estimates are extended deeper into the past, when the forcing 

values were very different. North American and European Ice sheets are one of the most important 

forcing mechanisms of LGM climates (Liu et al., 2009, 2012), but their influence varies considerably 

throughout the glacial cycles in the Pleistocene and is largely absent in the warmer Pliocene. Other 

forcing factors that resulted in major climate change in the Plio‐Pleistocene include Milankovitch 

cycles/orbital forcing (Yin & Berger, 2012), glacial meltwater (Tarasov & Peltier, 2005), changes in 

vegetation (Foley, Kutzbach, Coe, & Levis, 1994), changes in the Antarctic ice sheet (Hill, Bolton, & 

Haywood, 2017), glacial erosion (Hill, 2015), mountain uplift (Ruddiman, 1997) and changes in ocean 



gateways (Lunt, Valdes, Haywood, & Rutt, 2008; Otto‐Bleisner et al., 2016). All these forcing 
mechanisms are important over Plio‐Pleistocene time‐scales and would result in distinctly different 
spatio‐temporal signals that are not incorporated into the Oscillayers reconstructions. To incorporate 

these changes fully and map the influence of these factors on the different climatological variables, a 

fully coupled ocean–atmosphere GCM is required. 

Methodological issues 

CONSTRAINTS ASSOCIATED WITH THE SCALING VALUES 

Assumption of a uniform, positive linear relationship between temperature and precipitation.  

The Oscillayers method uses a single scaling factor to adjust palaeoclimates across time periods that is 

derived from δ18O, which provides an estimate of bottom water temperature. The use of a single scaling 

factor per time period assumes that precipitation scales directly in a positive linear manner with 

temperature. For example, if a scaling factor of 1.5 is implemented, this would increase both 

precipitation and temperature values in their delta layers by 1.5 times. The final climate reconstruction 

would be generated by summing the rescaled delta layer and the corresponding LGM bioclim layer. Even 

over short time periods, the observed relationship between temperature and precipitation does not 

follow a simple linear relationship, and the true relationships are much more nuanced (Hutchinson, 

Booth, McMahon, & Nix, 1984; Madden & Williams, 1978; Trenberth & Shea, 2005). For example, in 

many cases, as areas increase in temperature, they often become drier, not wetter (Trenberth & Shea, 

2005). Furthermore, as shown in Figure 1, areas with the highest temperature variation since the LGM 

do not correspond to areas that have the highest variation in precipitation. Thus, a simple scaling of the 

delta layers based on relative changes in temperature could not account for the observed precipitation 

dynamics. If they covaried perfectly, we would expect the maps depicting variation of these layers to be 

visually similar, which was not observed (Figure 1). An alternative to the scaling factor method used in 

Oscillayers is to use a GCM‐based method that allows relationships between temperature and 
precipitation to covary across space and time at separate rates. 

The use of a single scaling factor also dramatically oversimplifies climatic processes across space. As 

such, it is not possible to characterize global climate change patterns accurately with a single scaling 

value. Speleothem, fossil pollen and benthic isotope studies broadly support this (Colinvaux, De Oliveira, 

& Bush, 2000; Colinvaux, De Oliveira, Moreno, Miller, & Bush, 1996; Duplessy et al., 1988; Wang et al., 

2004; Zachos, Quinn, & Salamy, 1996). This comment is not meant to disparage the global averages of 

Hansen et al. (2013), but rather to reaffirm that they were not intended to provide a precise value 

representative across all terrestrial ecosystems.  

Areas with little change between LGM and current time are unable to change in any of the 

paleoclimatic reconstructions.  

A second concern regards the extent by which areas with limited differences between the current and 

LGM climates can change in paleoclimate reconstructions.  If there is little difference in values between 

these periods, the corresponding value in the delta layer will be small or zero.  Since the scaling value is 

multiplied against the delta layer to affect climate changes in each reconstruction, when delta layers are 

small or zero, the resulting difference will always be a small value or zero, regardless of the 

corresponding scaling value. In contrast, areas with large climatic differences between current times and 



LGM are able to change considerably in the Oscillayers paleo-reconstructions. Using the methods of 

Oscillayers, areas of the eastern Sahara Desert (where the Oscillayers Bio12 delta layer and 

corresponding LGM layers are mostly zero for the region), for instance, will never possess rainfall 

amounts above zero for many months, despite the fact we know this is historically inaccurate (Tierney & 

de Menocal 2017). 

Methodological errors in scaling of Bioclim layers.   

Rather than recalculating bioclimates from monthly temperature and precipitation data, the methods of 

Oscillayers scale the delta layer and add it to a corresponding LGM bioclim layer. For many of the 

bioclim layers, the applied scaling of the delta layer is problematic (Bio8–Bio11 and Bio16–Bio19) 

because these layers are based on joint relationships between monthly temperature and monthly 

precipitation values. For example, Bio8 (mean temperature of the wettest quarter) is calculated in two 

steps: first, the wettest quarter is calculated based on monthly precipitation values and, second, the 

mean temperature of that period is calculated. Given that monthly temperature and precipitation values 

were not scaled in the methods of Oscillayers (rather, the derived bioclimate layer was scaled), it is 

possible that the real bioclim value (if calculated from monthly data) represents an entirely different 

month, particularly in periods when changes in forcing have a strong effect on seasonality (e.g., from 

different orbital parameters). Lastly, the scaling of bioclimate layers that represent ranges (mean diurnal 

range = Bio2 and isothermality = Bio3) is not climatologically realistic. There is limited evidence to 

support that diurnal range should increase as mean global temperatures increase (Hansen, Sato, & 

Ruedy, 1995; Lewis & Karoly, 2013; Sun et al., 2019), but rather the opposite, and warming is associated 

with much larger increases in minimum temperature than in maximum temperature (Easterling et al., 

1997; Jhajharia & Singh, 2011; Karl et al., 1993; Vose, Easterling, & Gleason, 2005).  

Some areas always get colder, where others always get warmer.   

The last methodological constraint relates to how the methods of Oscillayers dictate changes in climate. 

Again, given that a single delta layer is used per bioclimate layer, the sign of the delta layer fixes the 

palaeoclimatic response relative to the climates of the LGM. If the sign of a pixel is positive in the delta 

layer, the resulting climate reconstruction will always be positive and will increase when compared with 

the LGM palaeoclimates. In contrast, if the sign of a pixel is negative in the delta layer, the resulting 

climatic reconstruction will always be lower when compared with the LGM palaeoclimates. For example, 

in a scenario where two values in our delta layer for annual mean temperature (Bio1) are a = −2 and b = 
2, a scaling value of two would change the values to a = −4 and b = 4. These scaled values would then be 
added to the corresponding LGM values, here a = 24°C and b = 24°C, and result in reconstructed 

palaeoclimate values of a = 20°C and b = 28°C. Given that all scaling values are positive values, the values 

of pixel “a” will always decrease and “b” will always increase relative to LGM mean annual 
temperatures. Although we discuss this limitation in the context of Bio1, this affects the other 18 

bioclimatic variables equally. 

Evaluation of Oscillayers datasets 

To evaluate the predictive ability of the Oscillayers reconstructions, we compared the results with 

downscaled GCMs for the four periods spanning the Pliocene and Pleistocene: the Last Interglacial (c. 

130 ka), Marine Isotope Stage 19 (MIS19; c. 787 ka), the mid‐Pliocene Warm Period (mPWP; c. 3.205 
Ma) and Marine Isotope Stage M2 (MIS M2; c. 3.3 Ma). These layers were downloaded from 



www.paleoclim.org (Brown et al., 2018). The mPWP GCM data were compared with the ensemble of 

3.21 and 3.20 Ma Oscillayers palaeoclimatic reconstructions, which represented the two periods that 

matched the forcing values used by Hill (2015). Here we limit our comparisons to only Bio1 (mean 

annual temperature) and Bio 12 (mean annual precipitation), because both variables should be least 

affected by the previously mentioned errors in scaling of the bioclims and because they represent the 

least derived variables and should perform the best under the methods of Oscillayers. 

We performed our analysis at global and regional extents. The regional datasets were chosen to 

evaluate how the Oscillayers methods perform in areas of known palaeotopographical change or 

affected areas relative to current/LGM climates (e.g., the central and eastern USA and Europe). We 

focused on five regions that currently represent: the Amazon basin (82° W, 17° N; –35° W, 20° S), Europe 

(14° W, 63° N; –35° E, 35° N), the Island of New Guinea (93° E, 20° N; –150° E, 11° S), northern Sub‐
Saharan Africa (14° W, 20° N; –43° E, 0° N) and the central and eastern USA (118° W, 60° N; 67° W, 26° 

N). For all comparisons, we performed spatial t‐tests to compare simulation means using the methods of 

Dutilleul, Clifford, Richardson, & Hemond (1993) to correct the degrees of freedom by spatial 

autocorrelation in the datasets. The t‐tests were performed at 10 arc‐min (c. 20 km) resolution. The 
Oscillayers datasets were resampled using SDMtoobox v.2.4 (Brown, Bennett, & French, 2017) using the 

“Advance Upscale” tool and the “mean” aggregation parameter. Correlations and significance were 
assessed using the modified.t.test function in the R package “SpatialPack” (Osorio & Vallejos, 2019). 

To determine whether the Oscillayer values were comparable to those from GCMs, we calculated the 

quantiles for the mean values of eight GCMs (CCSM4 (Climate Community System Model), COSMOS 

(Community Earth System Models), GISS‐E2‐R (Goddard Institute for Space Science), HadCM3 (Hadley 

Centre Coupled Model version 3), IPSLCM5A (Institut Pierre‐Simon Laplace), MIROC4m (Model for 
Interdisciplinary Research on Climate), MRI‐CGCM 2.3 (Meteorological Research Institute) and NorESM‐L 
(Bjerknes Centre for Climate Research) in the Pliocene Model Intercomparison Project (PlioMIP; 

Haywood et al., 2016) and the Oscillayers dataset across three key regions: central North America (110° 

W, 50° N; –85° W, 35° N), Scandinavia (4° E, 72° N; –40° E, 51° N) and Eastern Siberia (130° E, 70° N; –
180° E, 60° N). Pre‐industrial values for Oscillayers datasets were generated using a Community Climate 
System Model 4‐based estimate (Fordham et al., 2017; the same GCM used by Gamish, 2019). These 
were regions with the highest differences in values between the Oscillayers and HadCM3‐based climates 
(the GCM used for all previous comparisons; Figure 2, mPWP). For each region, the inter‐quartile range 
(IQR) of each GCM mean was measured. Values that exceeded 1.5 and 3 times the IQR added to the 

third quartile and subtracted from the first quartile were considered major and extreme outliers, 

respectively, thus they were data points that differed significantly from the other values.  

Results. 

In agreement with Gamish (2019), we found moderate to high levels of correlation between the 

Oscillayers and the corresponding GCM‐based climatologies (Tables 1–3). However, upon deeper 

inspection, for every period compared, most of the corresponding climate values were notably different 

between the two methods. The means of the Oscillayers and GCM‐based palaeoclimates were 
significantly different in every statistical comparison (p < .001, F = 23.37–12,111, d.f. = 5.45–667.69; 

both “global” and “regional”). On average, only 20.0% of values in the mean annual temperature (Bio1) 

datasets across the Pliocene and Pleistocene were within ±1°C when comparing the corresponding 

GCM‐based and Oscillayers datasets (Table 1). Furthermore, 56.6% of annual temperature values were 
within ±3°C. Thus, across all the time periods evaluated, we observed that 43.4% of the temperature 



values differed by > 3°C when comparing datasets from both methods. Likewise, 30.8 and 75.3% of 

values in the mean annual precipitation (Bio12) datasets across the Pliocene and Pleistocene were 

within ±50 or ±200 mm (respectively) of rainfall when comparing the GCM‐based and Oscillayers 
datasets (Table 1). Across all the time periods evaluated, we observed that 24.7% of the precipitation 

values differed by > 200 mm when comparing the two methods. 

The regional datasets suggested that the methods of Oscillayers generally performed better at 

reconstructing the mean annual temperature (Bio1) in tropical areas (versus temperate), but this also 

was not unilateral (e.g., for the Amazon during the mPWP and MIS M2 and for the island of New Guinea 

during M19, there existed large differences between the GCM‐based and Oscillayers datasets). This 
relationship flipped in the mean annual precipitation datasets, with temperate regions performing 

better and tropical regions possessing larger differences (e.g., in the northern Sub‐Saharan Africa and 
the Island of New Guinea). Thus, despite being highly correlated, the Oscillayers reconstructions did not 

reflect similar values when compared with GCM‐based methods. Furthermore, high correlations do not 
necessarily mean that the corresponding values were similar, but instead that the relationships between 

the two datasets covaried in a similar manner. 

Discussion. 

Comparisons of the Oscillayers values with other GCMs demonstrated that in several regions, the 

Oscillayers results differed significantly from all GCM‐based values. In central North America and 
Scandinavia, the Oscillayers means were considered as extreme outliers when compared with all other 

GCM‐based values. Given a lack of GCMs for a majority of the Oscillayers datasets, it is not possible to 

make similar comparisons for other time periods; however, it is unlikely that these results are an 

anomaly. These results demonstrate the dangers of using correlation coefficients and absolute 

differences as the primary basis for evaluating model performance, which can lead to a false sense of 

high predictive performance. Overall, we conclude that the generated palaeo‐bioclim layers of 
Oscillayers show poor agreement with independent GCMs. Hence, the Oscillayers approach does not 

provide a sufficiently robust approximation of palaeoclimate conditions throughout the Plio‐Pleistocene. 
Thus, when used for scientific analyses, results should be interpreted carefully, in light of the many 

limitations, particularly for periods before the LGM. 
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Table 1. GLOBAL RESULTS 

Bio1  Pixels shared with similar values (percent) 

Time Pearson's R2  ± 1°C  ± 3°C  ± 5°C 

130k 0.966 23.3 % 50.2 % 64.8 % 

787k 0.960 13.5 % 42.5 % 61.1 % 

3.2ma 0.956 19.6 % 58.7 % 85.1 % 

3.3ma 0.893 23.6 % 74.9 % 96.5 % 

 mean 0.944 20.0 % 56.6 % 76.9 % 

     
Bio12  Pixels shared with similar values (percent) 

Time Pearson's R2  ± 5 cm  ± 20 cm  ± 30 cm 

130k 0.882 27.4 % 74.7 % 85.2 % 

787k 0.897 32.0 % 78.8 % 87.3 % 

3.2ma 0.828 25.8 % 68.5 % 80.5 % 

3.3ma 0.978 38.0 % 79.3 % 87.6 % 

 mean 0.896 30.8 % 75.3 % 85.1 % 

     
     

  

 
 
 
 
 
 
 
 
 
   

 

 

 

 

 

 

 

 

 

 

 



Table 2. Regional Results.  Mean annual temperature 

Bio1     

Pixels shared with similar values 

(percent) 

Time Extent Pearson's R2  ± 1°C  ± 3°C ± 5°C 

130k Amazon 0.941 62.0 % 99.1 % 99.9 % 

 Europe 0.887 0.6 % 23.4 % 61.1 % 

 Island of New Guinea 0.949 85.8 % 100.0 % 100.0 % 

 N. Sub Saharan Africa 0.828 44.4 % 96.0 % 100.0 % 

 United States 0.966 0.8 % 5.5 % 26.6 % 

787k Amazon 0.939 38.0 % 94.4 % 99.8 % 

 Europe 0.884 0.0 % 9.3 % 47.1 % 

 Island of New Guinea 0.943 29.6 % 99.2 % 100.0 % 

 N. Sub Saharan Africa 0.882 61.9 % 98.3 % 99.9 % 

 United States 0.962 0.5 % 2.2 % 9.4 % 

3.2ma Amazon 0.839 17.4 % 66.6 % 94.0 % 

 Europe 0.618 30.0 % 75.7 % 96.6 % 

 Island of New Guinea 0.810 57.0 % 95.5 % 99.3 % 

 N. Sub Saharan Africa 0.783 52.6 % 94.1 %   99.8 % 

 United States 0.889 21.6 % 56.3 % 93.5 % 

3.3ma Amazon 0.949 20.4 % 88.8 % 99.9 % 

 Europe 0.903  7.0 % 42.1 % 98.0 % 

 Island of New Guinea 0.937 81.7 % 100.0 % 100.0 % 

 N. Sub Saharan Africa 0.880 57.3 % 96.6 % 100.0 % 

 United States 0.916 13.6 % 45.8 % 91.7 % 

  

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Regional Results. Mean annual precipitation  

Bio12     

Pixels shared with similar values 

(percent) 

 Time Extent Pearson's R2  ± 5 cm ± 20 cm ± 30 cm 

130k Amazon 0.882 15.6 % 57.2 % 75.1 % 

 Europe 0.814 41.6 % 90.2 % 95.7 % 

 Island of New Guinea 0.734 10.4 % 39.1 % 54.0 % 

 N. Sub Saharan Africa 0.891 10.0 %  39.4 % 61.9 % 

 United States 0.863 28.6 % 86.8 % 96.7 % 

787k Amazon 0.870 14.3 % 52.7 % 71.0 % 

 Europe 0.805 44.2 % 90.3 % 95.8 % 

 Island of New Guinea 0.659 8.5 % 32.8 % 45.7 % 

 N. Sub Saharan Africa 0.869 10.2 % 46.3 % 63.9 % 

 United States 0.810 28.8 % 81.2 % 92.7 % 

3.2ma Amazon 0.766 5.8 % 23.5 % 34.9 % 

 Europe 0.717 18.0 % 72.3 % 89.4 % 

 Island of New Guinea 0.677 7.7 % 29.4 % 42.2 % 

 N. Sub Saharan Africa 0.914 7.1 % 39.0 % 60.7 % 

 United States 0.852 28.6 % 85.2 % 96.0 % 

3.3ma Amazon 0.801 23.3 % 46.3 % 61.0 % 

 Europe 0.819 28.6 % 88.5 % 95.4 % 

 Island of New Guinea 0.728 8.0 % 30.3 % 43.3 % 

 N. Sub Saharan Africa 0.893 18.7 % 52.6 % 67.5 % 

 United States 0.891 19.6 % 71.7 % 94.3 % 



 

 

 



Figure 1. Spatiotemporal variation of paleoclimates in periods between the LGM and the pre-industrial era. A. variation of delta surfaces 

between GCMs of paleoclimates and the methods of Oscilllayer. *Note that Oscillayers did not provide climate reconstructions for periods in the 

last 20ky, however these values were derived using the methods of Oscillayers to illustrate the difference in mean annual temperature and 

precipitation derived from the Oscillayers versus GCM modelling approaches.  B. Spatial variation in annual temperature and precipitation since 

the LGM.   



 

 



Figure 2. Differences between GCM-based and Oscillayers climate reconstructions.  A. Comparisons of Mean 

Annual Temperature values between Oscillayers climate reconstructions and downscaled HadCM3 models for four 

time periods.  Comparisons of the Oscillayers values to 8 GCMs demonstrate that in several regions (black boxes in 

2A), the Oscillayers significantly differ from all GCM-based values. In central-North America and Scandinavia the 

Oscillayers means were consider extreme outliers when compared to all GCM-based values.  + and * depict the 

mean value HadCM3 and CCSM values, respectively (a CCSM simulation was used to create Oscillayers; HadCM3 

simulations were the basis for many of the GCM-based  comparisons in the paper). Mean Annual Precipitation. 

Note black boxes depict extent of regional comparisons across all time periods (Tables 2 & 3). 


