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Abstract: Droplet jumping phenomenon widely exists in the fields of self-cleaning, anti-frosting and heat transfer 

enhancement. Numerous studies have been reported on the static droplet jumping while the rolling droplet jumping 

still remains unnoticed although it is very common in practice. Here, we used the volume of fluid (VOF) method to 

simulate the droplet jumping induced by coalescence of a rolling droplet and a stationary one with corresponding 

experiments conducted to validate the correctness of the simulation model. The departure velocity of the jumping 

droplet was mainly concerned here. The results show that when the center velocity of the rolling droplet (V0 =ωR, 

where ω is the angular velocity of the rolling droplet and R is the droplet radius) is fixed, the vertical departure 

velocity satisfies a power law which can be expressed as Vz, depar = aRb. When the droplet radius is fixed, the vertical 

departure velocity first decreases, and then increases if the center velocity exceeds a critical value. Interestingly, the 

critical center velocity is demonstrated to be approximately 0.76 times of the capillary-inertial velocity, 

corresponding to a constant Weber number of 0.58. Different from the vertical departure velocity, the horizontal 

departure velocity is basically proportional to the center velocity of the rolling droplet. These results deepen the 

understanding of the droplet jumping physics, which shall further promote related applications in engineering fields. 

Keywords: Droplet jumping; VOF; Rolling droplet; Departure velocity;  

Introduction 

Droplet jumping phenomenon on superhydrophobic surfaces has received much attention in recent years. In 

2009, Boreyko and Chen first reported this phenomenon which was triggered by coalescence of two condensed 

water droplets, and quantitatively predicted the jumping velocity via capillary-inertial scale analysis.1 Following 

that, extensive studies have been performed to investigate the droplet jumping mechanism.2-12 Due to its capacity 

for droplet self-removing, the droplet jumping phenomenon could be widely applied in many engineering fields, 

such as self-cleaning, anti-frosting, defrosting, heat transfer enhancement and hotspot cooling.13-23 The jumping 

velocity, i.e., the departure velocity, is an important indicator for the droplet jumping phenomenon, which reflects 
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its practical application value. Thus, predicting and controlling the droplet departure velocity have become the 

pursuit of many researches. 

The droplet jumping can be divided into two types based on different triggering conditions, i.e., triggered by 

coalescence of stationary droplets and by coalescence of moving droplets. Regarding the first type, for the equal-

sized static droplet jumping, when the droplet radius is larger than the cut-off radius, the departure velocity can be 

scaled by the capillary-inertial velocity, uci=(σ/ρR)0.5, with a proportionality factor between 0.2 to 0.3.4, 24, 25 Droplet 

size mismatch also affects the droplet jumping dynamics with numerous works reported to elucidate the relationship 

between the departure velocity and droplet radius ratio.7, 26, 27 In addition to the droplet conditions, the roughness 

length scale of the superhydrophobic surface changes the departure velocity greatly, and there is an optimal length 

to maximize the departure velocity.28-31 Compared with the first type of the droplet jumping, research on the second 

type jumping is much less. For the second type, two cases are concerned currently. One is the multi-hop jumping, 

and its departure velocity mainly depends on the impacting position and velocity of the back-flow droplet.5, 10, 32, 33 

Another is the jumping triggered by two droplets moving towards each other with the same approaching velocity. 

In this case, the departure velocity could be affected only when the approaching velocity is large enough.25, 34 

It should be noted that it is also common to see a moving droplet horizontally impacting on a stationary droplet, 

resulting in a unique jumping behavior (See the supplemental video by Boreyko and Chen for an example1). 

However, no one has noticed this case yet, though this case seems to be more promising, especially for those 

applications need precise droplet regulation such as hot-spot cooling. Clarifying the effects of the moving droplet 

velocity can not only deepen the understanding of the droplet jumping dynamics, but also provide significant 

guidance for the droplet regulation, which further broadens the application of the droplet jumping in wider fields 

like microfluidics.35, 36 As for the moving droplet, there are two moving forms including sliding and rolling. In our 

another recent work, we have discussed the effect of the moving velocity of sliding droplets.37 However, compared 

with the sliding, the rolling form is more common as the droplet prefers to roll on the superhydrophobic surface 

once the incline angle of the surface exceeds its rolling angle.38, 39 Thus, in this work, we paid our attention on the 

droplet jumping induced by coalescence of a rolling droplet and a stationary one, which may be the first work on 

the topic of rolling droplet jumping.  

Numerical model 

Numerical method was mainly adopted to investigate the rolling droplet jumping phenomenon. The interFoam 

solver in OpenFOAM was used to perform the simulation. This solver is based on the volume of fluid method (VOF) 

and tracks the liquid-gas interface by setting the volume fraction in each grid. In the droplet jumping simulation, it 
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is necessary to consider the effect of the dynamic contact angle. The Kistler’s dynamic contact angle model was 

chosen and compiled in the interFoam solver as a boundary condition. Please refer to our recent work for the detailed 

equations in the numerical model.37 

Figure 1(a) shows the schematic of rolling droplet jumping. The left droplet has a clockwise angular velocity 

and moves towards the stationary droplet, and then the merged droplet jumps up because of coalescence. Figure 1(b) 

shows the computational domain with a size of 3×3×3 mm. The grid number was set to 150×150×150 according to 

our recent work about sliding droplet jumping.37 The contact angle of the bottom solid wall was set to 180° and 

other boundaries were pressure-outlet conditions. To save computing resources, we set the time to the initial time 

when two droplets started to contact each other. In the simulation, the main influence factors include the droplet 

radius (from 40 to 300 μm) and the angular velocity of the rolling droplet. To simplify the analysis, we used the 

center velocity of the rolling droplet to describe its angular velocity which can be expressed as V0=ωR, where ω is 

the angular velocity and R is the droplet radius. The center velocity of the rolling droplet varies from 0 to 2 m/s.  

 

Fig. 1. (a) Schematic diagram of rolling droplet jumping. The left droplet has a clockwise angular velocity, 

moving towards the stationary droplet, and the merged droplet jumps up after coalescence. The angular velocity of 

the left droplet is ω, and the two droplets have equal radius, labelled as R. (b) Computational domain and 

boundary conditions. The computational domain is a cubic with side lengths of 3 mm. The contact angle of the 

bottom solid wall is 180°, i.e., ideally superhydrophobic. The other boundaries are all pressure-outlet conditions. 

The distance between the droplet and the boundary is large enough to prevent the boundary from affecting the 

jumping dynamics.  

 

Rolling droplet jumping experiment 

To validate the correctness of the numerical model, we performed rolling droplet jumping experiments. The 
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experimental surface is a kind of Al-based superhydrophobic surface fabricated by chemical etching-deposition 

method reported in our previous works.40-42 The experimental surface has flower-like hierarchical structures, which 

is the key point for its superhydrophobicity. The measurement shows that the static contact angle of the experimental 

surface is 159.7±1.0° with a rolling contact angle less than 3°, indicating that droplet can easily roll on the 

superhydrophobic surface. The detailed scanning electron microscope image and contact angle measurement result 

are exhibited in Fig. 2.  

Figure 2 also shows the schematic of the experiment system for the rolling droplet jumping. The injection 

system, consisting of a syringe pump, an injector and a thin needle (0.31 mm diameter), was used to produce two 

stationary droplets on the surface. Then, an empty injector with a thin needle (0.31 mm diameter) generated a tiny 

airflow to blow the upper part of one droplet and the airflow shearing effect causes the droplet to roll towards another. 

A high-speed camera recorded the entire droplet merging and jumping process. We confirm that the blowed droplet 

is rolling after comparing the droplet morphologies during jumping in this work with those during the sliding droplet 

jumping,37 as mentioned below. 

 

Fig. 2. Experimental surface and experimental system. The experimental surface is a kind of Al-based 

superhydrophobic surface with flower-like hierarchical structures and a static contact angle of 159.7°. The 

experimental system consists of an injection system to produce small droplets, an empty injector with a thin 

needle to generate tiny airflow to make stationary droplet roll, and a high-speed camera to record images. 

 

Results and discussion 

Droplet morphological changes  

Figure 3(a) shows the simulated droplet morphological changes during the rolling jumping process. At t*=0 (t* 

is the dimensionless time scaled by coalescence time τ, τ=(ρR3/σ)0.5), the left droplet with a clockwise angular 

velocity impacts on the stationary droplet. Then two droplets begin to merge with each other through the expansion 
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of the liquid bridge. Due to the effect of initial angular velocity, the left side of the merged droplet has an obvious 

lift at t*=1.08, rather than remaining level which occurs during sliding droplet jumping (see the graphical abstract 

in our another work for comparison37). Moreover, the merged droplet always keeps a clockwise rolling motion trend, 

even when it jumps up from the surface; while for the sliding droplet jumping,37 the merged droplet does not have 

any rotational motion, although it also departs from the surface obliquely. Figure 3(b) shows the experimental 

droplet morphological changes during rolling droplet jumping, which agree well with the simulation results.  

In addition, there are also obvious differences between the droplet jumping by two droplets with initial opposite 

velocities and the rolling droplet jumping, regarding the droplet morphological changes. For the former case, 

according to the results by Liu et al.25 or Chen and Lian,34 the droplet morphology maintains symmetrical all through 

the coalescence and jumping process, and the droplet jumps up perpendicularly; while for the rolling droplet 

jumping concerned here, the droplet morphology is asymmetric and the jumping direction become oblique. 

 

Fig. 3. Comparison of droplet morphological changes between (a) simulation and (b) experimental results. In the 

simulation and the experiments, the weber numbers (We=ρV02R/σ) are set the same for comparability. In the 

simulation, the rolling droplet has a radius of 300 μm and a center velocity of 0.335 m/s with We=0.46. In the 

experiment, the rolling droplet radius is 1.5 mm and its center velocity is 0.15 m/s. 

 

However, in Fig. 3, one may notice that the droplet morphology evolution at the initial stage in the simulation 

is faster than in the experiment. This is because the current model (VOF model) cannot simulate the droplet squeeze 

phenomenon in the experiments that two droplets do not merge immediately when they contact, but squeeze each 

other first. In the experiments, as shown in Fig. 4, the squeezing process persists until t*=1.05. The droplet squeeze 
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phenomenon is a kind of interface behavior that probably relates to energy of real interface, it may also due to the 

interaction between air and droplet (such as the air entrapment at the droplet contact point).43, 44 Actually, this droplet 

squeeze phenomenon is very interesting but less mentioned previously. We infer that targeted research on the droplet 

squeezing mechanism could change our previous perception on the droplet coalescence dynamics and help to reveal 

new coalescence mechanisms, and we will start a research in our next work. Though the squeeze phenomenon 

delays the coalescence of the two droplets, the resulted extrusion deformation increases the potential energy of 

coalescence, which will result in a faster merging process once the coalescence begins. The compromise between 

the delayed coalescence and the accelerated merging makes the final droplet departure times obtained from 

simulation and experiment consistent (Fig. 3). In other words, the simulated departure characteristics of the rolling 

droplet jumping are still reliable though the simulation model cannot simulate the droplet squeeze phenomenon.  

 

Fig. 4. Time-lapse images of the droplet squeeze phenomenon before coalescence of the rolling droplet and the 

static one. The two droplets do not merge immediately when they contact but squeeze each other first. The 

squeezing process persists until t*=1.05. The dimensionless time corresponds to the time of Fig. 3(b).  

 

Figure 5 shows the velocity vectors inside the droplets at times corresponding to those in Fig. 3(a). There are 

clockwise angular velocity vectors in the left droplet at the initial moment (t*=0), which, on the one hand, accelerate 

the expansion of the left-part liquid bridge (t*=0.39), on the other hand, cause the left side of the droplet to lift up 

(t*=1.08). In contrast, the right droplet evolves normally under capillary pressure. The combination of the different 

motion trends between the left and the right parts of the merging droplet yields unique departure characteristics that 

the merged droplet jumps up from the surface obliquely with angular velocity remaining inside the droplet (t*=2.95). 
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Fig. 5. Velocity vectors inside the droplets at times corresponding to those in Fig. 3(a). The left droplet has 

clockwise rotation velocity vectors, and these rotation velocity vectors persist throughout the entire jumping 

process. Coupling of the effect of rotation velocity and the coalescence effect results in unique motion trends and 

departure characteristics of the merged droplet. Green arrows represent the effect of rotation velocity and blue 

arrows represent the normal coalescence effect. 

 

Vertical departure velocity 

To analyze the departure characteristics of the merged droplets quantitatively, relationship between vertical 

departure velocity (i.e., vertical velocity component of the merged droplet as it just departs from the surface) and 

droplet radius under various center velocities is drawn in Fig. 6(a). The black solid curve represents the theoretical 

departure velocity by capillary-inertial law for the static-droplet-coalescence induced jumping, known as 0.2uci. For 

water droplets, the theoretical curve is about 1.706R-0.5 (the unit of radius is micron). When angular velocity is added 

to the left droplet, the departure velocity still satisfies this form, denoted as aRb, where a and b are constants. As the 

center velocity of the rolling droplet increases, the constant b increases (In Fig. 6(a), the constant b increases 

monotonously from -0.5 to -0.1 when the center velocity of the rolling droplet varies from 0 m/s to 2 m/s). In 

addition, the chart in the lower left corner in Fig. 6(a) shows the relative deviation between the simulated vertical 

departure velocities and the theoretical value by capillary-inertia law. When the center velocity is larger than 0.3 

m/s (the dotted line in the chart), the deviation begins to increase significantly, indicating that the capillary-inertia 

law cannot predict the vertical departure velocity any more. 

To explain the effect of the center velocity more clearly, the relationship between vertical departure velocity 

and center velocity at different droplet radii is shown in Fig. 6(b). As seen, when the center velocity increases, the 

vertical departure velocity first decreases and then increases. Based on this trend, two regions are divided, including 
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descending region and ascending region. The center velocity on the junction of the two regions is regarded as the 

critical center velocity, Vc. The critical center velocity decreases continuously as the droplet radius increases. 

For the droplet jumping induced by coalescence of static droplets, the duration time from coalescence to 

departure can be expressed as t ≈ 2.2τ according to the recent work by Yan et al.,45 where τ is the coalescence time 

expressed as (ρR3/σ)0.5. According to the theorem of momentum, the average merging velocity of the static droplet 

under capillary pressure (Δp=2σ/R) is given by 𝑈 = ∆𝑃∙𝑆∙𝑡𝑚                                         (1) 

where S is the action area of the capillary pressure and m is the droplet mass. Substituting the expressions of Δp, S, 

t, and m into Eq. (1) gives 𝑈 ≈ 3.3√ 𝜎𝜌𝑅                                       (2) 

In other words, U is approximately equal to 3.3uci. Then we calculated the ratio of the simulated critical center 

velocity, Vc, to the average merging velocity of the static droplet, U, at different droplet radii, and showed the results 

in Fig. 6(c) that the ratio fluctuates around 0.23 with a deviation of 0.01. Therefore, the critical center velocity of 

the rolling droplet can be estimated as 𝑉𝑐 ≈ 0.76𝑢𝑐𝑖                                      (3) 

Equation (3) is drawn in Fig. 6(b) as the black curve, and the result shows that it can well represent the boundary 

between the descending region and ascending region. Further, substituting Eq. (3) into the formula of Weber number 

(We=ρVc2R/σ) gives that We = 0.5776. In other words, the critical center velocity of rolling droplet corresponds to 

a constant We ≈ 0.58. As known, the Weber number measures the relative importance of the fluid’s inertia compared 

to its surface tension. For the rolling droplet jumping, when the Weber number is larger than 0.58, the inertial of the 

rolling droplet plays a more and more important role, indicating that the increased kinetic energy of the rolling 

droplet could increase the vertical departure velocity; otherwise, when the Weber number is smaller than 0.58, the 

released surface energy by coalescence still dominates the rolling droplet jumping, and the increasing center velocity 

of rolling droplet actually increases viscous dissipation, resulting in a decrease of the vertical departure velocity. 
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Fig. 6. (a) Relationship between vertical departure velocity and droplet radius under various center velocities. At a 

certain center velocity, the vertical departure velocity gradually decreases with increasing droplet radius. The 

vertical departure velocity deviations between the simulated value and the theoretical value by capillary-inertia 

law are also shown in the lower left corner. (b) Relationship between center velocity of the rolling droplet and 

vertical departure velocity under different droplet radii. The vertical departure velocity decreases in the blue 

region and increases in the yellow region. The black curve represents the theoretical critical center velocity 

(V0=0.76uci) which can precisely distinguish the descending region and the ascending region. (c) The ratio of the 

simulated critical center velocity, Vc, to the average merging velocity of the static droplet, U, under different 

droplet radii. The ratio is approximately constant at 0.23 with a deviation of 0.01. 

 

Horizontal departure velocity and departure angle 

The rolling velocity of the moving droplet makes the merged droplet jump up obliquely, i.e., the merged droplet 
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has both vertical and horizontal velocity components when it departs from the surface. The horizontal departure 

velocity is also concerned and its relationship with the center velocity of the rolling droplet at different droplet radii 

is shown in Fig. 7(a). Similar to the sliding droplet jumping discussed in our another work,37 the horizontal departure 

velocity (Vx,depar) and the center velocity is directly proportional. The proportionality coefficients change from 0.37 

to 0.47 when the droplet radius increases from 40 μm to 300 μm. But the proportionality coefficient does not vary 

linearly with the droplet radius, as the small chart in the upper left corner in Fig. 7(a) shown. 

 

Fig. 7. (a) Relationship between the horizontal departure velocity and the center velocity at different droplet radii. 

The simulated radius range is from 40 μm to 300 μm. The horizontal departure velocity (Vx,depar) and the center 

velocity is directly proportional, and the proportionality coefficient increases with increasing droplet radius but the 

tendency is not linear. (b) Relationship between the departure angle and the center velocity at different droplet 

radii. The departure angle of the merged droplet decreases with increasing droplet center velocity and droplet 

radius.  

 

With determined vertical and horizontal departure velocities, the jumping direction of the merged droplet can 

be calculated. Here, the departure angle, θ, is used to indicate the jumping direction. The departure angle means the 
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0.0 0.5 1.0 1.5 2.0
0

25

50

75

100
 40     50    60     80

 100   150  300     (m)

D
e
p
a
rt

u
re

 a
n
g
le

, 
 

(°
)

V
0
 (m/s)

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

0 100 200 300
0.35

0.40

0.45

0.50

R (m)

40    50 

60    80 

100  150 

300 

V
x
,d

e
p
a
r 
(m

/s
)

V
0
 (m/s)

S
lo

p
e

(μm)

Vz,depar

Vx,depar

θ

(b)

(a)



 11 / 15 

 

departure angle and the center velocity at different droplet radii. As shown, the departure angles decrease with 

increasing center velocities of the rolling droplets, indicating that the jumping directions become more and more 

parallel to the surface. In addition, at a certain droplet center velocity, larger droplet results in smaller departure 

angle. All these results demonstrate the controllability of the rolling droplet jumping and provide significant 

guidance for related engineering applications.  

Conclusions 

In conclusion, we adopted the VOF method to simulate the phenomenon of rolling droplet jumping (i.e., the 

jumping induced by coalescence of a rolling droplet and a static one) with the simulation model validated against 

our own experiments. We extracted the departure velocity when the droplet just jumps up from the simulation, and 

concluded that the angular velocity of the rolling droplet has a great effect on the subsequent coalescence dynamics, 

which then influences the droplet departure. For convenience, the center velocity of the rolling droplet was used to 

describe the droplet rolling. When the center velocity of the rolling droplet is constant, the vertical departure velocity 

shows a power function of the droplet radius. When the droplet radius is constant, as the center velocity increases, 

the vertical departure velocity first decreases and then increases. Moreover, the critical center velocity, Vc, which 

corresponds to the minimum vertical departure velocity, satisfies a constant relation with the capillary-inertial 

velocity, uci, expressed as Vc = 0.76uci. Interestingly, substituting the critical center velocity into the formula of 

Weber number gives a constant value of 0.58. Different with the vertical departure velocity, the horizontal departure 

velocity appears as a linear relation with the center velocity of the rolling droplet. In addition, with increasing center 

velocity of the rolling droplet, the jumping directions become more and more parallel to the surface. We expect that 

these results provide fundamental understanding of droplet jumping dynamics, and could be useful for related 

engineering applications. 
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