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ABSTRACT 

Surfactant-stabilized microemulsions (MEs) are often used to reduce the capillary forces responsible 

for trapping residual non-aqueous phase liquids (NAPLs) such as crude oils inside subsurface geological 

formations. Recent studies showed that the presence of nanoparticles (NPs) in the ME phase could enhance 

NAPL recovery, however their interfacial interactions and the impact of rock characteristics (e.g., 

mineralogy, topology, etc.) is still unclear, especially at the microscale. The objective of this study was to 

understand the effect of microemulsions stabilized by nanoparticles (MENP) on pore-scale fluid 

displacement mechanisms in a heterogeneous aquifer rock such as Arkose sandstone. A novel method was 

developed to synthesize silicon oxide (SiO2) in-situ in a ME. These nanoparticles had less tendency to 

agglomerate compared to nanopowders and promoted the formation of pickering emulsions. The impact 

of ME and MENP on NAPL displacement in Arkose was examined using a micro-CT scanner integrated with 

a miniature core flooding system. NAPL-aged cores were subjected to flooding tests with different aqueous 

solutions (brine, ME, and MENP) to investigate the effectiveness of these additives in enhancing NAPL 

removal. We found that ME promoted NAPL mobilization by reducing IFT and enhancing emulsification. 

The ability of ME to solubilize adsorbed NAPL layers contributed to a wettability alteration from NAPL-wet 

to weakly water-wet. Therefore, ME could remove 20% of additional NAPL after waterflooding. The 

incremental NAPL removal with MENP (34.3%) was higher than that of ME due to the emulsification of 
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NAPL into even smaller droplets where NPs and surfactants synergistically interacted at the interface. The 

small NAPL droplets could penetrate small capillary elements of the rock that were inaccessible to ME, 

leading to stronger wettability alteration especially in microporous carbonate cements.  

 

Keywords: Microemulsion, NAPL, Crude oil, Nanoparticle, Heterogeneous rock, Enhanced oil recovery, 

Mobilization, Solubilization 

 

1. INTRODUCTION  

Understanding multi-phase flow processes is critical for the remediation of contaminated aquifers and 

enhanced oil recovery (EOR). In subsurface geological formations, non-aqueous phase liquids (NAPLs) such 

as crude oils are often entrapped in the form of ganglia within the pores due to the large capillary forces 

across the interface between NAPL and brine phases.1 These forces give rise to a capillary pressure that is 

a function of pore geometry, interfacial tension (IFT) between the two fluids, and rock wettability, often 

quantified by the contact angle (CA) that a fluid drop creates on its surface.1 The wettability of pore surfaces 

is dependent on the properties of rocks and NAPLs. Surface-active asphaltene and resin molecules present 

in NAPLs tend to adsorb on mineral surfaces, form an organic layer, thereby altering their wettability from 

water-wet to neutral- or oil-wet.2,3 The extent to which wettability is altered is variable due to mineral 

heterogeneities in subsurface formations, making the wetting preference of rock surfaces difficult to 

describe.  

Capillary forces can be reduced by the addition of appropriate surfactant formulations. Surfactants are 

organic molecules that contain both hydrophobic groups (i.e., tails) and hydrophilic groups (i.e., heads).4 

This structure makes them energetically favorable to adsorb on oil/water interfaces, decrease the IFT, and 

consequently mobilize small NAPL droplets through porous media.4,5 On the other hand, the propensity of 

surfactant molecules to self-assemble above their critical micelle concentration (CMC) enables them to 



solubilize adsorbed NAPL and restore the wettability of pore surfaces from neutral- or NAPL-wet back to 

water-wet.6,7 The performance of surfactants can be further enhanced by putting them into micro-

emulsified state.8,9 Microemulsions (MEs) are composed of water, hydrocarbon, and amphiphiles, which 

are optically isotropic and thermodynamically stable liquid solutions.10 They differ from ordinary emulsions 

in that they can be prepared with little or no input of mechanical energy.11 The oil phase, also called carrier 

fluid, could be a terpene solvent such as d-limonene.12 Various water-soluble surfactants with hydrophile-

lipophile balance (HLB) between 8 and 18 have been applied as emulsifiers; examples are linear alcohol 

ethoxylates and alkylpolyglucosides.12–15 Co-surfactants on the other hand often consist of short or medium 

chain alcohols such as 2-propanol.13,14,16 These formulations are able to carry surfactant molecules deep 

into the formation and minimize losses due to adsorption on rock surfaces. Additionally, d-limonene can 

penetrate adsorbed NAPL layers and reduce their interaction with minerals.17 With their unique ability to 

swell these layers, MEs usually provide more effective NAPL solubilization than surfactants, especially in 

rocks containing carbonate cements.8,9  

Recent studies showed that nanoparticles (NPs) could be used as stabilizers for MEs under harsh 

subsurface conditions, such as high temperature and salinity.18 Nanoparticles are particles between 1 and 

100 nanometers in size,19 that tend to adsorb at oil/water interfaces to form pickering emulsions. The steric 

forces formed by NPs, especially in the presence of surfactants, provide a mechanical barrier against 

coalescence and thermal fluctuations, such as lamella drainage and hole formation, thereby enhancing 

emulsion stability.20–23 Various types of NPs have been utilized to stabilize MEs. Examples are clays, iron 

oxide (Fe2O3), super/paramagnetic, partially hydrophobic and hydrophilic SiO2 NPs.24–29 These NP-stabilized 

MEs were often prepared by a two-step method. NPs are initially synthesized using physical or chemical 

methods then the nano-sized powder particles are dispersed in base fluids, such as brine.30–32 This method 

requires NPs to be synthesized and stored prior to the preparation of MEs, therefore leading to additional 

cost and agglomeration tendency.29 This problem can be solved by preparing NP-stabilized MEs in a one-



step experiment. In this method, NPs are simultaneously produced and dispersed into the base fluid 

medium, which can prominently decrease the agglomeration and enhance the stability of NP-stabilized 

MEs.33,34  

Nanoparticles have several applications in the environmental and petroleum industries. For example, 

subsurface flooding with NPs and nanofluids is able to increase production from oil reservoirs due to the 

high interfacial activity of NPs. The large surface area to volume ratios of NPs enable them to adsorb at 

fluid-fluid interfaces and lower IFT.35–37 The IFT reduction is further promoted in the presence of surfactants 

by the creation of stable interfacial complexes,29 resulting in the formation of smaller oil droplets.38 The 

enhanced emulsification ability depends on the properties and amounts of NPs. With increasing NP to oil 

mass ratio, the size of emulsified oil droplets decreases.39 Nanoparticles have also the ability to alter the 

wettability of solid surfaces through their self-structuring behavior.40–43 The latter increases the structural 

disjoining pressure in the confined three-phase contact region, especially near the tip of the wedge. With 

the increasing structural disjoining pressure, NPs can move the NAPL/water interface forward, alter the 

wettability, and consequently detach NAPL from surfaces.43 This behavior was observed in several outcrop 

and reservoir rocks. In sandstones, SiO2 and TiO2 NPs were reported to enhance oil recovery due to both 

wettability alteration and IFT reduction.35,44,45 The deposition of NPs could plug the water channels and 

increase the sweep efficiency during the floodings.46,47 Similarly, SiO2, Al2O3, and TiO2 NPs were reported to 

improve oil recovery from carbonates due to viscosity modification, IFT reduction, and wettability 

alteration.18,35,36,48 Using nanofluids could further enhance the performance of brine injection. Soil core 

data indicated that approximately 70% of the prevalent NAPL was removed after NP-stabilized emulsion 

flooding.49 Recently, Hu and co-workers proposed a novel method to synthesize NPs in-situ in MEs. The 

new formulation significantly increased the oil displacement efficiency with an additional NAPL recovery of 

about 19% compared to ME alone. The NP-stabilized ME exhibited stable adsorption at the oil/water 

interface, synergistic stabilization effects between NP and surfactant, and increased brine phase viscosity.29  



While NP-stabilized MEs often outperformed MEs alone, there are only limited studies available on 

their displacement mechanism in porous media and the types of fluid-fluid and fluid-rock interactions 

involved. For example, the impact of rock properties (pore geometry, topology, mineralogy, and surface 

texture) on these interfacial interactions is still not clear, especially at microscale. The goal of this study was 

to understand the impact of ME stabilized by in-situ synthesized NP (MENP) on the pore-scale displacement 

physics of NAPL in a heterogeneous aquifer sandstone (Arkose). A novel method was developed to 

synthesize SiO2 in-situ in a ME and investigate its impact on the displacement efficiency of NAPL in Arkose 

using x-ray microtomography combined with a core flooding system. Novel insights are gained on the 

superior ability of MENP to alter the wettability of rough carbonate cements and mobilize NAPL through 

pores with small radius or complex geometry. 

 

2. EXPERIMENTAL MATERIALS AND METHODS 

 

2.1    Materials  

2.1.1 Rock 

The rock used in this study was an outcrop from Arkose formation in east Colorado and Wyoming. One 

mother core 38 mm in diameter was drilled from the Arkose block, and then dried at 110 oC for 24 hours. 

After cooling down to ambient temperature, the porosity and permeability of the core were measured 

using a Helium porosimeter-permeameter apparatus (AP -608, Coretest system), which were 17% and 26 

mD, respectively. Two miniature core samples, both 5 mm in diameter and 47 mm in length, were drilled 

from the mother core to be used in the core-flooding experiments. The absolute brine permeabilities of 

the miniature cores were measured to be 26 mD and 32 mD, respectively. The porosities were measured 

using the histogram thresholding method and found to be 17% and 16.84%. 

 



2.1.2 Fluids 

We used a medium crude oil from Gibbs field (Minnelusa formation) of Wyoming with 10.2% 

asphaltene as the NAPL in this study. The oil was centrifuged at 6,000 rpm for one hour and then filtered 

through a 0.5 µm filter to remove possible debris. The brine was composed of 1 M CaCl2 in distilled-

deionized water, which was selected in a previous study.50 NaI dopant (>99%, Sigma Aldrich) was added to 

the brine at a concentration of 7 wt% to enhance its contrast with NAPL phase in the micro-CT images.  

 

2.2    Methods 

2.1.3 Microemulsions stabilized by surfactants (ME) and in-situ synthesized NPs (MENP) 

To stabilize MEs of d-limonene (96.9%, MP Biomedicals) in brine, we used Triton X-100 (laboratory 

grade, Sigma Aldrich) and n-dodecyl β- D-maltoside (>98%, Sigma Aldrich) as emulsifying agents and 2-

propanol (ACS grade, Fisher Scientific) as co-surfactant. The Triton/maltoside/d-limonene/2-propanol 

blend was mixed with a weight ratio of 2:2:1:0.8. Afterward, brine was added to the mixture in two steps: 

1) until the water content is 15 wt%, stirred at 200 rpm for 10 min, 2) until brine content is 99.5%, stirred 

at 500 rpm for 10 min. The ME was transparent with a total surfactant concentration of 0.33 wt%. The 

detailed preparation procedures are provided in previous studies.8,9,51  

In order to synthesize the SiO2 NP in-situ at the d-limonene/water interfaces in ME, we selected 

tetraethyl orthosilicate (>99%, Sigma Aldrich) as the oil-soluble precursor. It was first dissolved in d-

limonene and then the mixture was used as the hydrocarbon phase to prepare surfactant-stabilized ME 

following the procedure described previously. The surfactant-stabilized oil droplets could act as nano-

reactors to control the sol-gel reaction between water and tetraethyl orthosilicate as shown in Equation 

1.52 After contacting with water, tetraethyl orthosilicate formed silanol groups by hydrolysis and 

subsequently developed siloxane bridges by a condensation reaction, which resulted in the formation of 

single monodisperse nano-sized SiO2 particles.52–55  



                                               Si(OC2H5)4 + 2H2O → SiO2 ↓ + 4C2H6O                                                          (1) 

The amount of tetraethyl orthosilicate was pre-determined so that the final concentration of NPs in 

ME could reach 0.01 wt%. NaOH solution (> 97.0%, Fisher Scientific) was added slowly into the ME as a 

catalyst via a syringe pump and mixed by an ultrasound probe with an amplitude of 25 until the pH of the 

solution reached 10. After reacting at 60 oC for seven days, the solution was titrated by diluted hydrochloric 

acid (36.5-38.0%, Fisher Scientific) until pH decreased back to 7. Finally, CaCl2 was added until its 

concentration reached 1 M.   

 

2.1.4 Morphology and stability analysis 

In order to visualize the morphology of the ME and MENP, an Environmental Transmission Electron 

Microscope (Titan ETEM G2, FEI) was used at 220 kV. ME and MENP were carefully transferred on silicon 

dioxide coated carbon TEM grids (Ted Pella) and dried overnight at ambient conditions before the TEM 

imaging process. ImageJ software was used to analyze the micrographs. The average droplet sizes were 

measured based on the diameters of over 30 different droplets. The thermal stability of ME and MENP was 

also investigated using a sedimentation method. ME and MENP were placed in closed bottles at 25oC, 60oC, 

and 80 oC for seven days before examining their phase separation behavior. 

 

2.1.5 Dynamic interfacial tension and droplet size distribution 

The dynamic IFT between NAPL and different brine solutions (1 M CaCl2, ME, MENP) was measured by 

pendant drop tensiometry according to a procedure described elsewhere.8 The needle diameter was 

selected between 0.711 and 1.762 mm to ensure a Bond number close to unity. The images were captured 

every 1 min and analyzed by the Axisymmetric Drop Shape Analysis (ADSA) software. In order to evaluate 

the emulsification ability of ME and MENP, NAPL and brine solutions (50/50 vol ratio) were mixed for 5 h 

at a speed of 500 rpm. The rag layers between the NAPL and brine phases were diluted 20 times by the 



same brine solutions to enhance their transparency to light. The droplet size of the resulting emulsions was 

visualized by an inverted microscope (IX83, Olympus) and analyzed by ImageJ software. More than two 

hundred different droplets were evaluated for the droplet size analysis of each solution.  

 

2.1.6 Mineralogy and pore size distribution 

The mineralogy of Arkose sandstone was evaluated using Quantitative Evaluation of Minerals by 

Scanning Electron Microscopy (QEMSCAN 650F, FEI). The SEM images were captured at 25 kV and 6.2 nA. 

A Species Identification Protocol was used to convert the raw data to a 3.0 × 3.0 mm mineralogy map with 

a resolution of 0.73 µm per pixel. The fraction of different minerals were further analyzed quantitatively 

and then used to identify the major minerals in micro-CT images of the miniature core samples. The pore 

size distribution of the Arkose rock was evaluated using a micro-CT scanner (VERSA-XRM500, Zeiss) with a 

resolution of 1.9 µm per pixel. The x-ray source was operated at a voltage of 90 kV and a power of 6 W. 

After acquiring the micro-tomographic images of the sample, the raw data were then segmented and 

analyzed using Avizo Fire 9.4 software. 

 

2.1.7 Miniature core flooding experiments 

Microscale core flooding experiments were conducted with a miniature core flooding system 

integrated with a high-resolution X-ray micro-CT scanner (VERSA-XRM500, Zeiss). Figure S1(a) of the 

Supporting Information shows a schematic diagram of the experimental setup. One pulse-free Quizix pump 

was used to maintain the overburden pressure inside the high-pressure miniature core holder. Other two 

Quizix pumps were used to inject NAPL and brine phases separately from the bottom of the core. The 

produced liquids were received from the top of the core at the constant back pressure. The center of the 

cores, a cylindrical field of view with 4 mm in diameter and 4 mm in length, was scanned at a resolution of 



2.12 microns during the flooding tests. X-ray source exposure time and voltage were selected to reduce 

the noise and enhance the quality of the micro-tomographic images. 

To examine the pore-scale displacement mechanisms during ME and MENP flooding, two miniature 

Arkose cores were used and flooded by ME and MENP, separately. Figure S1(b) of the Supporting 

Information shows a schematic of the experimental procedure applied for each flooding test. For each set 

of experiment, the Arkose core was first placed in a miniature core holder with a confining pressure of 200 

psi.  Afterward, a location of interest in the middle of the core was scanned at a resolution of 2.12 µm per 

voxel to generate reference images. After injecting CO2 into the flooding system for one hour, the tubings 

and the core were vacuumed for 24 hours and then saturated with brine. Several pore volumes of brine 

were subsequently injected at 200 psi to dissolve all the trapped CO2 in the brine phase.  Next, NAPL was 

injected at a flow rate of 0.001 cc/min to establish the initial brine saturation. After aging the core 

dynamically with an oil flow rate of 0.0002cc/min at 60 oC for seven days, water flooding was conducted 

followed by ME or MENP flooding at the same back pressure and a flow rate of 0.01 cc/min. The back 

pressure and confining pressure were maintained at 200 psi and 400 psi, respectively, for each flooding 

tests. The same location of interest was scanned at the end of each flooding, i.e., primary drainage, water 

flooding, ME flooding, and MENP flooding.  

 

2.1.8 Data acquisition and image analysis 

In order to examine the microscale displacement mechanisms that control fluid flow through porous 

media, the tomography images acquired by the micro-CT scanner were then reconstructed to generate 

pore maps and fluid occupancy maps using Avizo Fire 9.4 software.56 During data processing, the raw data 

were first smoothened to reduce the noises using the non-local means filter. 57 The reference images of 

the dry core sample were then segmented into pore maps, which presented the pore topology of the 

Arkose rock. Each wet image set acquired after primary drainage, water flooding, and chemical flooding 



was manually registered to the reference image set pixel-by-pixel. After eliminating the grains from the wet 

images, the wet image sets were segmented into the brine and NAPL phases to obtain fluid occupancy 

maps by applying the histogram threshold method. The fluid occupancy maps were then used directly to 

measure the in-situ contact angles. For each mineral, in-situ contact angles were evaluated with over forty 

NAPL droplets in different locations of the core. The selected droplets were examined in ten consecutive 

slides to identify the NAPL/brine/mineral contact line. The slice-averaged saturations of brine and size 

distributions of NAPL clusters were analyzed using statistical analysis methods. 

 

3. RESULTS 

 

3.1    Rock characterization 

Arkose sandstone is a heterogeneous rock with respect to mineralogy and pore topology. It consists of 

58.7% quartz, 27.6% carbonate (calcite and dolomite), 7.72% feldspar and a small fraction of other minerals 

such as albite, illite, pyrite, etc., as shown in Figure 1 and listed in Table S1 of the Supporting Information. 

The thin section analysis of this rock indicates that dolomite is mainly present in the form of microporous 

cement. Figure 1 also displays the micro-CT image of Arkose from which pore topology is determined. The 

pore size distribution has two peaks at about 45 µm and 95 µm. This indicates that the rock has narrow 

throats and relatively larger pores, which makes it easier to trap NAPL. To understand whether the scanned 

field of view (FOV) is within porosity based representative elementary volume (REV), the porosities of 

cubical sub-volumes with various lengths from 0.1 to 2.3 mm were calculated in Figure S2. The porosity 

varied significantly until the cubical sub-volume lengths were large than 1.2 mm. Therefore, the porosity 

estimated within the FOV can represent the overall values of the core sample. 

 

 

 



3.2    Microemulsion phase behavior 

The pseudo-ternary phase diagram in Figure S3 of the Supporting Information illustrates the 

preparation history and phase behaviors of MEs. Surfactant triton, maltoside and alcohol were mixed at a 

fixed weight ratio of 2/2/0.8 to form Smix. D-limonene was then added at different weight ratios (1/9 to 9/1) 

and the phase diagram was obtained by titrating these mixtures with brine at different concentrations (10% 

to 90%). In the figure, the dashed arrow indicates the path of microemulsion dilution in brine until the 0.33 

wt% surfactant concentrations were reached. We found that triton, maltoside, d-limonene, brine, and 2-

propanol blended at a specific weight ratio of 2/2/1/1/0.8 provided stable and transparent MEs over a 

period of 6 months at ambient conditions. When Smix to d-limonene ratio was lower than 3/7 (area below 

the red dashed line), milky white oil-in-water (o/w) emulsions formed with increasing water content. In 

contrast, when Smix to d-limonene ratio was higher than 3/7 (area above the red dashed line), transparent 

MEs were obtained. The high concentration of Smix contributed to stronger emulsification capability, which 

promoted the formation of MEs.  

 

3.3    TEM micrographs and thermal stability  

TEM micrographs of the nanofluids are provided in Figure 2 where the morphology of microemulsions 

and nanoparticles can be visualized. The average sizes of d-limonene droplets in ME and MENP were 85 

nm and 71 nm, respectively. Beside surfactant molecules, a large number of small NPs (seen as dark dots) 

adsorbed at d-limonene/water interfaces with an average diameter of 3.2 nm. This is because d-limonene 

droplets acted as nano-reactors for the sol-gel reaction between water and oil-soluble tetraethyl 

orthosilicate.58,59 The two precursors reacted at the interface upon contact to form SiO2 NP. After their in-

situ synthesis, the NPs preferred to stay at the oil/water interface and formed a steric barrier to droplet 

coalescence.29 The stability of nanofluids at various temperatures was also examined using the 

sedimentation method described in the Methods section (Figure 3). Both ME and MENP remained 



transparent and stable at 25 oC and 60 oC for seven days. However, ME started to form larger oil droplets 

at 80 oC due to the coalescence of natural oil droplets and consequently became cloudy. MENP, in contrast, 

was still stable and transparent thanks to the steric barrier provided by NPs. 

 

3.4    Dynamic interfacial tension and drop size distribution 

The effect of nanofluids on the dynamic IFT between NAPL and brine was examined at 200 psi and 60 

oC. Without any chemical additive, the IFT was about 21.1 mN/m after 200 min. It sharply decreased to 0.79 

mN/m after the addition of ME (Figure 4). The amphiphilic structure of surfactants in ME made it 

energetically favorable to form a surfactant layer at the NAPL/water interface. D-limonene molecules acted 

as solvent for NAPL,17,60 whereas 2-propanol was able to partition between NAPL and brine phases, change 

the polarity, and consequently decrease IFT.61 The IFT between brine and NAPL was further reduced to 0.6 

mN/m in the presence of nanoparticles. The mixture exhibited a faster diffusion rate to the interface, 

resulting in sharper IFT reduction with lower equilibrium values.62  

Figure 5 shows the size distribution of NAPL droplets measured by optical microscopy with a maximum 

error of 10%. The droplets were extracted from the diluted rug layers according to the procedures 

described in Section 2.2.3. In ME, NAPL droplets had a bimodal distribution with two peaks at about 20 µm 

and 135 µm, respectively. The addition of MENP could significantly reduce the size of NAPL droplets (D=19 

µm) and make them less polydisperse, in agreement with previous work.38 The smaller droplet sizes 

provided larger interfacial surface areas where NPs and surfactants interacted to form rigid layers that 

constitute a mechanical barriers against coalescence.20–23  

 

3.5    In-situ contact angle 

During the dynamic aging process, surface-active NAPL molecules adsorbed on the pore walls, altering 

their wettability from water-wet to neutral or NAPL-wet.50,63 Since wettability depends on rock mineralogy, 



it will vary at the  pore-scale in heterogeneous rocks. Figure 6 reveals that the wettability of quartz was 

altered to weakly NAPL-wet with an average in-situ CA of 112o. The contact angle distribution of NAPL 

droplets spanned over a relatively wide range of values (i.e., from 75o to 155o). This indicated that a small 

fraction of the pore surfaces was neutral-wet while a larger fraction became NAPL-wet. In contrast, all 

carbonate mineral surfaces were altered to NAPL-wet with an average in-situ CA of 139o. This could be 

explained by the formation of strong chemical bonds between carbonate surfaces and carboxylate groups 

of NAPL molecules, which contributed to a larger amount of NAPL adsorption.  

Figure 6(b) reveals that the addition of ME into the brine phase could reverse the wettability of quartz 

and carbonate surfaces from NAPL-wet back to water-wet state with an average contact angle of 55 o and 

70o, respectively. The presence of nanoparticles in ME further reduced these angles to 51o and 56o and 

provided narrower distributions especially in carbonates (Figure 6(c)). A close examination of the micro-CT 

images in Figure 7 indicates that MENP could solubilize more NAPL from dolomite cement than ME. These 

rough surfaces are usually difficult to access due to their microporous nature.  

 

3.6    Primary drainage 

The water saturation profiles in the FOV at the end of each flooding cycle are shown in Figure 8. The 

NAPL (i.e., crude oil) was injected into the 100% water-saturated core samples until the average initial 

water saturation of 22.1% and 22.5% was established in two Arkose core samples. The average saturation 

was calculated from about 2,000 slides in the FOV. The initial water saturation was comparable across the 

first core, which indicated that the pore topology and mineralogy were consistent in different spots in the 

first core sample. The slight fluctuation of Sw in the second core may be due to variations in rock properties 

across the porous medium. The mineral surfaces of Arkose sandstone were initially water-wet. Therefore, 

the pore-scale piston-like displacements started from the larger pores with smaller threshold capillary 

pressures and then gradually moved into smaller capillary elements. Figure 9 shows two- and three-



dimensional images of the pore spaces at the end of primary drainage. The NAPL phase (in red) occupied 

the center of large pores. In contrast, most of the brine phase remained in small pores or corners of the 

pores.  

 

3.7    Water flooding 

After dynamic aging with NAPL at 0.0002 cc/min and 60 oC for seven days, the cores were flooded with 

brine as a secondary recovery method. During this process, brine displaced NAPL by piston-like and pore-

body filling mechanism, and snap-off was less favorable at pore-scale due to the non-water wetting 

preference of the medium.64 Figure 8 indicates that the water saturation reached 42% after water flooding. 

The large fraction of NAPL left in the rock is due to the low capillary number of the flow process and negative 

threshold capillary pressure in the rock. Note that a brine flow rate of 0.01 cc/min (capillary number = 3.5 

x 10-7) was applied to ensure that the flow was under capillary-dominated flow regime. Since the viscous 

pressure gradient was negligible, the sequence of pore-scale displacement was dominated by the threshold 

capillary pressure of each element, which is a function of wettability and pore radius. After aging, quartz 

and carbonate grains were mostly NAPL-wet. Therefore, the brine pressure needed to first overcome the 

negative threshold capillary pressure of each pore then fill the elements through piston-like displacement. 

The drainage process started from the larger pores with smaller threshold capillary pressures and then 

occurred in smaller ones. This displacement order was confirmed in Figure 9. The micro-CT images in this 

figure indicate that water could only occupy the center of large pores and bypassed small ones that 

required a greater pressure to invade. To further examine the amount of NAPL removal from various pore 

sizes, the volume fraction of residual NAPL was quantified in Figure 10 as a function of pore radius. Medium-

sized pores with radii about 100 µm had the highest contribution to NAPL removal after water flooding. 

This is because the medium-sized pores constituted the largest fraction of the total pore volume (Figure 1), 



and therefore contained most of the NAPL. They were also easier to invade than smaller pores due to their 

favorable threshold capillary pressure. 

 

3.8    ME flooding 

After the remaining NAPL saturation reached equilibrium at 45.1% in the first Arkose core, ME was 

injected at the same flow rate of 0.01 cc/min until the flow reached steady state condition. Figure 8 shows 

that the water saturation was further increased to 65.1% upon introduction of ME. In other words, ME 

flooding removed an additional 20% of NAPL after water flooding. This increase in NAPL recovery was driven 

by IFT reduction, wettability alteration, and emulsification capability of ME, in agreement with previous 

work.9 The sharp decline of IFT from 21.1 to 0.79 mN/m (Figure 4) promoted the formation of very small 

NAPL droplets (Figure 5) that could easily flow through the rock. The addition of ME into the brine also 

reversed the wettability towards water-wet state (Figure 6) resulting in positive threshold capillary 

pressures, which made it energetically favorable to mobilize NAPL. Figure 9 confirms that ME flooding could 

efficiently mobilize and solubilize more NAPL, especially in sharp corners of NAPL-wet pores. However, 

most of these effects occurred in medium (50-130 µm) and large (130-200 µm) pores where the average 

contact angle decreased by up to 75o (Figure 10(a,c)). 

 

3.9    MENP flooding 

MENP was injected into the second Arkose core at 0.01 cc/min after water flooding to examine the 

impact of nanoparticles on fluid displacement. Figure 8 shows that an additional 34.3% of NAPL was 

produced by using MENP compared to brine alone, which was also 14.3% higher than the amount of NAPL 

removed by ME. The addition of MENP into the brine contributed to a faster reduction in the threshold 

capillary pressure upon contact with NAPL (Figures 4,5), resulting in a higher amount of NAPL 

mobilization.65 The superior ability of MENP to restore the wettability of surfaces (especially in carbonates) 



also led to a higher solubilization propensity (Figures 6,7). Figure 9 reveals that MENP was able to remove 

NAPL from small capillary elements (small pores, corners of large pores, micropores in cement, and pores 

with complex geometry). This observation was quantitatively confirmed in Figure 10(b) where the fraction 

of NAPL removal by MENP occurred in smaller pores, compared to water and ME floodings. The unique 

ability of MENP to penetrate these pores was also reflected in Figure 10(d) where CA was constant (about 

53o) regardless of pore size. This behavior may have affected the sequence of displacement within the 

medium. Instead of invading large/medium pores only, MENP helped deliver surfactant molecules into both 

large/medium and small pores, modifying the displacement order and contributing to a stronger wettability 

alteration in micropores with large surface area such as carbonate cements.66  

 

3.10    Residual NAPL cluster analysis 

The effect of ME and MENP flooding on NAPL cluster sizes was further investigated by plotting the 

cluster size distribution curves of the residual NAPL at the end of each flooding (Figure 11). Although ME 

could effectively emulsify NAPLs and reduce their average sizes, there was still a portion of droplets with 

radii higher than 50 m that could not penetrate small pores and narrow throats. This portion was 

significantly reduced with MENP and corroborates our previous findings (Figures 8-10). The presence of 

nanoparticles enhanced the steric stabilization of NAPL clusters leading to the formation of smaller ones. 

To further investigate the cluster size distribution of NAPL, the cumulative size distribution M(s) was plotted 

against cluster volume as shown in Figure 12. There is a power-law relationship between number of clusters 

N(s) and cluster size (s) in a capillary-dominated flow regime (Equation 2).67,68 

                                                                                                                                       (2) 

The distribution exponent τ can be calculated based on the slope of a linear fit to log (s) versus log M(s) 

plots.67 Very small and large clusters are truncated from the data set. The τ for the water flooding (2.13) 

M(s) = ∑ 𝑠𝑁(𝑠)∞𝑠 ~𝑠−τ+2 



was close to that predicted by the percolation theory (2.19). 69 After introduction of ME and MENP, the τ 

value was increased to 2.33 and 2.55, respectively. This indicates that both ME and MENP could form 

smaller oil globules in the porous medium due to the promoted mobilization and solubilization capability 

of these additives. This behavior was further confirmed in Figure 13 where the surface area of each cluster 

was plotted against its volume. The power-law correlation between the surface area and volume was 

examined to provide more insight onto the impact of MENP on NAPL cluster size. The calculated p for water 

flooding is 0.78, which is consistent with previous studies67 and smaller than the value predicted by the 

percolation theory.70 However, after ME and MENP flooding, the p became higher with values of 0.81 and 

0.84, respectively. This indicated that the corresponding surface area became larger at a given cluster 

volume after introduction of ME and MENP, which could benefit the mass transfer between NAPL and 

chemical solutions, enhance NAPL displacement and consequently reduce the residual NAPL saturation.71   

 

4. CONCLUSIONS 

The impact of microemulsions stabilized by surfactants and in-situ synthesized nanoparticles on NAPL 

displacement in a heterogeneous aquifer rock was examined using microtomography integrated with 

miniature core flooding, and compared to results with brine and microemulsions stabilized by surfactants 

alone. A systematic analysis of the IFT values, drop size distribution, in-situ contact angle distribution, 

saturation profiles, fluid occupancy, and cluster size distribution after each flooding was used to explain the 

NAPL displacement mechanisms observed inside the rock. Compared to ME alone, nanoparticles in MENP 

could synergistically interact with surfactant molecules to adsorb at oil/brine interfaces and form stable 

pickering emulsions. The rapid drop in IFT contributed to a faster reduction in the threshold capillary 

pressure upon contact with NAPL, resulting in the formation of smaller droplets that were easily mobilized. 

The latter were also able to penetrate small capillary elements of the rock (such as pore corners, pores with 

complex geometries, and microporous carbonate cements) that were not fully accessible to ME and restore 



their wettability, thereby promoting even more NAPL solubilization. Thus, the enhanced mobilization and 

solubilization ability of MENP were the key parameters controlling the improved NAPL displacement in the 

aquifer rock. Together, they almost doubled the amount of NAPL cleanup, compared to waterflooding. The 

new formulated nanoparticle-surfactant systems are also considered suitable for enhancing oil recovery; 

particularly in heterogeneous reservoirs containing microporous carbonate cements.  
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Figure 1. Characterization of Arkose rock: (a) Mineralogy map from QEMSCAN analysis, (b) Thin section 

analysis, (c) X-ray microtomographic image, and (d) Pore size distribution from (c). 
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Figure 2. (a) Size distribution of NP, ME, and MENP, and TEM 

micrographs of (b) ME and (c) MENP with an average 

diameter of 85 nm and 71 nm, respectively. In MENP, NPs 

adsorbed at d-limonene/water interfaces have an average 

diameter of 3.2 nm. 
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Figure 3. Sedimentation test results for ME (top) and MENP (bottom) at (a) 25 oC, (b) 60 oC, and (c) 80 oC 

after seven days. Transparent and colorless ME started to become cloudy after staying at 80 oC after seven 

days. 

 

 

 

 

 

 



 

Figure 4. Dynamic interfacial tension between NAPL/ME and NAPL/MENP at 60o and 200 psi. 
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Figure 5. (a) Size distribution of NAPL droplets in diluted rag 

layer between NAPL and brine with ME and MENP. Microscopy 

images of these oil droplets in (b) ME and (c) MENP.  
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(a) Water flooding 

 

 
(b) ME flooding 

  

 
 

(c) MENP flooding 

 

 

 

Figure 6. In-situ contact angle distribution at oil/brine/minerals contact line at the end of (a) water flooding, 

(b) ME flooding, (c) MENP flooding. Examples of image analysis are given for carbonate (especially dolomite 

cement) where oil is in red, brine is in blue, and remaining colors represent different minerals in the rock.  
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Figure 7. 2D cross-sections of pore space: (a) dry sample, (b) after water flooding, and (c) after ME or MENP 

flooding. Brine and NAPL are shown in blue and red, respectively. The field of view area is about 0.55 x 0.40 

mm2.  
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Figure 8. Saturation profiles at the end of flooding processes (a) ME flooding, (b) MENP flooding.  

0

10

20

30

40

50

60

70

80

90

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

S
w

 (
%

)

Distance (mm)

Primary drainage Water flooding ME

65.1%

45.1%

22.1%

20 %

0

10

20

30

40

50

60

70

80

90

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

S
w

 (
%

)

Distance (mm)

Primary drainage Water flooding MENP

22.5%

42.0%

76.3%

34.3 %


