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Analysis of the Performance of Algorithm Configurators for
Search Heuristics with Global Mutation Operators

George T. Hall
Department of Computer Science
University of Sheffield, Sheffield, UK

ABSTRACT

Recently it has been proved that a simple algorithm configurator
called ParamRLS can efficiently identify the optimal neighbourhood
size to be used by stochastic local search to optimise two standard
benchmark problem classes. In this paper we analyse the perfor-
mance of algorithm configurators for tuning the more sophisticated
global mutation operator used in standard evolutionary algorithms,
which flips each of the n bits independently with probability y/n
and the best value for y has to be identified. We compare the perfor-
mance of configurators when the best-found fitness values within
the cutoff time « are used to compare configurations against the ac-
tual optimisation time for two standard benchmark problem classes,
RiDGE and LEADINGONEs. We rigorously prove that all algorithm
configurators that use optimisation time as performance metric
require cutoff times that are at least as large as the expected op-
timisation time to identify the optimal configuration. Matters are
considerably different if the fitness metric is used. To show this
we prove that the simple ParamRLS-F configurator can identify
the optimal mutation rates even when using cutoff times that are
considerably smaller than the expected optimisation time of the
best parameter value for both problem classes.

CCS CONCEPTS

« Theory of computation — Theory of randomized search heuris-
tics;
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1 INTRODUCTION

General purpose search heuristics, such as evolutionary algorithms,
are designed with the aim of optimising a problem given minimal
knowledge about it. Usually all that is needed is a means of repre-
senting solutions for the problem and a fitness function to compare
the quality of different candidate solutions. Whilst these algorithms
have been shown to be effective for solving a large variety of hard
optimisation problems, a common difficulty is that of choosing a
suitable algorithm for the problem at hand and setting its parameter
values such that it will have good performance. A result of this is
that it has become very common to use automated methodologies
for algorithm development [3-5, 13, 17-19, 21].

Traditionally, parameter values were chosen manually by the
user, applying the algorithm to a specific problem and subsequently
refining the choices according to the algorithm’s performance with
the tested parameters. This method, however, is time-consuming,
tedious, and error-prone. As a result automatic algorithm configu-
rators have gradually become the standard methodology used to
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tune the parameters of an algorithm for a class of problems. Popular
tuners include ParamILS, which uses iterated local search to navi-
gate the space of configurations [10]; irace, which iteratively eval-
uates many configurations concurrently, eliminates those which
statistically have worst performance, and then uses the best to
update the distribution used to generate new candidate configu-
rations [20]; and the surrogate model-based tuners SPOT [1] and
SMAC [11], which use approximations of the parameter landscape
in order to avoid many lengthy evaluations of configurations.

Despite their widespread adoption, there is a lack of understand-
ing of the behaviour and performance of algorithm configurators.
More specifically, given an algorithm and a class of problems, it is
unclear how good the parameter values returned by a given config-
urator actually are, how long the configurator should be run such
that good parameter values are identified, nor is there any rigor-
ous guidance available on how to set the configurator’s inherent
parameters.

Recently, Kleinberg et al. [14] provided preliminary answers
to these questions. They performed a worst-case runtime analy-
sis of standard algorithm configurators, in which an adversary
causes every deterministic choice to play out as poorly as possi-
ble, while observations of random variables are unbiased samples
from the underlying distribution. They proved that in this scenario
all popular configurators will perform poorly. On the other hand,
they presented a worst-case tailored algorithm called Structured
Procrastination (SP) that provably performs better in the worst-
case. Several improvements to this approach have recently been
published [15, 23, 24]. Naturally, it is unlikely that the worst-case
scenario occurs in practical applications of algorithm configurators.
In fact, Pushak and Hoos [22] recently investigated the structure of
configuration search landscapes. Their experimental analysis sug-
gests that the search landscapes are largely unimodal and convex
when tuning algorithms for well-known instance sets of a variety
of NP-hard problems including SAT, MIP and TSP. Thus, they pro-
vided evidence that generally algorithm configuration landscapes
are much more benign for popular gradient-based configurators
than in the worst-case scenario. Thus, it is important to rigorously
evaluate for which applications a given algorithm configurator will
be efficient and for which it will perform poorly.

The only available time complexity analysis deriving the time
required by an algorithm configurator to identify the optimal pa-
rameters for an algorithm for specific problem classes is an earlier
publication of ours [7]. We proved that a simplified version of
ParamlILS, called ParamRLS, can efficiently identify the optimal
neighbourhood size k of a randomised local search algorithm RLS;
for two standard benchmark problem classes. An important insight
gained from our earlier analysis is that, if the best identified fitness
within some cutoff time is used for configuration comparisons, then



much smaller cutoff times than the actual optimisation time of the
optimal configurations may be used by ParamRLS to identify the
optimal parameter. On the other hand, if the optimisation time is
used for the comparisons, then the cutoff time has to be much larger
i.e., at least the expected runtime of the optimal parameter setting.

In order to gain a deeper understanding of the performance of
algorithm configurators, in this paper we consider the problem of
tuning the mutation rate of the global mutation operator that is
commonly used in standard evolutionary algorithms. The operator,
called standard bit mutation (SBM), flips each bit of a bit string of
length n with probability y/n, and y is the parameter value to be
tuned. This operator is considerably more sophisticated than the
local mutations used by the RLS algorithm considered in our earlier
work, since an arbitrary number of bits between 0 and n may be
flipped by the operator in each mutation operation. Furthermore,
the nature of the parameter to be tuned yields a significantly more
complex parameter landscape. While the parameter of RLS; may
only take discrete values, the search space for standard bit muta-
tion’s parameter is continuous as the parameter y may take any
real value. Small differences in y (e. g. 1/n vs. 1.1/n) are hardly visi-
ble as in most mutations the number of flipped bits is identical. In
stark contrast, RLS; behaves very differently when always flipping,
say, k = 1 bit or always flipping k = 2 bits. Hence, identifying
the optimal standard bit mutation rate is much harder than tuning
RLSg as in our earlier work.

We embed the SBM operator into a simple evolutionary algo-
rithm, the (1+1) EA, and consider the problem of identifying its
optimal parameter value for two benchmark function classes: RIDGE
and LEADINGONEs. The first function class is chosen because for
each instance the optimal mutation rate for SBM is always 1/n
independent of the position of the current solution in the search
space. This characteristic is ideal for a first time complexity analysis
as it should be easy for the configurator to identify the optimal
parameter value and, at the same time, it keeps the analysis simple.
The second function class is more challenging because the best
mutation rate decreases as the algorithm approaches the optimum
and the configurator has to identify that the best compromise is a
mutation rate of ~ 1.59/n which minimises the overall expected
runtime of the (1+1) EA [2].

Our aim is to characterise the impact of the performance metric
on the cutoff time required for algorithm configurators to identify
the optimal parameter value of the (1+1) EA for the considered
problem classes. As in our publication considering RLSg, in this pa-
per we consider two performance metrics: Optimisation time, where
the winner of a comparison is the configuration which reaches the
optimum in the fewest iterations; and Best fitness where the winner
of a comparison of two configurations is the configuration which
achieves the highest fitness value within the cutoff time «.

We prove that, with overwhelming probability (w.o.p.)!, any
algorithm configurator that uses Optimisation time as performance
metric requires a cutoff time that is at least as large as the opti-
misation time of the optimal parameter value for both RIpGE and
LEADINGONES. For smaller cutoff times it returns a parameter value

!We define an event A as occurring with overwhelming probability if and only if
Pr(A) =1 - exp(—Q(n%)), for some positive constant . Note that, by the union
bound, the intersection of polynomially many such events still has an overwhelming
probability.

chosen uniformly at random from the parameter space w. o. p. un-
less the configurator is inherently biased towards some areas of
the search space. For the simple RIDGE and LEADINGONES problem
classes, a random parameter value is returned w. o. p. respectively
for cutoff times of ¥ < (1 — £)en? and k < 0.772075n2. Matters
change considerably for algorithm configurators that use Best fit-
ness as performance metric. To prove this it suffices to consider
the simple randomized local search ParamRLS-F algorithm anal-
ysed in our earlier work which uses Best fitness as performance
metric. ParamRLS-F efficiently returns the optimal parameter value
x =1 of the (1+1) EA for RIDGE for any cutoff time that is at least
linear in the problem size. Notice that the configurator is efficient
for cutoff times that are a linear factor smaller than the expected
optimisation time of the (1+1) EA with the optimal 1/n mutation
rate. For LEADINGONES, we prove that, w. o. p., ParamRLS-F is able
to find the optimal parameter setting of y = 1.6 (where y is allowed
to take values from the set {0.1,0.2,...,2.9,3.0}) for any cutoff
time ¥ > 0.721118n%. Note that this is ~ 0.05n? smaller than the
expected optimisation time for any configuration of the (1+1) EA
for LEADINGONEs [2]. For over 99% of cutoff times in the range
between 0.000001n2 and 0.720843n2, we prove that ParamRLS-F
returns the optimal parameter setting for the cutoff time, w. 0. p.
That is, the smaller the cutoff time, the higher the optimal muta-
tion rate. Some proofs are omitted due to space restrictions?. For
both RIDGE and LEADINGONES note that, while the formal proof
is provided for the ParamRLS-F tuner, the analysis implies that
all algorithm configurators capable of hillclimbing are efficient at
tuning the (1+1) EA for the same cutoff time values if they use Best
fitness as performance metric.

2 PRELIMINARIES

We first give an overview of the algorithm configuration problem.
This is a formalisation of the problem which all parameter tuners
attempt to address. We then outline the three main subjects of
analysis in this work. We first present the algorithm configurator.
We then outline the target algorithm (the algorithm which we
are analysing the ability of ParamRLS to tune) before giving an
overview of the two benchmark target function classes which we
consider.

2.1 The Algorithm Configuration Problem

The Algorithm Configuration Problem (ACP) is that of choosing
the parameters for a target algorithm A to optimise its performance
across a class of problems II. Let us denote the set of all configura-
tions of A as © and algorithm A with its parameters set according
to some configuration 6 € © as A(H). Then the Algorithm Config-
uration Problem is the task of identifying a configuration 6" such
that

0% e i t(0
arg]glelgcos (9)

where cost(6) is some measure of the cost of running A(6) on the
problem class II.

We must therefore define the measure cost (), which depends
on several factors: The size of the cutoff time k (the number of
iterations in a single run of a comparison); The number of runs

2 A full version of this paper is available on arXiv [8].



per comparison r (the number of times we evaluate two configu-
rations in a single comparison); Which metric is used to evaluate
the performance of a configuration on a problem instance; How to
aggregate performance measures over multiple runs; How many
instances (and which ones) to include in the training set.

In this work, we address the configurator’s parameters as follows.
All results in this work hold for any polynomial number of runs per
comparison (i.e. the positive results hold even for just one run and
the negative results hold even for a large polynomial number of
runs). We consider two performance metrics. The Optimisation time
metric quantifies the performance of a configuration by the time
taken to reach the optimum. A penalisation constant multiplied by
the cutoff time « is returned if the configuration does not reach
the optimum within « iterations (called PAR10 for penalisation
constant of 10). The Best fitness performance metric considers the
highest fitness value achieved within the cutoff time. The definition
of the training set and the method of aggregation are both irrele-
vant within this paper, since performance on the single problem
instances we consider here generalises to any other instance of the
problem class.

Let T be the number of configuration comparisons carried out
before the tuner returns the optimal configuration 6* w. o.p. Then
the total required tuning budget is 8 = 2- T - |II| - k - r. In this work,
we want to estimate how the two performance metrics impact the
cutoff time k and the total number of comparisons T required for a
simple algorithm configurator ParamRLS to tune the (1+1) EA for
two benchmark problem classes.

2.2 The Configurator: ParamRLS

We follow our earlier work in analysing a simplified version of the
popular ParamlILS parameter tuner, called ParamRLS [7].

At the heart of ParamRLS is the active parameter. ParamRLS
initialises the active parameter uniformly at random. It then re-
peatedly mutates it and accepts the offspring (that is, updates the
active parameter to this new value) if it performs at least as well
as the active parameter according to a routine eval. Each call to
eval is called a comparison and the runtime T is defined as the num-
ber of comparisons until the optimal parameter value is identified.
The high-level pseudocode for ParamRLS is given in Algorithm 1.
The eval routine takes as arguments both configurations to be
compared, as well as the cutoff time x and number of runs r. Both
configurations are then executed for r runs (each of length k) where
at the end of each run the winner of the run is decided according to
one of two performance metrics. Under the Best fitness metric, the
winner of a run is the configuration which has the highest fitness
value after k iterations. If both configurations have the same fitness
value at time k, then the winner is the one that found it first. The
winner of the overall comparison is the configuration which won
the most runs. Ties are broken uniformly at random. The variant
of ParamRLS using this performance metric is called ParamRLS-F,
and its pseudocode is given in Algorithm 2. Under the Optimisa-
tion time metric, the optimisation times of both comparisons are
summed for r runs. If in a run a configuration fails to reach the
optimum within « iterations then its optimisation time is taken
to be p - k, where p is a penalty constant. If there is a tie after
all runs have been completed, the winner is decided uniformly at

Algorithm 1 ParamRLS (A, ©,1L, k, r). Recreated from [7] with
minor typographical modifications.

1: 0 «initial parameter value chosen uniformly at random
2: while termination condition not satisfied do

3 0’ «— mutate(d)

4 0« eval(A,0,0, m,xr)

5

: return 0

random. This measure is called Penalised Average Runtime (PAR).
It is commonly used in configurators such as ParamILS. The variant
of ParamRLS using this performance metric is called ParamRLS-T,
and its pseudocode is given in Algorithm 3.

As in [7], the mutate routine in ParamRLS alters the current
configuration according to some local search operator +{1}. This
operator simply increases or decreases the current parameter value
by 1/d, both with probability 0.5. If the new value for the parameter
is 0 or ¢ + (1/d) then this new configuration loses any comparison
with probability 1 (that is, it is rejected with certainty).

Since we consider a continuously-valued parameter, y, we dis-
cretise the parameter space (the search space of all configurations)
as this is also the method used to deal with continuous param-
eters in ParamlILS [10]. We do so using a discretisation factor d.
We define the parameter space as consisting of all numbers z/d
where z € {1,2,3,...,¢ - (d = 2),¢ - (d — 1), ¢ - d}, for an inte-
ger ¢. For example, if d = 4 then the possible values for y will be
0.25,0.5,0.75,1,1.25,1.5,1.75,2, ..., ¢ — 0.25, . We do not consider
x = 0 since this means that bits are never flipped in the target algo-
rithm. We call the fitness landscape induced by the target algorithm
on the target function under a performance metric the configuration
landscape. We say that a configuration landscape is unimodal if and
only if there is only one optimal configuration and, for all pairs of
neighbouring configurations (two configurations are neighbours
if one can be reached from the other in a single mutation using
the local search operator), the configuration closer to the optimum
wins a comparison w. o. p.

We call a tuner blind if there is an event A that occurs w. 0. p.
and, conditional on A, the tuner returns a configuration chosen
according to a distribution which would be generated if all config-
urations had the same performance. For ParamRLS-T this implies
that the configuration will be chosen uniformly at random, since
if there is no information to separate two configurations then the
winner is chosen uniformly at random. Only if a tuner is inherently
biased will the outcome be non-uniformly distributed.

2.3 The Target Algorithm: The (1+1) EA

In each iteration, the (1+1), EA, shown in Algorithm 4, creates a
new solution by flipping each bit in the bit string of the current
solution independently with probability y/n. The offspring is ac-
cepted if its fitness is at least that of its parent. We analyse the
number of comparisons for ParamRLS to identify the optimal value
for y (and thus the optimal mutation rate) for a given problem class.
In this work we assume that y is constant.



Algorithm 2 The eval-F(A, 0, ¢’, z, k, r) subroutine in ParamRLS-
F. Recreated from [7] with minor typographical modifications.

1: Wins « 0; Wins’ « 0 {count number of wins for 6 and 6’}
2 R0

3. while R < r do

4 ImprTime < 0

s:  ImprTime’ « 0

6:  Fitness « A(0) fitness after « iterations;

7. Fitness’ «— A(0’) fitness after k iterations;

8. ImprTime «time of last improvement of A(0)
9:  ImprTime’ «time of last improvement of A(0")
10:  if Fitness > Fitness’ then

11: Wins «— Wins +1

12:  else if Fitness’ > Fitness then

13: Wins’ « Wins’ + 1

14:  else

15: if ImprTime < ImprTime’ then

16: Wins « Wins+1

17: else if ImprTime’ < ImprTime then

18: Wins" « Wins’ +1

19: R—R+1

20: if Wins > Wins’ then return 0

21: else if Wins’ > Wins then return 0’
22: else return a uniform choice of 6 or 6’

Algorithm 3 The eval-T(A, 0, ¢’, m, k, r) subroutine in ParamRLS-
T. Recreated from [7] with minor typographical modifications.

1: Time « 0; Time’ « 0 {count optimisation times for A(6) and
A0}

R0

: while R < r do

Time « Time + CapOptTime(A(0), k, p)

Time’ « Time’ + CapOptTime(A(6’), k, p)

R—R+1

. if Time < Time’ then return 0

. else if Time’ < Time then return 6’

. else return a uniform choice of 0 or 6’

Nl I N R A S O ]

Algorithm 4 The (1+1) EA maximising a function f

1: initialise x {according to initialisation scheme}

2: while termination criterion not met do

3 x’ « x with each bit flipped with probability y/n
4 if f(x’) > f(x) then x « x’

2.4 Problem Classes: RIDGE and LEADINGONES

We analyse the ability of ParamRLS to configure the (1+1) EA for
two standard benchmark problem classes: RIDGE and LEADINGONES.
Despite their similar definitions, the (1+1) EA exhibits substantially
different behaviour when optimising them.

The most commonly analysed instance of the RIDGE problem
class is the function
n+ |x|ongs, if x in form 1£0™

RIDGE(x) = {

n — |x|ongs, otherwise

where |x|ongs is the number of ones in the bit string x.

The other instances of the problem class are provided by its black
box definition, given by [6] and used by [7], which in a nutshell takes
the XOR with another bit string a € {0, 1}": RIDGE, := RIDGE(x; &
aj ...xXn®ay). We thus analyse only the problem instance RIDGEq~,
and observe that the best parameter value for this problem instance
will be optimal for all 2" instances of the problem class.

Following previous work [7, 12], we assume that the (1+1) EA is
initialised to 0". This means that the algorithm builds a string of
consecutive 1 bits followed by a string of consecutive 0 bits, and
the optimum is the 17 bit string.

For the (1+1) EA, it is optimal to set y = 1 to achieve the
smallest expected optimisation time for RIDGe. We prove this in
Lemma 3.1(ii). The RIDGE problem class is a natural one to analyse
initially since it is always best to use a mutation rate of 1/n. This
characteristic simplifies the analysis.

The second problem class is LEADINGONES, or ‘LO’ for short. In
the problem instance we consider, the fitness value of a bit string is
equal to the number of consecutive 1 bits at the beginning of the
string, LO(x) = X1, 3.:1 xj. This differs from RIDGE since RIDGE
requires the bit string always be in the form 1?0}, whereas LO
places no such importance on the bits following the first 0.

Droste et al. define the black box optimisation class of LO as the
class consisting of problem instances LO, (x), where this is taken to
be the length of the longest prefix of x in which all bits match the
prefix of a [6]. Naturally, the best mutation rate for one instance
will also be optimal for all the other instances in the problem class.

Bottcher et al. proved that setting y = 1.59.. .. leads to the short-
est expected optimisation time for the (1+1) EA for the LO problem
class for any static mutation rate [2]. LO presents a more complex
problem for which to tune than that presented by RIDGE, since it is
beneficial to use a higher mutation rate earlier in the optimisation
process. Intuitively, this is because it is necessary to preserve the
current prefix of leading ones in order to make progress, thus as
the prefix grows, higher mutation rates are more likely to flip bits
within it. Hence it is challenging to determine the behaviour of the
tuner for different cutoff times.

3 TUNING THE (1+1) EA FOR RIDGE

Before we can prove any results on the performance of ParamRLS
when tuning the (1+1) EA for RIDGE, it is first necessary to analyse
the performance of the (1+1) EA on this function. We therefore
begin this section by deriving a lemma which tells us several facts
about its behaviour. We first bound the drift (the change of the
fitness of the current individual) in one generation of the (1+1) EA.
We denote the drift of the (1+1),, EA on RIDGE by A, and define
it as Ay (x;) := RIDGE(xt+1) — RIDGE(x¢). The following lemma
summarises key statements about the performance of the (1+1),, EA
on RIDGE.

LEmMA 3.1. Consider the (1+1) EA optimising RIDGE. Assume that
it was initialised to 0". Then the following is true:



(i) The expected drift of the (1+1),, EA, E[A (x¢) | xt], is bounded

as follows:
n-1
X (1= ) < Bl | 2 17

IN

n—1 1
E[A,(x;) | %] 1(1—1) +o(7)
n n n
(ii) Setting y = 1 yields the smallest expected optimisation time
for any constant y, which is at most en?, assuming n is large
enough.

The first statement follows as the probability of improving the
fitness of x; # 1" by 1is y/n- (1 — y/n)" ! as it is necessary and
sufficient to flip the first 0-bit and not to flip the other n — 1 bits.
Larger jumps have an exponentially decaying probability, reflected
in the O(1/n?) term. For the second statement we use additive
drift theory [9, 16], which in a nutshell derives (bounds on) first
hitting times from (bounds on) the expected drift and the initial
distance from the target state. Hence the expected optimisation time
is minimised by the parameter that maximises the drift. The second
)nfl

statement follows from the first one since® (1 - y/n ~e X

and the function ye X is maximised for y = 1.

3.1 Analysis of ParamRLS-F Tuning for RIDGE

We now prove that, for any discretisation factor d, ParamRLS-F is
able to configure the (1+1) EA for RIDGE. In particular, we show
that, given any cutoff time x > ¢’n, for a sufficiently large constant
¢’ > 0, the expected number of comparisons in ParamRLS-F before
the active parameter is set to y = 1 is at most 6d¢. Moreover,
after dn comparisons with cutoff time k > nl*¢, for any positive
constant ¢, ParamRLS-F returns the optimal configuration w. o. p.

THEOREM 3.2. Consider ParamRLS-F tuning the (1+1) EA for RIDGE,
where the target algorithm is initialised to 0". Assume that d, $ =
©(1) andk € poly(n). Then:

o Using cutoff times k > c’n for a sufficiently large constant
¢’ > 0, the expected number of comparisons in ParamRLS-F
before the active parameter value has been set to y = 1 is at
most 6d¢.

e Using cutoff times x > nl*¢, for some constant ¢ > 0, if
ParamRLS-F runs for dn® comparisons then it returns the pa-
rameter value y = 1 with overwhelming probability.

We prove the above theorem by bounding the probability that
one configuration has a higher fitness than another after « itera-
tions. For large enough cutoff times, in a comparison between two
configurations which either both have y < 1 or both have y > 1,
the configuration with y closer to 1 wins.

LEMMA 3.3. Assume that the (1+1), EA and the (1+1), EA, with
a and b two positive constants such that ae™® > be_b, are both
initialised to 0". Then with probability at least

1-3exp(—Q(x/n)) — kexp(—Q(n))

3We use an ~ symbol for illustration purposes only. Proofs use the double inequality
(1= x/m)" < e < (1= x/m)"X.

the (1+1); EA wins in a comparison in ParamRLS-F against the
(1+1), EA on RiDGE with cutoff time k. Note that if a and b sat-
isfy either 0 < b < a < 1orl < a < b < ¢ then the condition

ae~® > be~? is implied.

The lemma follows from showing, through the use of appropriate
Chernoff bounds, that either the (1+1), EA is ahead of the (1+1);, EA
after k iterations or that the (1+1), EA finds the optimum sooner
than the (1+1), EA.

Now we are able to prove Theorem 3.2.

Proor or THEOREM 3.2. Given a comparison of a pair of config-
urations, let us call the configuration with a value of y closer to 1
the ‘better’ configuration, and the other configuration the ‘worse’
configuration.

By Lemma 3.3, using k > ¢’n, the probability that the better
configuration wins a comparison with cutoff time « is at least
1 —exp(—Q(x/n)) — kexp(—Q(n)) > 2/3, the inequality holding
since we can choose the constant ¢’ > 0 appropriately and k €
poly(n). The current configuration is compared against a better
one with probability at least 1/2, and it is compared against a
worse one with probability at most 1/2. Hence the distance to
the optimal parameter value decreases in expectation by at least
1/d-(1/2-2/3-1/2-1/3) = 1/(6d). The initial distance is at most
¢. By additive drift arguments (Theorem 5 in [16]), the expected
time to reach the optimal parameter value for the first time is at
most 6d¢.

For the second statement, we use that if k > n!*¢ then the prob-
ability of accepting a worse configuration is exponentially small.
Hence, w. 0. p., within any polynomial number of comparisons, we
never experience the event that the worse configuration wins a
comparison. This implies that max (1, ¢ —1)(d + 1) steps decreasing
the distance towards the optimal parameter are sufficient. By Cher-
noff bounds, the probability of not seeing this many steps in dn®
iterations is exponentially small. Finally, once the optimal parame-
ter is reached, it is never left w. o. p. Thus, after dn® iterations, the
optimal parameter is returned with overwhelming probability. O

Lemma 3.3 implies that any parameter tuner capable of hillclimb-
ing will return the optimal configuration w. o. p., given sufficiently
many comparisons, if it uses cutoff times of ¥ > n!*¢ and the
highest fitness value performance metric.

3.2 Analysis of Optimisation Time-Based
Comparisons When Tuning for RIDGE

While ParamRLS-F succeeds at tuning the (1+1) EA for RIDGE with
a cutoff time of k > n1*¢, we now show that all algorithm configu-
rators that use Optimisation time as performance metric fail w. o. p.
to identify the optimal configuration if the cutoff time is at most
k < (1 — ¢£)en?. Established tuners such as irace, ParamILS, and
SMAC as well as recent theory-driven approaches such as Struc-
tured Procrastination all fall into this category if Optimisation time
is used as performance metric. For such cutoff times, all configu-
rations (i.e. the target algorithm with any parameter value) fail to
find the optimum w. o. p.



LEMMA 3.4. For all constants y,e > 0, the (1+1), EA requires
more than (1 — €)en? iterations to reach the optimum of RIDGE, with
probability 1 — exp(—Q(n)).

This yields that all configurators that use the Optimisation time
performance metric are blind if the cutoff time is at most x <
(1 -¢)en?.

THEOREM 3.5. Consider any configurator using the Optimisation
time performance metric tuning the (1+1) EA for RIDGE for any posi-
tive constant ¢ and discretisation factor d. If the cutoff time for each
run is never allowed to exceed k < (1 — ¢)en?, for some constant
€ > 0, then, after any polynomial number of comparisons and runs
per comparison, the configurator is blind.

ProOF OF THEOREM 3.5. Lemma 3.4 tells us that, for cutoff times
k < (1 — e)en?, all configurations of the (1+1), EA, for every
constant choice of y, fail to reach the optimum of RipGE, with
overwhelming probability. If this happens in all comparisons, then,
since the Optimisation time metric is being used, all configurations
will have the same fitness: ¥ multiplied by the penalisation constant.
Thus, there is no attraction towards the optimal parameter value.
Therefore, with overwhelming probability, by the union bound,
the configurator will behave as if all configurations have the same
performance, and therefore it is blind. O

4 TUNING THE (1+1) EA FOR LEADINGONES

We now show that ParamRLS-F is able to find optimal parame-
ter values for the (1+1),, EA optimising LEADINGONES for almost
all quadratic cutoff times x. The analysis is considerably more
complicated than for RIDGE since the progress depends (mildly,
but significantly) on the current fitness. For a search point with
k leading ones, the probability of improving the fitness is exactly
x/n-(1— x/n)* as it is necessary and sufficient to flip the first 0-bit
while not flipping the k leading ones. This probability decreases
over the course of a run, from y/n- (1 — y/n)° = y/nfork =0to
x/n- (1= x/n)* ! ~ y/(en) for k = n — 1. This effect is similar
to that observed for the function ONEMAX in [7]. We therefore
follow our approach in that work and establish intervals that bound
the “typical” fitness at various stages of a run. This allows us to
locate the final fitness after x iterations with high precision and
w. 0. p. For almost all cutoff times, our fitness intervals reveal that
the configuration closer to the optimal one leads to a better final
fitness, w. 0. p.

Due to the increased complexity of the analysis, we focus on one
specific discretisation factor d and choice of ¢ as a proof of con-
cept. We are confident that our method generalises to any constant
discretisation factor by increasing the precision of our analytical
results (by means of the period length introduced in Lemma 4.2) in
relation to the granularity of the parameter space (given by d). We
provide a Python tool which applies our proof technique for an ar-
bitrary period length?. Therefore the user can repeatedly decrease
the period length until this tool is able to prove the desired results
for their chosen parameter space.

We choose a discretisation factor of d = 10 and ¢ = 3, which im-
plies y € {0.1,0.2,...,2.9,3.0}. The mutation rate which produces

4 Available at https:/github.com/george-hall-sheff/leading_ones_recurrences_tool.

the smallest expected optimisation time for the (1+1) EA optimis-
ing LO is = 1.59/n [2], and it is easily verified that the optimal
parameter with the chosen granularity is y = 1.6. We expect the
tuner to return y = 1.6 when the cutoff time is large enough. For
smaller cutoff times we expect the tuner to return larger values
of y, since for LO it is beneficial to flip more bits when early in the
optimisation process. We prove that, for ParamRLS-F, both of these
intuitions are correct. However, tuners using the Optimisation time
performance metric require larger cutoff times in order to identify
the optimal configuration.

4.1 Analysis of ParamRLS-F Tuning for LO

In this section we prove two results. We first prove that the pa-
rameter landscape is unimodal for over 99% of cutoff times in the
range 0.000001n2 to 0.772075n%. We then prove that the parameter
landscape is unimodal for all cutoff times of at least 0.772076n2, and
that the optimal mutation rate (and that returned by ParamRLS-F)
for these cutoff times is 1.6/n, as expected. These results imply that,
given sufficiently many comparisons, ParamRLS-F will, w. o. p., re-
turn the mutation rate with the smallest expected optimisation
time for all cutoff times of at least 0.772076n%, and for over 99% of
cutoff times in the range 0.000001n% to 0.772075n? it will return
the mutation rate which is optimal (that is, it achieves the highest
fitness) for that cutoff time.

THEOREM 4.1. Consider ParamRLS-F tuning the (1+1) EA for LO
with y € {0.1,0.2,...,2.9,3.0} (i.e. d = 10,¢ = 3). For all cutoff
times in one of the ranges listed in Table 1 and x > 0.772076n? it
holds that, for any positive constant e:

o The expected number of comparisons in ParamRLS-F before
the active parameter is set to the optimal value for the cutoff
time (see Table 1) is at most 2d¢ + exp(—Q(n%)).

o If ParamRLS-F is run for a number of comparisons which is
both polynomial and at least n® then it returns the optimal
parameter value for the cutoff time with overwhelming proba-
bility.

In order to prove Theorem 4.1, we first bound the progress made
by the (1+1) EA in n?/1 iterations (for a positive constant ), a
length of time we call a period. We define progress as the difference
between the distance to the optimum at the beginning of the period
and at the end of the period. We then sum the progress made in
a constant number of periods in order to bound the fitness of the
individual in the (1+1) EA after a quadratic number of iterations. We
compute the cutoff times required such that these intervals do not
overlap. This tells us which configuration will win in a comparison
of that length.

We first derive progress bounds for the (1+1), EA.

LEMMA 4.2. Consider the (1+1) EA optimising LO for a period of
n? [ iterations, for some positive constant i, that starts with a fitness
of j. Let Z be the amount of progress made by the algorithm over the
period. Then, w. 0. p.:

. 2xn
i) Z < —2—+o(n
025 5 Bt el
(ii) For every i with j < i < n, Z > 1//2% — o(n), or the
-exp| o

algorithm exceeds fitness i at the end of the period.



x | lower bound on ¥  upper bound on k
3.0 0.000030n2 0.225138n2
2.9 0.225628n2 0.241246n2
2.8 0.241720n2 0.259143n
2.7 0.259600n2 0.279105n2
2.6 0.279545n2 0.301461n2
2.5 0.301885n2 0.326611n2
2.4 0.327018n2 0.355040n2
2.3 0.355431n2 0.387346n2
2.2 0.387720n2 0.424266n2
2.1 0.424623n2 0.466723n2
2.0 0.467064n2 0.515884n
1.9 0.516208n2 0.573238n
1.8 0.573546n2 0.640714n2
1.7 0.641006n2 0.720843n
1.6 0.721118n 0.772075n2

Table 1: Ranges of k for which the parameter landscape is
unimodal with the optimum at y. The parameter landscape
is also unimodal with the optimum at y = 1.6 for cutoff times
K > 0.772076n?, as shown in Theorem 4.1.

The intuition behind these bounds is that the probability of
improving the fitness of a search point with k leading ones is y/n -
(1- )(/n)k, which is at least y/n- (1 — y/n)! ~ y/n - exp(—yi/n)
and at most y/n - (1— y/n) =~ y/n-exp(=yj/n)if j < k < i. The
factor of 2 stems from the fact that, when the first 0-bit is flipped,
the fitness increases by 2 in expectation as the following bits may
be set to 1.

By applying the progress bounds from Lemma 4.2 inductively, we
derive the following bounds on the current fitness of the (1+1) EA
after an arbitrary number of periods.

LEMMA 4.3. Consider the (1+1) EA optimising LO. Let a run of
length an? be split into aiy periods of length n? /i (for positive con-
stants a and ). Define €0 == 0 and uyo := Vn. Then fori < « there
exist uy,i+1 and £y, j+1 with

2xn
Uy.i
¥ exp (—X . )

such that, with overwhelming probability, the following holds. At the
end of period i, for 0 < i < a, the current fitness is in the interval
[£y,i> ty,i] or an optimum has been found, and throughout period i
the fitness is in [£y,i—1,Uy,i] or an optimum has been found.

Uy,i+l = Uy,i + +o(n)

Cyiv1 =4y +

Since we do not have a closed form for the intervals derived in
Lemma 4.3, we follow the approach in [7] and iterate them com-
putationally in order to derive exact bounds on the fitness after a
given number of iterations, using our Python tool mentioned ear-
lier. We observe that the (1+1) EA makes, in expectation, a linear
amount of progress during a period which consists of a quadratic
number of iterations (as is the case in Lemma 4.3). This fact implies
that we can check whether one configuration is ahead of another
by computing the leading constant of the ®(n) term in the fitness

bounds from Lemma 4.3 and check whether the intervals are over-
lapping. If they are not overlapping then, w. o. p., one configuration
is ahead of another by a linear amount. If n is large enough then
the o(n) terms from Lemma 4.3 can be ignored as the fitness is
determined exclusively be the leading constants of the linear terms.
We extract the relevant leading constants from the fitness bounds
in the following lemma.

LEMMA 4.4. Let cg y,; and cy,y,i denote the leading constants in
the definition of £y,; and uy,; from Lemma 4.3, respectively (i.e.,
Cyi=cpyi-n—o(n)anduy; =cyy,;i -n+o(n)) Thency yi+1 and
cp,y,i+1 can be expressed using the recurrences cg,y,0 = cy,y,0 = 0,
2x

pexp (x - cuy.i)
2x

yexp (X - cuy,ivi)

We can now prove that the parameter landscape is unimodal.

Cu,y,i+1 = Cuy,i t

Ceyi+1 = Cey,i +

LEMMA 4.5. For ParamRLS-F tuning the (1+1) EA for LO, the pa-
rameter values in the set {1.6,1.7,...,2.9,3.0} are optimal for the
ranges of k given in Table 1, if n is large enough. Furthermore, the
parameter landscape is unimodal for these cutoff times.

Having proved that the parameter landscape is unimodal for the
cutoff times given in Table 1, we now turn our attention to cutoff
times x > 0.772076n2. We prove that, for cutoff times in this range,
the parameter value y = 1.6 wins ParamRLS-F comparisons against
any other configuration w. o. p., and again the parameter landscape
is unimodal. In order to prove this result, it is first necessary to
prove a helper lemma. This lemma takes two configurations and
the distance between them and gives a condition which, if satisfied,
implies that, w. o. p., the configuration which is closer to the opti-
mum reaches the optimum before the configuration which is behind
covers the initial distance between them. That is, the configuration
which is closer to the optimum wins a ParamRLS-F comparison
with overwhelming probability.

LEMMA 4.6. Assume that the fitness of the individuals in the
(1+1)q EA and the (1+1), EA optimising LO are contained in the inter-
vals [cg,q,i-n—0(n), cy,qi-n+o(n)] and [cpp ;-n—o0(n), ¢, p ;-n+o(n)],
respectively, as defined in Lemma 4.4. Assume that cgq; > ¢, p; (that
is, the (1+1), EA is ahead of the (1+1), EA by some linear distance). If

2b
+é&
((Cl’,a,ifcu‘b,i)'exp(bcf,b,i) ) <1

(wetiema)
(1-cra:)-exp(a)
for some positive constant ¢ then, with overwhelming probability, the
(1+1)q EA reaches the optimum before the (1+1), EA has covered the
initial distance between the two algorithms.

We now use this lemma to prove that the parameter landscape is
unimodal for cutoff times k > 0.772076n2, with the configuration
x = 1.6 as the optimum.

LEmMA 4.7. Consider ParamRLS-F tuning the (1+1) EA for LO with
x € {0.1,0.2,...,2.9,3.0} (i.e.d = 10,¢ = 3). For all cutoff times
Kk > 0.772076n?, and for the (1+1), EA and the (1+1), EA, with either
01 <b<a<l1l6o0rl6 <a<b < 3.0, the (1+1); EA wins a
ParamRLS-F comparison against the (1+1), EA w. 0. p.



Lemma 4.7 proves that, with overwhelming probability, for all
cutoff times k > 0.772076n? the configuration y = 1.6 wins a
comparison in ParamRLS-F against any other configuration, and
also that in a ParamRLS-F comparison between two configurations
both on the same side of the configuration y = 1.6, the configuration
closer to y = 1.6 wins the comparison w. o. p. Having proved that
the parameter landscape is unimodal, we can now finally prove
Theorem 4.1.

Proor oF THEOREM 4.1. We proceed in the same manner to the
proof of Theorem 3.2. We pessimistically assume that the active pa-
rameter value is initialised as far away from the optimal parameter
value as possible. The initial distance is clearly bounded by d¢.

Given a comparison of a pair of configurations which are both
on the same side of the optimal configuration, let us call the con-
figuration with a value of y closer to the optimum the ‘better’
configuration, and the other configuration the ‘worse’ configura-
tion. Lemma 4.7 tells us that in a comparison between any pair of
configurations which are both on the same side of the optimum,
the better configuration wins w. 0. p. Let us assume that the better
configuration always beats the worse configuration. Since with the
local search operator +{1} the tuner will mutate the current config-
uration to one closer to the optimum, the tuner take a step towards
the optimum with probability 1/2. With the remaining probability,
the active parameter will remain the same. The expected time to
move closer to the optimum is thus 2. Since the tuner needs to take
at most d¢ steps towards the optimal configuration in this case, this
implies that E[T] < 2d¢. In the overwhelmingly unlikely event
that the worse configuration wins a comparison then we restart the
argument. Therefore, E[T] < 2d¢ + exp(—Q(n?)) for some positive
constant ¢ from the definition of overwhelming probabilities.

Using a Chernoff bound to count the number of times that the
tuner takes a step towards the optimal configuration proves that,
with overwhelming probability, n® comparisons, for any positive
constant ¢, suffice for ParamRLS-F to set the active parameter value
to the optimum. By the union bound, the value of the active pa-
rameter remains at the optimum w. o. p. once it has been found,
since there are polynomially many comparisons. This implies that,
W. 0. p., the tuner returns the optimal configuration for the cutoff
time if run for at least this many comparisons. O

4.2 Analysis of Optimisation Time-Based
Comparisons when Tuning for LO

As in Section 3.2, we prove here that w. 0. p. any configurator that
uses the Optimisation time performance metric is unable to tune
the (1+1) EA for LO if k < 0.772075n2.

THEOREM 4.8. Consider any configurator using the Optimisation
time performance metric tuning the (1+1) EA for LO for any positive
constant ¢ and discretisation factor d. If the cutoff time for each run
is never allowed to exceed x < 0.772075n? then, after any polynomial
number of comparisons and runs per comparison, the configurator is
blind.

To prove Theorem 4.8 we first show that, w. o. p., no configura-
tion of the (1+1) EA here reaches the optimum of LO within this
cutoff time.

LEMMA 4.9. For all configurations y € {0.1,0.2,...,2.9,3.0}, the
(1+1), EA does not reach the optimum of LO within 0.772075n?
iterations, w. o. p.

PROOF OF LEMMA 4.9. After 772075 periods of length n? /1000000
(that is, with i = 1000000) we observe that the value ¢y, ,; for all
x €{0.1,0.2,...,2.9,3.0} is less than 1. This implies that, with over-
whelming probability, after 0.772075n? iterations, no configuration
has found the optimum of LO. O

Using Lemma 4.9, we are now able to prove Theorem 4.8.

Proor oF THEOREM 4.8. Since by Lemma 4.9 we know that, with
overwhelming probability, no configuration finds the optimum of
LO within 0.772075n? iterations, then we argue that the result
follows for the same reasons as in the proof of Theorem 3.5. O

5 CONCLUSIONS

Recent experimental work has provided evidence that the algo-
rithm configuration search landscapes for various NP-hard prob-
lems are more benign than in worst-case scenarios. In this paper
we rigorously proved that this is the case for the parameter land-
scape induced by the standard bit mutation (SBM) operator, used
in evolutionary computation, for the optimisation of two standard
benchmark problem classes, RIDGE and LEADINGONEs. In particular
we have proved that the parameter landscape for both problems
is largely unimodal. This effectively allows gradient-following al-
gorithm configurators, including ParamRLS, to efficiently identify
optimal mutation rates for both problems.

To the best of our knowledge, the only other time complexity
analysis of algorithm configurators for specific problems is our
earlier work [7], where we considered ParamRLS to tune the neigh-
bourhood size of a more simple stochastic local search algorithm.
This analysis pointed out that using the best identified fitness as per-
formance measure (i.e., ParamRLS-F), rather than the optimisation
time (i.e., ParamRLS-T), allows us to identify the optimal parameter
value with considerably smaller cutoff times i.e., more efficiently.
Our analysis reveals that this insight is also true for the much more
sophisticated parameter landscape of the global mutation operator
SBM. In particular, we proved for a wide range of cutoff times that
ParamRLS-F tuning for LEADINGONEs identifies that the smaller the
cutoff time, the higher is the optimal mutation rate. For almost ev-
ery given cutoff time, the optimal mutation rate for that cutoff time
is returned efficiently, with overwhelming probability. Conversely,
any algorithm configurator using optimisation time as performance
metric is blind when using cutoff times that are smaller than the
expected optimisation time of the optimal configuration.
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