
This is a repository copy of Are current reporting standards used to describe health state 
utilities in cost-effectiveness models satisfactory?.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/159926/

Version: Accepted Version

Article:

Ara, R., Hill, H. orcid.org/0000-0002-0908-5595, Lloyd, A. et al. (2 more authors) (2020) 
Are current reporting standards used to describe health state utilities in cost-effectiveness 
models satisfactory? Value in Health, 23 (3). pp. 397-405. ISSN 1098-3015 

https://doi.org/10.1016/j.jval.2019.12.004

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

ABSTRACT 

 

Objective The aims of the study were to examine current reporting standards of health state utilities 

(HSU) using a review of published cost-effectiveness analyses in cardiovascular disease and to explore 

the impact of variation in model inputs used in these on estimated quality adjusted life years (QALYs) 

and cost-effectiveness.  

 

Method Key health /economics bibliographic databases were searched to identify relevant articles 

published after 2014.  Any narrative and values relating to the HSU used in the model were extracted 

and reviewed.   The HSUs were systematically applied to an existing model to explore the influence of 

different values on QALYs and incremental cost-effectiveness ratio (ICER).    

 

Results 24 peer reviewed articles were identified.  Only two studies referred to a literature review for 

the HSUs. The majority (18/24) referenced previously published economic studies (as opposed to the 

original source) for at least one of the HSUs.  Only four studies referenced the original sources and 

reported all the HSUs accurately, and several did not provide all the HSUs.  Little information was 

provided on methods used to calculate QALYs.  For example, the duration of time for acute HSUs, 

what the baseline HSU was, the method that was used to assign HSUs for subsequent different events, 

or how constant HSUs for clinical events were combined with age-adjusted baseline values.  The huge 

differences in HSUs used in the studies produced substantial variations in the QALYs and ICERs 

generated from the cost-effectiveness model.   

 

Conclusion Current standards are poor and there is a need for greater transparency in reporting the 

HSUs used in cost-effectiveness models. 

 

  



2 

 

Introduction 

Agencies throughout the world produce national guidance on the provision of new health technologies 

using results generated from cost-effectiveness models to inform the allocation of health care 

resources1.  Many policy decision makers now prefer that results generated by these models are 

presented as a cost per quality adjusted life year (QALY), where the health related quality of life 

(HRQoL) is calculated using heath state utilities (HSU) derived from preference studies2-3.  The use of 

the QALY ensures that the results generated from these models can be compared across disparate 

conditions and interventions.  However, inconsistencies and discrepancies in the methodologies used 

when selecting and applying HSUs in these models could produce sub-optimal allocation of resources 

which undermines the aim for consistent decision making.   

 

Different samples and estimation methods produce incomparable HSUs, even when obtained from the 

patients with the same health condition at the same point in time4-5, and a QALY generated using 

evidence obtained from one measure is not equivalent to a QALY generated using evidence obtained 

from another measure.  Even evidence collected using the same measure in the same sample can produce 

different HSUs depending on the specific country preference-weights that are applied.  Consequently, 

for internal consistency and comparability with other evaluations, it is self-evident that all health states 

within a single model should be informed by HSUs generated from the same measure using the same 

source of preference weights when possible.  There will always be exceptions to this, for example it 

may be challenging to capture the utility effects for acute or rare adverse events within the main study 

but this does not imply that the use of evidence from a quick vignette study is appropriate and factors 

such as whether a specific HSU influences the ICER should be considered.  Combining evidence 

obtained from different sources in an ad hoc manner is unjustifiable, and the results from cost-

effectiveness models may not be directly comparable5. 

 

Historically, analysts have often struggled to identify preference-based utility data and have simply 

referenced values used in previous models, or have used values with no transparency or justification of 

choice.  However, the evidence base in this area has increased substantially over recent years and it is 
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no longer appropriate to use dated evidence simply because it has been accepted in a previous evaluation 

or is known to the author.  Increasingly analysts may be forced with a choice of different values and 

analysts should treat this form of evidence as they would any other and undertake a review of the 

literature to avoid the suspicion of ‘cherry picking’.   

 

The primary aim of this project was to review the reporting standards associated with the HSUs used in 

recently published cost-effectiveness analyses and to explore the impact of variation in model inputs on 

estimates of QALYs and incremental cost per QALY.  More specifically this review identifies previous 

models in cardiovascular disease (CVD) primary and secondary prevention.  The HSUs from these 

models were then harvested and systematically applied to an existing model (developed to assess the 

cost-effectiveness of lipid lowering interventions6) to explore the influence of different utilities on 

QALYs and ICER estimates.  A case study in CVD was used because this enabled us to explore many 

of the issues frequently encountered when using HSUs in cost-effectiveness models. For example, 

pharmaceutical interventions can be offered as prophylactic treatment or secondary prevention thus 

patients can enter the model either in a CVD free health state or in a health state representing patients 

with a history of cardiovascular disease respectively.  These two analyses will require different 

‘baseline’ HSUs for patients entering the model.  CVD models generally comprise of multiple health 

states describing clinical events such as angina, heart attack, or stroke.  The HSUs associated with these 

may vary over time, representing the short acute phase of the clinical event and the chronic follow-on 

period when HRQoL may improve.  In addition, as a history of CVD increases the risk of other CVD 

events (e.g. a person with a history of stroke is at increased risk of having a myocardial infarction (MI)) 

the combined effect on HRQoL associated with these sequelae or comorbidities should be captured.   

 

 

Method 

Search strategy 

Key health /economics bibliographic databases (Medline and Medline in process via Ovid SP, Embase 

via Ovid SP, Econ Lit via Ovid SP, NHS EED via Wiley) were searched using free text and subject 
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heading terms (e.g. MeSH). Terms for lipid lowering interventions (e.g. CETP inhibitors) were 

combined with terms for cardiovascular disease (e.g. ischaemic heart disease) and cost-effectiveness 

models (e.g. quality adjusted life-year).  The search was conducted during July 2017 and was limited 

to articles published after 2014 as we were interested in reporting standards in recently published 

manuscripts.  An example search strategy and list of data sources is provided (online materials). 

 

Review and data extraction 

Titles and abstracts were reviewed against the pre-determined inclusion and exclusion criteria (online 

appendix) by one reviewer, while a second reviewer checked a random sample.  The full text of all 

articles provisionally accepted on the title and abstract screen were then examined.  The bibliographies 

of the articles selected for the review were examined to identify any relevant additional studies.  For 

the studies that satisfied the inclusion criteria, data (author, year, setting, intervention(s), model type, 

health states, health state utility values, relevant references for the HSUs reported to be used, any 

narrative directly associated with the HSUs sources or their use in the model) were extracted by one 

reviewer and checked by a second.  The HSUs were checked against the cited source to determine: a) 

if the cited source was the original source of the HSUs (e.g., if the cited source was found to cite an 

earlier article for a specific HSU, the full text of the earlier article was retrieved and reviewed).  This 

form of backward tracking was undertaken until the original source of the specific HSU was identified. 

b) if the values in the included article matched those in the original source, c) the actual preference-

based measure(s) used to obtain the HSUs (e.g. indirect such as EQ-5D, or direct such as time-trade off 

(TTO)), and d) the setting of preference weights if applicable (e.g. UK based tariff for the EQ-5D7).  

Any narrative relating to the application of the HSUs was reviewed including the baseline values (the 

health state that patients enter the model – for primary prevention this is likely to be defined as ‘event 

free’, ‘healthy’ or ‘no history of CVD’; for secondary prevention this is likely to be a health state defined 

as ‘history of CVD’, or history of a specific CVD event type such as ‘previous MI’), the duration of 

effect (to account for any acute versus chronic period), any adjustments made (e.g. the HSU associated 

with the comorbid health state MI in patients with a history of stroke).  
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Case study 

An existing peer-reviewed cohort (n=1,000) Markov model was utilised to explore the implications of 

using the actual HSUs and methods reported in the articles included in the review.  The model was 

initially constructed to explore the cost-effectiveness of a lipid lowering intervention (compared to 

standard care) for both primary and secondary prevention6. The model includes non-fatal health states 

representing patients who have no history of CVD (primary prevention), the acute or chronic stages of 

the CV events (angina, MI, stroke), and two absorbing health states representing death (either CV events 

or from other causes).  For primary prevention, patients enter the model in the CVD free health state, 

whereas for secondary prevention, patients are distributed across the three ‘chronic’ CVD health states 

using age and gender adjusted prevalence data.  Annual probabilities of initial and subsequent events 

are applied using age-adjusted risks.  Costs and benefits are discounted at 3.5% and half cycle correction 

is used to assess the cost and benefits accrued over a lifetime (up to age 100).  The potential disutility 

associated with medication was not modelled explicitly in this model as it was assumed that patients 

withdrew from treatment (high dose or lower dose statin) if they experienced an adverse reaction, and 

a series of analyses were undertaken to examine the economic implications of different levels of 

adherence. A detailed description of the model is published elsewhere and a diagram is provided in the 

online material6. 

 

The HSUs reported in the studies included in this review were input into the model using the methods 

described by the authors (online materials).  All other parameters remained unchanged.  Data from 

studies that reported HSUs representing at least two different cardiovascular events from the three 

included in the case-study model were used.  For studies that did not report HSUs for angina, the HSU 

they reported for MI was used.  If only one HSU was reported for a particular event, this was used for 

both the initial acute and corresponding chronic health state.  The method described to account for any 

additional decrement due to sequelae (e.g., an MI following a stroke) was replicated.  If this information 

was missing, it was assumed the analyst had applied no additional detriment and the HSU reported for 

a particular health state was retained irrespective of history.  Deterministic ICERs were generated for 
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cohorts of 1,000 patients entering the model at the age of 45, or 75 years.  Full probabilistic analyses 

were not generated as the information reported in the articles was insufficiently detailed to replicate the 

approaches taken. 

 

Results of the literature review 

A total of 24 studies were included in the review (Table 1)8-31.  Half of the studies were set in the US 

(N=12), and a third in Europe (N=8).  The balance were set in Iran (N=2)10-11, Singapore (N=1)25, and 

Brazil (N=1)28.  While the majority compared lipid lowering interventions, two assessed the cost-

effectiveness of screening mechanisms15,29, and one assessed the effect of risk stratification18.  The 

treatment strategies were for primary prevention (N=10), secondary prevention (N=7), both primary 

and secondary prevention (N=3)23-24,28, both primary and secondary in populations with heterozygous 

familial hypercholesterolemia (N=3)15,19,23, and in patients with chronic kidney disease (N=1)26.  The 

vast majority of studies reported using a Markov model (N=20/24) with an annual cycle.  Costs and 

benefits were extrapolated over a lifetime horizon in almost three-quarters (N=17/23) of the studies, 

although some used shorter horizons of 5 years (N=3)22,26,30, 10 years (N=3)8,13 and 30 years18. 

 

 

INSERT TABLE 1 

 

Reporting standards 

Literature review 

Only two of the studies referred to a literature review in reference to HSUs.  One conducted a systematic 

search of the literature to identify appropriate HSUs but limited details were provided14.  The second 

stated their evidence was based on the results of the former review13.  The vast majority of studies 

provided no description of the heath condition of the patients the HSUs were obtained from.  None of 

the studies reported all basic details of the original source of the HSUs that are required to enable the 

reader to judge the appropriateness of the evidence (e.g. study type, patient characteristics (e.g. age, 

sex, comorbidities, diagnosis, condition severity), time since event/time of data collection, preference 
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measure used, completer of measure, the appropriateness of the measure for the population, sample 

size, missing data (or loss to follow-up), mean and uncertainty.  

 

Original source of HSUs 

Three quarters of the studies (18/24) referenced previously published economic studies as opposed to 

the original source for at least one of the HSUs.  Only six of the studies referenced the original sources 

for all the HSUs12,19,25,27,28,31.  Three iterations were required to obtain the original sources for almost a 

third of the studies10,11,13,14,22,24,30 and over half of the studies utilised evidence collected in the 

1990s9,10,11,13,14,15,16,18,21,26,27,29,30. 

 

Just four studies reported all the HSUs accurately when compared to the values in the original source 

studies16,19,25,27.  For the remaining twenty studies, at least some of the reported HSUs could not be 

found in the referenced studies or the original source studies; or, the original source could not be 

identified due to incorrect referencing18,20,21,22,24.  

 

Preference based measures 

Half (12/24) of the studies did not mention the measure (e.g. EQ-5D) or method (TTO/clinical 

judgement) used to obtain the HSUs9,10,11,13,14,18,22,24,26,28,29,30.  Of the remaining studies, just six 

mentioned the measure or method used for all the HSUs12,16,21,23,25,27.  Several authors stated they used 

data obtained from the EQ-5D but, some of their HSUs was obtained from the 15D8, TTO studies15,17, 

or were disability weights/lifeyears20,22,31.   

 

It was not possible to determine all the measure(s) or methods used to collect the HSUs in several of 

the studies even when tracing the original source studies13,14,17,22,26.  For example, one referenced a 

source reporting evidence collected from the SF-36 and the WHOQOL but there were no HSUs in the 

article28.  Only two of the studies used evidence obtained from the same measure for all the HSUs12,16.  

The remaining studies used HSUs obtained from two8,10,11,15,19,23,29,30,31 or more9,17,18,21,25,27 different 

measures and methods. 
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HSUs used for baseline and clinical events 

It was unclear what baseline HSUs were used in several of the studies due to lack of detail.  For the 

primary prevention strategies (i.e. patients enter the model with no history of CVD), seven studies used 

age-adjusted HSUs for the health state ‘healthy/no history of CVD’8,10,11,16,17,23,29 while six assumed the 

baseline HSU was full health (e.g. EQ-5D=1) irrespective of age18,22,24,25,27,30.  Of those using age-

adjusted data, the actual HSUs used were not provided in four of the studies10,11,16,23.  For the secondary 

prevention analyses (i.e. patients enter the model with a history of CVD), the baseline HSU for patients 

with a history of CVD was constant (range: 0.76 to 0.85)14,21 in all the studies where it was possible to 

determine what data were used.  The two studies assessing interventions in patients with a history of 

heterozygous familial hypercholesterolemia (HeFH) or CVD used constant baseline values of 0.82419 

and 0.99615.   

 

Comparing across all studies, the HSUs reported for the CV events covered a very broad range.  For 

example, angina first year HSUs ranged from 0.6312 to 0.835129, MI first year HSUs ranged from 0.5812 

to 0.835129, and stroke first year HSUs ranged from 0.32719 to 0.827229.  Approximately half of the 

studies modelled different HSUs for the acute (<1 year) and chronic (≥2 year) periods following events 

and there was substantial differences in the HSUs assigned for the chronic periods: angina ranged from 

0.6815 to 0.906422, MI ranged from 0.6815 to 0.964822, and stroke ranged from 0.399 to 0.883522.   

 

It is possible that patients may experience an MI after they have earlier had a stroke. Markov models 

do not retain history of events and as the HSU for MI is greater than that for stroke, unless this is taken 

into account, patients will experience an increase in QOL within the model.  However, not all the studies 

provided information on how this was handled within the model.  Two reported they used the minimum 

method (i.e. used the smallest HSU of stroke and MI and thus ignored any additional decrement due to 

the comorbidity)19,27.  One reported the HSUs for MI and stroke were multiplied together21.  One 

provided a HSU for the chronic period for patients who experienced two or more events within the same 
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year but did not explain how the acute period was modelled31.  Two provided a single HSU for a 

subsequent different event but neither explained how the acute period was modelled22,30. 

 

In addition to the HSUs extracted (see online materials), several of the studies reported they assigned 

an additional burden on HSUs to account for the disutility of taking medication, or treatment related 

adverse events. However, the methodology used (e.g., duration of decrement or method used to combine 

with other HSUs) was not described clearly in these studies15,17,18,20,22,25,26,27,29,30, and the original source 

data was sometimes based on clinical judgement18,25,29. 

 

Uncertainty 

Uncertainty around the HSUs was explored in most of the studies and the vast majority used Beta 

distributions to characterize the uncertainty in the mean, although insufficient details were provided to 

replicate this.  Several authors reported the model results were sensitive to variations in HSUs used in 

univariate sensitivity analyses14,15,16,17,25. 

 

Implications of the different health state utility values associated with avoiding a single event  

The implications of the differences in the HSUs used for the baseline and the individual events was 

explored by generating the absolute and incremental QALYs accrued over a lifetime (50 years) for a 

single event occurring at the age of 45 years (Table 2).  For primary prevention, the baseline values 

represent individuals who have no history of CVD and remain event free, while in the secondary 

analyses, the baseline values represent individuals who have a history of CVD.  The total QALYs 

accrued for remaining in this health state for primary prevention range from 40.00 for an analysis using 

a HSU of 0.8028, to 50.00 for those that assume HSUs are equal to full health irrespective of age25,27,30.  

For secondary prevention, they range from 39.0031 when using a HSU of 0.78, to 50.00 when assuming 

the HSUs are equal to full health irrespective of age22.  There are also substantial differences in the 

QALYs accrued for the individual CV events. For example, QALYs accrued when experiencing a non-

fatal stroke and remaining in that health state range from 26.00 (HSU: 0.327 acute, 0.524 chronic19) to 

44.16 (initial decrement of 0.0113, 0.8835 chronic22).    
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The ranges in incremental QALYs associated with avoiding these events vary substantially.  For 

example, the incremental QALYs accrued for avoiding an MI range from 0.0813 to 15.8015.  The large 

difference is due to the fact that for the latter, Chen et al use one of the highest HSU for the baseline 

(0.996) and apply one of the lowest HSU for MI (0.68 for both the acute and chronic periods).  The 

potential incremental QALY gains demonstrate that the HSUs used for the baseline and the events are 

equally important.  For example, although Kazi et al. apply relatively small disutilities for the CV events 

for the acute periods, as they assume full health for the baseline and apply relatively large disutilities 

for the chronic period, the incremental QALY gain associated with avoiding events are relatively large 

compared to the other studies. Looking at the secondary prevention analyses, although Stam-Slob et al 

accrue the least QALYs for the baseline (39 QALYs31), as they have the smallest HSU for MI (0.65), 

the difference between the baseline and MI HSUs produce the largest potential gain for avoiding an MI 

(6.50).  Conversely their potential gain from stroke is one of the lowest at 7.00 QALY. 

 

 

INSERT TABLE 2 

 

 

Results from the cohort (1,000 patients) cost-effectiveness model  

Fifteen studies provided data for at least two of the CV events in the case-study model and the reported 

HSUs and methods were used to generate seven results for primary prevention and eight results for 

secondary prevention.  The discounted incremental QALY gains (Figure 1) and the corresponding 

lifetime ICERs (Figure 2) were generated for cohorts of 1,000 patients entering the model with no 

history of CVD at the age of either 45 or 75 years.  Similar results were generated for the studies 

assessing secondary prevention (Figure 3-4).   

 

For the primary prevention analyses, commencing treatment at the age of 45 years, the discounted 

incremental QALYs ranged from 21115 to 30825 (Figure 1), and the corresponding ICERs ranged from 
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£28.0k to £19.2k respectively (Figure 2).  Commencing treatment at the age of 75 years, the discounted 

incremental QALYs ranged from 6715 to 10425, and the corresponding ICERs ranged from £40.2k to 

£25.9k respectively.   

 

The baseline HSUs influence the results and the three analyses using a baseline of full health (e.g. EQ-

5D = 1) have comparable ICERs (c£20k at age 45; c£26k at age 75)25,27,30.  These results are not 

surprising as the HSUs used for the events are comparable, thus incremental QALY gain and ICERs 

would be expected to be similar.  These ICERs are lower than those for the analyses that do not use a 

baseline of full health (age 45 ICERs>£25k, age 75 ICERs>£32k) as the potential QALY gain due to 

avoiding events is substantially lower for those.  While there is not a great deal of difference in the 

ICERs for the aged 45 year analyses not using full health as the baseline (£25k<ICER<£28k), there is 

greater variation for the cohorts aged 75 years (£32k<ICER<£40k).  In the older cohort, the model is 

more sensitive to the absolute HSUs used for the events as there is less time to accrue the QALYs 

associated with events avoided15,17,19,23,28,29.   

 

The results for the secondary prevention range from 242 to 307 incremental QALYs for cohorts aged 

45 years, and from 121 to 151 incremental QALYs for cohorts aged 75 years (Figure 3-4).  The 

corresponding ICERs range from £19.9k to £25.3k and from £16.6k to £20.7k for cohorts aged 45 and 

75 years respectively.  As in the primary prevention analyses, the ICER generated using a baseline of 

full health is lower than those generated using lower baseline values irrespective of age22.   

 

INSERT FIGURES 1-4 

 

DISCUSSION 

This study has served two purposes.  At one level the review highlights the importance of differences 

in model inputs on the overall cost effectiveness of an intervention in CVD.  The figures show how 

sensitive a model can be to differences in HSUs.  While it is likely that the confidence intervals of the 

ICERs would overlap for some results (if we had been able to undertake PsA), the observed differences 
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in the deterministic results suggest that this would not be the case for all.  These results reinforce the 

importance of robust and transparent methods for the selection, appraisal and possibly synthesis of this 

evidence.  This is particularly marked in a disease area like CVD where the impact of CV events can 

be experienced for months and years.  The implications of this study will be very relevant for other 

chronic diseases.   

 

It is clear that the baseline utility will have a large effect on the ICER and we recommend that decision 

makers pay specific attention to the quality or appropriateness of these values.  We recommend it is 

impossible to justify the use of full health (i.e. 1.0) as a baseline in the absence of other data.  It is also 

clear that special attention needs to be paid to instances where patients can experience multiple clinical 

events (e.g. an MI and a stroke), especially when Markov style models are used.  In the absence of data 

the modelling team should consider the influence of different approaches to combining the effects.  

Clearly also for certain events (e.g., stroke) there is huge variation in their impact on HRQL and it’s 

important not to simply select one value without justification.  Utility data graded by clinical markers 

(e.g. modified Rankin scale in stroke) may help ensure data are more representative.   

 

The review has highlighted some significant problems regarding how HSUs are incorporated into 

different models in the same clinical area.  There are very large discrepancies between the estimates for 

the same health states.  There are also substantial differences between estimates for baseline states with 

some models simply assuming that everyone at baseline is in a state of full health.  The most concerning 

finding is that of the 24 studies that were reviewed only four accurately and consistently referenced the 

source material.  Twenty of the studies failed to correctly reference and cite the values used in the 

model.  The study has highlighted examples of very poor practice in the reporting of model inputs.  In 

addition to this, several of the models also reported adjustments to utilities related to issues such as 

mode of administration, or the effect of taking daily medications, where the adjustments were based on 

no empirical data.    
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These results support the need for greater transparency in reporting standards.  Researchers need to be 

systematic in their selection of model inputs from the literature and where multiple values are available 

then model developers can consider the use of evidence synthesis.  These methods are described in the 

recent ISPOR TF report on sourcing utilities32.  In developing this guidance paper, it became apparent 

that there are a large number of issues to be considered and even in this focused TF report there was 

insufficient room to go into detail on everything.  This suggests that the methodological area is still 

somewhat under-developed and more work is needed.  HSUs are important model inputs, and as this 

study highlights can have a very substantial effect on the model results.   
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