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ABSTRACT

Search-based unit test generation applies evolutionary search to

maximize code coverage. Although the performance of this ap-

proach is often good, sometimes it is not, and how the itness land-

scape afects this performance is poorly understood. This paper

presents a thorough analysis of 331 Java classes by (i) characteriz-

ing their itness landscape using six established itness landscape

measures, (ii) analyzing the impact of these itness landscape mea-

sures on the search, and (iii) investigating the underlying prop-

erties of the source code inluencing these measures. Our results

reveal that classical indicators for rugged itness landscapes sug-

gest well searchable problems in the case of unit test generation,

but the itness landscape for most problem instances is dominated

by detrimental plateaus. A closer look at the underlying source

code suggests that these plateaus are frequently caused by code in

private methods, methods throwing exceptions, and boolean lags.

This suggests that inter-procedural distance metrics and testability

transformations could improve search-based test generation.
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1 INTRODUCTION

As software testing is a time-consuming, laborious, and error-prone

task, developers can choose to generate tests automatically. In the

context of unit testing object-oriented software, where tests are

sequences of calls on a class under test, Genetic Algorithms (GAs)

have been successfully applied for generating tests. Several stud-

ies [8, 9, 21] have shown that GAs are efective at generating tests

that achieve high code coverage. However, they are still far from

being able to satisfy all test goals (e.g., covering all branches) [5, 26].

While some general limitations are known (e.g., the challenges

of generating complex parameter objects [10, 26]), there is a lack

of understanding of the search behavior during the optimization,

making it diicult to identify the factors that make a search problem

diicult. Such an understanding can be provided by investigating

the underlying structure of the search space and the inluence of

its features on the optimization process. The concept of the itness

landscape is among the most commonly used metaphors to give an

intuitive understanding of the search space structure and help in

predicting search behavior with diferent search problems. Analyz-

ing the itness landscape helps in identifying the properties that

are related to the problem diiculty [1]. The two main properties

of itness landscapes that are known to have a great inluence on

the optimization process are ruggedness and neutrality [16]. The

interplay of these properties has motivated the development of

several techniques that study the structure of itness landscapes.

The aim of this paper is to analyze the itness landscape and in-

vestigate the impact of its properties on the generation of unit tests.

More speciically, we study the inluence of the two landscape prop-

erties, ruggedness and neutrality, on unit test generation. Fitness

landscape analysis uses diferent proxy measurements to gather

evidence on these properties, usually by analyzing the way itness

values change while randomly walking across the search space.

In this paper, we apply the six most common such measurements

to investigate random walks on a selection of 331 Java classes. By

contrasting the resulting metrics with the performance of a GA on

generating tests for these problem instances, we can identify how

they afect the search, and what aspects of the underlying source

code causes these properties.

Our experiments suggest that the landscape structure is mostly

dominated by neutral areas, i.e., plateaus, which makes it harder

for the search to ind test inputs. Although ruggedness is often

considered a negative property of the itness landscape, in the case

of unit test generation and the scale of ruggedness observed there,

we ind that higher ruggedness is an indicator of more informative

landscapes, resulting in better performance of the search. A closer

look at the causes of neutrality suggests that inluential factors

are (1) whether the target code is contained in private methods,

for which there is no direct guidance provided by the itness func-

tion; (2) whether the code has preconditions that are diicult to

satisfy and cause exceptions when violated; and (3) the prevalence

of boolean lags, which provide no guidance to the search. This sug-

gests that the search could be improved by enhancing the existing

itness functions to consider inter-procedural distance information,

by addressing the problem of generating valid complex objects, and

by applying testability transformations.

2 BACKGROUND

2.1 Search-Based Software Testing (SBST)

Search-Based Software Testing (SBST) describes the application

of meta-heuristic optimization techniques to the automation of

various software testing tasks. In particular, SBST is frequently

applied to generate test data [18] with optimization goals based

on diferent notions of code coverage. When testing individual

functions then local search algorithms such as hill climbing have

been used successfully [12]; in other domains, such as unit testing,

GAs are more common [17].

In a GA, a population of candidate solutions is gradually evolved

towards an optimal solution. The algorithm typically starts with a

population of random individuals that will be iteratively evolved

over many generations. In each generation, the processes of natu-

ral evolution are mimicked: Every individual in the population is

evaluated by a itness function, which determines how close this

individual is to the desired solution. The itter an individual, the

more likely it is selected from the current population and used



for recombination using crossover and mutation operators while

building the next generation of the GA population.

2.2 A Genetic Algorithm for Unit Tests

In the context of generating tests for object-oriented programs,

a common approach lies in evolving sets of unit tests [7] using

single-objective optimization, or individual test cases using many-

objective optimization [19]. The many-objective approach has been

shown to generally perform best [5, 20, 21].

Representation: A solution that is represented as a test case �

consists of a sequence of calls � = ⟨�1, �2, . . . , ��⟩ on the class under

test (CUT) [7]. That is, each � � is an invocation of a constructor

of the CUT, a method call on an instance of the CUT, a call on

a dependency class in order to generate or modify dependency

objects, or it deines a primitive value (e.g., number, string, etc.).

As the ideal test case size is not known a priori, the number of

statements in a test case is variable and can be changed by the

search operators.

Crossover: The common crossover operator in the context of test

case optimization works as follows: Given two parent test cases �1
and �2, a random value � in the range (0, 1) is selected. The irst

ofspring will contain the irst � · |�1 | statements from �1, followed

by the last (1 − �) · |�2 | statements from �2. The second ofspring

will contain the irst � · |�2 | statements from �2, followed by the last

(1 − �) · |�1 | statements from �1. As the size of individuals is not

ixed, this operator ensures that ofspring do not grow larger than

their parents during crossover. Since there can be dependencies

between statements within a test, the crossover possibly needs to

repair the ofspring to ensure validity, e.g., by generating additional

statements for missing dependencies.

Mutation: When a test case � is mutated, each statement in � is

deleted or edited with probability 1
|� |

, whereas insertion is applied

at a random position with probability � ; if a statement is added,

then another one is inserted with probability �2, then with �3, etc.

A challenge lies in ensuring that these operations maintain the

syntactic validity of the statements, for example by recursively

inserting calls that create and modify dependency objects.

Fitness function: The itness function used to guide the search

is based on code coverage. Various diferent criteria as well as

combinations of criteria have been proposed in the literature [24].

In this paper, we focus on branch coverage, because it is one of the

most common coverage criteria in practice [7], and itness functions

for other criteria are typically based on branch coverage itness

calculations [31]. In the many-objective representation of the unit

test generation problem [19], each branch in the CUT is considered

as a single objective to be optimized. In this case, the itness function

of a branch �� is typically calculated as follows:

� (�, �� ) = �� (�� , �) + � (�� (�� , �)) (1)

Here � is an individual test case to be evaluated, �� is the branch dis-

tance [15], � is a normalization function that normalizes the branch

distance in the range [0, 1] [2], and �� is the approach level [31]:

• The branch distance [15] is the basis of many coverage-

based itness functions, and estimates a distance for a given

conditional statement to become true or false. For exam-

ple, when the if-condition if(x == 42) is executed with x

equal to 0, then the distance to the condition evaluating to

true is |42 − � | = 42, whereas if � is 40, then the distance

is |42 − � | = 2. If the condition evaluates to true, then the

distance is 0. The distance to the condition evaluating to

false can be calculated analogously.

• The approach level [31] is deined as the distance between

the closest control dependency of the target node executed

by a test and the target node in the control dependency graph.

The branch distance for � (�, �� ) is calculated for this control

dependency.

A test case �� is better than a test case �� if and only if �� has a

lower approach level + normalized branch distance for a branch �� .

2.3 Fitness Landscape Analysis

A greater understanding of the behavior of combinatorial optimiza-

tion algorithms comes from a thorough analysis of the underlying

topological structure of the search space. This topological structure

over which the search is being executed is known as the itness

landscape, a term that was irst introduced by Sewall Wright [32].

More formally, a itness landscape (S, f, N ) of a problem instance

for a given optimization problem consists of a set of genotypes S

that represent the problem solutions, a itness function � : � → R

that maps each genotype to a numerical itness value, and a genetic

operator N that deines the neighborhood relationship between the

genotypes. Given a speciic landscape structure, an optimization

algorithm can be thought of as navigating this structure in order

to ind optimal or near-optimal solutions. However, the structure

of a itness landscape is completely deined by several landscape

features [16]. Among these features are ruggedness and neutrality

that both have an explicit impact on the ability of the optimization

algorithm at inding optimal solutions.

Ruggedness: A itness landscape is said to be rugged if the land-

scape contains multiple local optima and an isolated global opti-

mum, and if the itness values of neighboring individuals are less

correlated. In this case, the search of an optimal solution is thought

to become harder as the algorithmmight get trapped in local optima

and result in sub-optimal solutions. Ruggedness can be analyzed

based on diferent types of landscape walks [22], i.e., randomized

explorations of the search space. Among these walks is the ran-

dom walk, which starts at a randomly initialized individual in the

landscape and then arbitrarily moves in each step to neighboring

individuals using the genetic operator N. Several studies show that

the random walk is efective in describing the features of the itness

landscape using diferent itness landscape analysis metrics [16, 22].

Neutrality: Ruggedness alone is not enough to measure the search

diiculty if equilibrium periods dominate the process of evolution.

Such periods result in a set of neighboring genotypes that have the

same itness value. The presence of these periods in a landscape

deines the concept of neutrality [23]. A neutral itness landscape

can be thought of as a landscapewithmany plateaus. In this case, the

mutation in a neutral itness landscape produces mainly movements

in genotype space with no efects on the itness. A neighbor � of a

solution � is said to be a neutral neighbor if � (�) = � (�). In order

to obtain a comprehensive picture of a neutral landscape, a neutral

walk can be used, which is a variation of a randomwalk that accepts
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only neighbors with identical itness values, i.e., the area of neutral

neighbors.

2.4 Fitness Landscape Measurements

The sequence of itness values that are obtained from a randomwalk

can be used to analyze the structure of the itness landscape. Based

on that, diferent statistical measures have been proposed [22] to

measure both ruggedness and neutrality:

Measure 1: Autocorrelation (AC) is a well-known measure

of ruggedness that is applied on the sequence of itness values of

the random walk to measure the correlation between the itness of

each two individuals that are � steps away. It thus can be calculated

as follows:

� (�) =

∑�−�
�=1 (�� − � ) (��+� − � )

∑�
�=1 (�� − � )2

(2)

where � is the total number of the individuals of the random walk,

� is the step size, �� is the itness of the �
�ℎ individual, and � is the

mean itness of all the individuals. The resulting value is in the

range of −1 to 1. The landscape is more rugged when the AC value

is close to 0 meaning that the individuals of the random walk are

less correlated.

Measure 2: Neutrality Distance (ND) is a measure of neutral-

ity in a landscape. It measures the number of neutral steps made

at the start of the random walk. More formally, for a random walk

�1, �2, . . . , ND is the largest � such that � (�1) = � (�2) = · · · =

� (�� ).

Measure 3: Neutrality Volume (NV) is another measure of

neutrality based on the number of neighboring areas of individuals

with equal itness during the random walk. For example, the NV of

the sequence of itness values {�� }
7
�=0 = {0.3, 0.3, 0.3, 0.2, 0.2, 0.7, 0.7}

is 3 as there are 3 areas of equal itness with values 0.3, 0.2, and 0.7.

The NV of {�� }
7
�=0 = {0.3, 0.3, 0.1, 0.2, 0.2, 0.7, 0.4} is 5. The inter-

pretation of the two cases is that the landscape in the irst example

is expected to be latter than of the second example as more of the

itness values are equal.

Besides thesemeasures, additional measures to gain further infor-

mation about the structure of the landscape have been proposed [29]

based on information analysis. These measures depend on the se-

quence of the itness values that are obtained from the random

walk. However, instead of directly using the itness values of the

random walk, the following steps are applied:

Step 1: The sequence of itness values {�� }
�
�=1 is irst transformed

into a series of itness changes:

Δ {�� }
�
�=1 := {�� − ��−1}

�
�=2 (3)

Step 2: The series of itness changes is represented as an ensemble

of objects that can be deined as a string � (�) = �1, �2, �3, . . . , ��
of symbols �� ∈

{
1̄, 0, 1

}
given by:

�� =




1̄, if � < −�

0, if |� | ≤ �

1, if � > �

(4)

where � corresponds to each of the itness changes that are

resulted from equation 3. The parameter � is a real number

that is taken from the interval [0, ��], where �� is the length

of the interval of the itness values that are obtained by the

random walk.

Measure 4: Information content (IC) is designed to capture

the variety of shapes in the string � (�) in order to analyze the

ruggedness of the landscape. It is an entropy measure of the number

of consecutive symbols that are not equal in the string � (�). It can

be calculated using the formula:

� (�) = −
∑

�≠�

� [�� ] log6 � [�� ] (5)

The probabilities � [�� ] are frequencies of the possible blocks �� of

elements from the set
{
1̄, 0, 1

}
, and are deined as:

� [�� ] =
� [�� ]

�
(6)

where � [�� ] is the number of occurrences of each �� in the string

� (�). Note that the value of � (�) increases with an increase in the

number of peaks in the landscape.

Measure 5: Partial information content (PIC) is designed

to analyze the modality of the landscape by iltering the string

� (�) into � ′(�) removing all zeros and all symbols that equal their

preceding symbol. In this case, the new string � ′(�) has the form{
1̄, 1, 1̄, . . .

}
. The partial information content can then be calculated

as:

� (�) =
�

�
(7)

where � is the length of the string � ′(�) and � is the length of the

string � (�). If the landscape path is maximally multimodal,� (�) is 1

as the string � ′(�) is identical to � (�) (i.e., � (�) cannot be modiied).

In contrast, the landscape path is lat when the� (�) is 0 as there

are no slopes in the landscape path.

Measure 6: Density-basin information (DBI) estimates the

variety of lat areas in the landscape. It captures the information of

smooth points by only considering the equal consecutive symbols

in the string � (�). In this context, the only possible sub-blocks of

the string symbols are 00, 11, 1̄1̄, and the entropic measure is deined

as:

ℎ(�) = −
∑

�=�

� [�� ] log3 � [�� ] (8)

Therefore, a high value of ℎ(�) indicates a low density of peaks

in the landscape, and thus that the landscape structure is dominated

by lat areas.

3 EMPIRICAL STUDY

Our aim is to analyze how unit test generation is inluenced by the

itness landscape, and understand how the landscape properties

relate to features of Java classes. We therefore designed a study to

answer the following research questions:

RQ 1: What are the properties of the itness landscape for the JUnit

test generation problem?

RQ 2: How do the itness landscape properties afect the search

behavior?

RQ 3: What are the underlying properties of source code that in-

luence the itness landscape?
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Table 1: An example of applying the randomwalk of 6 steps

on a class with 5 branches

Step b1 b2 b3 b4 b5

1 1.5 0.99304409 0.5 0.9375 0.2235

2 1.5 0.99304409 0.5 0.9315 0.2233

3 1.4 0.99304261 0.4 0.9315 0.2229

4 1.4 0.99304261 0.4 0.9363 0.2229

5 1.4 0.99304409 0.5 0.9363 0.2229

6 1.5 0.99304409 0.5 0.9315 0.2225

3.1 Experimental Setup

Selection ofClassesUnder Test:Choosing a diverse set of classes

is important in studying the properties of the itness landscape since

the features of Java classes might have an impact on the landscape

properties. Therefore, we used the selection of 346 complex and non-

trivial classes from the DynaMOSA study [20] where the complexity

of classes ranges from 2 to 7939 branches. The complexity of the

selected classes is intended to ensure that their branches are not

covered easily in the initial population.

Unit Test Generation Tool: Among the popular tools that gen-

erate tests for Java programs using an evolutionary algorithm is

EvoSuite [6]. It generates JUnit test suites for a given Java CUT and

target coverage criterion using diferent evolutionary algorithms,

with theMany-Objective Sorting Algorithm (MOSA) being the most

efective algorithm for JUnit test generation [5, 21].

Experiment Procedure: To better understand the inluence of the

itness landscape properties on the generation of JUnit tests, we

conducted an experiment that involves (i) applying random walks

on each CUT, and then (ii) applying all the six itness landscape

measures (described in Section 2.4) on the sequence of itness values

obtained by the two types of landscape walks. To perform a walk

on a landscape, we applied the corresponding mutation operator

in order to move from one landscape point to another where each

point in a landscape corresponds to one step of the walk.

In order to perform the experiment, we implemented and ran

random walk in EvoSuite. We also ran the MOSA algorithm in

order to compare its performance against the itness landscape

measures. To minimise the inluence of other optimizations, we

used a "vanilla" coniguration [6] and default settings [3] with only

branch coverage as target criterion. The search stopping criterion

was set to be a one minute timeout, which is EvoSuite’s default

search budget. As a pre-required step to run the random walk, we

consider the most commonly used number of random walk steps

in the literature, which is 1000 [4]. We ran EvoSuite 30 times on

each class in order to account for the randomness of the algorithm

under consideration and the two landscape walks.

Running this experiment on the corpus of 346 classes resulted

in data for only 331 classes. This is due to the environmental de-

pendencies of 8 classes that are diicult to fulill by EvoSuite, and

the search timeout was reached for 7 classes because of constraints

that cannot be solved within a speciic time [8].

RQ1 Analysis: Given a class � with � branches, a landscape walk

of� steps on � is deined as a sequence �1, �2, . . . such that ��+1 is

the outcome of a mutation applied to �� where an initial individual

�� is created randomly by applying the insertion mutation repeat-

edly. For each step in the walk there will be � itness values, as there

are � branches in the CUT. Table 1 contains an example random

walk of 6 steps on a class with 5 branches, resulting in 5 itness

values for each step. Each of the landscape measures is applied

to the sequence of 6 itness values for each branch. For example,

applying the autocorrelation measure, deined in Section 2.4, on the

sequence of itness values results in 0.1668 for branch 1, 0.166415

for branch 2, 1.667 for branch 3, -0.20905 for branch 4, and 0.3064

for branch 5. To answer RQ1, we consider the distribution of these

values across all branches.

RQ2 Analysis: In order to understand the inluence of the land-

scape properties on the search behavior, we want to understand

how it afects the ability of the GA to cover the branches. While

the overall performance of the search is usually measured in terms

of the resulting branch coverage, we need to consider individual

branches, where the outcome is dichotomous (i.e., either the branch

is covered, or it is not). We deine a Success Rate (SR) for MOSA

for each branch as the fraction of runs in which MOSA covers the

branch at least once. For example, if we run MOSA ive times and in

two cases branch�� is covered by the resulting test suite, then the SR

equals 2/5 = 0.2. However, correlating the SR value for one branch

with the� values of a landscape measure of that speciic branch

requires the use of an appropriate measure of central tendency such

as the average of the� values. This results in a single value of the

landscape measure that can be correlated with the SR value. For

example, consider the following results of the AC measure with the

two branches where each of the ive results represents the AC value

of a single run of random walk: �1 → {0.90, 0.92, 0.84, 0.89, 0.90}

and �2 → {0.84, 0.90, 0.76, 0.56, 0.97}. In this case, the average of

the ive runs for each branch is correlated with the SR value of that

branch: �1 → {SR : 0.2,AC : 0.89} and �2 → {SR : 1,AC : 0.81}.

RQ3 Analysis: To answer the third research question we compare

the success rates of the search and random walks, such that we can

distinguish between branches that are trivially covered, branches

that are impossible to cover, and branches that can be covered

with reasonable search efort. Given this distinction, we can then

compare the diferent branches with respect to their landscape and

source code properties.

All the data presented in this paper and the scripts needed

to reproduce the experiment are available at htps://github.com/

nasser-albunian/fitness-landscape-study.git.

3.2 Threats to Validity

To control threats of the stochastic behavior of both techniques, i.e.,

MOSA and the random walk, we repeated the experiment 30 times.

Although we used a selection of 331 complex classes with a diverse

number of branches, which was also used by previous studies [20],

our results may not generalize to other classes. Choosing the num-

ber of steps of the random walk as 1000 is common practice [4].

The search budget used in running MOSA is based on EvoSuite’s

default search budget of one minute, which is examined previously

to assess the performance of MOSA [19].
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Figure 1: Results of the six itness landscape measures ap-

plied on the branches of the 331 classes

3.3 RQ1 Ð What are the properties of the
itness landscape for the JUnit test
generation problem?

The results of applying the six itness landscape measures on the

series of itness values obtained by the random walk are shown

in Figure 1. In general, all the measures indicate that the itness

landscape is mostly dominated by plateaus, i.e., that the landscape

is lat. Looking at the results of the AC measure, the AC values

for most of the branches are higher than 0.6, which is interpreted

as highly correlated itness values of the random walk, and thus

indicate a smooth landscape.

The ND measure indicates that, on average, the irst 20% steps of

the random walk are all neutral steps, which is strong evidence of

plateaus in the landscape. The NVmeasure indicates a small number

of neighboring areas of individuals with equal itness during the

random walk with most of the branches, i.e., NV ≈ 5, which also

indicates a landscape with lat areas.

For the information-based measures, the IC measure is meant

to characterize the ruggedness of the landscape where a value

close to 1 indicates a large number of peaks in the landscape, i.e., a

rugged landscape. Our results show that the IC with many branches

is close to 0.1. This indicates a landscape with a low number of

peaks, and thus many lat areas. The PIC measure is an estimate

of modality in the landscape where PIC = 0 when the landscape

is lat and has no slopes, whereas PIC = 1 when the landscape

is maximally multimodal, i.e., the number of optima is high. Our

results reveal that the PIC values with most of the branches are

lower than 0.04, indicating that the landscape is mostly lat and has

few slopes. In contrast, the DBI measure estimates the variety of

lat areas where the density of peaks in the landscape is low and the

lat areas are more prominent when the DBI is high, i.e., close to 1.

Our results show that most of the branches result in DBI higher

than 0.9, indicating a landscape with a low density of peaks.

Although the itness landscape of a large number of branches

is dominated by plateaus, several branches seemed to point to the
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Figure 2: The Spearman correlation of SR with each of the

six measures for all the branches of 331 classes. The correla-

tion coeicient of SR and AC is 0.04, ND is -0.34, NV is 0.41,

IC is 0.488, PIC is 0.476, and DBI is -0.481

existence of rugged areas in their itness landscape. This can be

seen with the branches where the landscape measures result in

lower values such as the case with the AC (< 0.4), and higher values

such as the case with the IC (> 0.4), although they do not indicate

a fully rugged landscape [29].

RQ 1: Neutrality seems to dominate much of the itness landscape

for most of the branches, although there are some exceptions of

branches with more rugged itness landscapes.

3.4 RQ2 Ð How do the itness landscape
properties afect the search behaviour?

In order to understand the impact of the itness landscape properties

on the test generation, we investigate the Spearman correlation of

the SR and each of the landscape measures, as shown in Figure 2.

Each hexagon represents a set of runs of diferent branches in which

the hexagon density increases with an increase in the number of

runs in the same hexagon.

There is always a signiicant correlation between the SR and

each of the measures with �-value < 0.001, but the diference lies in

the strength of the correlation (i.e., the correlation coeicient). The

strongest correlation is observed between the SR and IC (0.488); a

high SR value corresponds to a high IC value. Since a high IC value

indicates a large number of peaks in the landscape, this suggests

that rugged branches with few plateaus can be covered easily. This

is also shown in the correlation between the SR and PIC (0.476) as

a high SR value corresponds to a high PIC value. A large PIC value

indicates a high landscape modality. This correlation between SR

and PIC indicates that on a multimodal landscape it is easier to ind

the test input that covers a branch.

The third measure that shows a moderate correlation with SR is

the NV (0.41) where a high SR value corresponds to a high NV value.

A high NV value means that there are more neighboring areas of

neutral individuals in the landscape, and thus few lat areas in the

landscape. Based on that, and the correlation of SR and NV, the
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Figure 3: Four groups of the branches based on their cover-

age by MOSA and random walk (RW) where a large bubble

size indicates a high number of branches

possibility of covering a branch becomes higher when the number

of neighboring areas of neutral individuals in the landscape is high.

A negative correlation can be seen with the two measures that

estimate the variety of lat areas in the landscape, ND and DBI. A

negative correlation means a high SR value corresponds to a low

measure value. In the case of ND, the negative correlation between

SR and ND (−0.34) suggests that a large neutrality distance (that

is, long sequences of neutral steps in the random walk) makes it

diicult to cover a branch. However, this correlation is weaker

than the correlation between the SR and each of IC, PIC, and NV

measures. The negative correlation between SR and DBI (−0.481)

indicates that a high SR value corresponds to a low DBI value.

According to the deinition of DBI, a low DBI value is an indicator

of a high density of peaks and few lat areas in the landscape.

The negative correlation between SR and DBI suggests that such

branches are easier to cover.

Note that the correlation between the SR and the AC measure

(0.04) is weaker than the correlation between SR and the other

measures. The reason behind that is that measuring the correlation

between the itness values of the random walk is not always helpful

in predicting the problem diiculty [14, 22], i.e., the correlation

between the itness values of the random walk does not always

anticipate whether a branch is easy to cover.

RQ 2: While neutrality seems harmful for search performance,

ruggedness does not seem to decrease search performance.

3.5 RQ3 Ð What are the underlying properties
of source code that inluence the itness
landscape?

Having seen that landscape properties can inluence the efective-

ness of the search, the question now is what aspects of the code

under test inluence these landscape properties. In order to distin-

guish between cases where the search is successful simply because

the problem is easy, and cases where the reason is the efectiveness

of the search algorithm, Figure 3 plots the success rate of the search

(MOSA) for each branch vs. the number of times that branch was

Table 2: The average values of the six landscape measures

for the branches of the four groups

Group AC ND NV IC PIC DBI

Easy 0.651833 114 9 0.401357 0.092291 0.871883

Search 0.828804 129 5 0.125164 0.057825 0.903901

Hard 0.898022 516 2 0.075532 0.027528 0.960161

RW 0.851833 258 4 0.098439 0.039814 0.928281
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Figure 4: Number of method executions during the random

walk for each branch in the four groups

covered by the random walk within the 30 repetitions. That is, the

value 0 means a branch is never covered and 1 means a branch

is covered by all 30 runs of either of the two techniques. Notably,

a large share of the branches is either always covered (top right

corner) or never covered (bottom left corner). However, there is

also a substantial share of the branches on which the search is efec-

tive but the random walk is not (top left corner) ś these are cases

with a benign itness landscape. Surprisingly, there are a few cases

also in the bottom right corner of the plot, which were covered

during the random walks, but not by the search. Based on these

observations, we partition the branches into four groups based on

whether they were covered by more than 50% of the runs of the

search and random walk, illustrated in Figure 3.

Table 2 shows the mean values of the itness landscape metrics

for the four partitions of Figure 3. The metrics show that branches

that are always covered (easy group) result in a more rugged land-

scape than branches that are never covered (hard group), where

the itness landscape seems to be dominated by plateaus. Branches

covered only by the search (search group) appear to result in a

substantially more challenging itness landscape than those always

covered (easy), yet the landscape metrics conirm there are fewer

plateaus than in the most challenging hard group. Branches in the

odd RW group are somewhere in between according to the metrics,

and there likely are reasons unrelated to the itness landscape that

cause the search to fail here.

There can be multiple reasons for plateaus in the itness land-

scape. A fundamental question is whether the methods containing

the brancheswere executed in the irst place ś as the itness function

only considers intra-procedural information, the itness landscape
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Figure 6: Number of exceptions thrown bymethods contain-

ing each branch in the four groups

would by deinition represent a plateau as long as a method is not

called. Figure 4 shows how often the method containing the branch

was actually executed during the random walk. Very clearly, meth-

ods in the easy group (covered by both, search and random walk)

are executed far more often than in the other groups. The methods

containing branches covered by search are executed substantially

less often, but still more often than those that are hard to cover.

To understand better why methods are not called, we look at

their accessibility, and whether they are methods or constructors

(Figure 5): Notably, the easy branches contain substantially more

constructors and public methods than branches in the hard and

search groups. Interestingly, the few cases in the fourth group are

all in public methods. Very notably, private methods are predomi-

nantly in the hard group, and thus not covered at all. Consequently,

accessibility is a primary inluential factor for the itness landscape.

This also suggests that a reined itness function that considers

inter-procedural distance information could transform the itness

landscape into a more benign one and thus improve the perfor-

mance of search-based algorithms.

In those cases where methods are actually called, the branch dis-

tances could in principle provide a more nuanced itness landscape.
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Figure 7: Number of discrete itness values obtained by the

random walk for each branch in the four groups

Since plateaus nevertheless dominate, there are two possible con-

jectures: Either the executions never even reach relevant branches

that could provide a gradient but instead cause exceptions to be

thrown by invalid complex parameter objects [26], or the source

code is dominated by branches comparing references or boolean

lags [11] which, by deinition, do not provide gradients.

Figure 6 shows the number of exceptions thrown by the methods

containing the branches during the random walk. As expected, the

hard branches are in methods that are much more likely to result in

exceptions (42% of methods calls), while the easy branches hardly

result in exceptions (8% of methods calls). Branches in group search

lie in between these two groups (28% of methods calls), and no

exceptions at all were observed for the few methods only called by

the random walks. Thus, exceptional behavior clearly is an impor-

tant factor. A possible cause for such exceptions are dependencies

on complex objects that are notoriously diicult to conigure into

valid conigurations [26]. Methods may often have implicit precon-

ditions on particular conigurations of such valid complex objects,

and the itness function usually provides no guidance to reaching

this. Fitness is typically measured only directly on the CUT and not

dependency classes; a possible way to improve the itness landscape

would thus be to also consider the code underlying the dependen-

cies, such that there is guidance towards producing valid object

conigurations. Alternative strategies could include improving the

search operators to increase chances of producing valid object con-

igurations, or seeding [25] valid object conigurations [13, 28].

To investigate the inluence of the branch types, we irst look at

the number of discrete itness values observed (Figure 7). Intuitively,

any gradients along the execution to a target branch would lead to

many small variations in the itness values. This, in fact, is observed

with the branches of the search group, which explains why the

search performs well on these branches, but the random walk does

not. Interestingly, however, the number of discrete itness values is

also relatively high for branches in the group that is only covered by

the random walk. A possible conjecture is that these are branches

requiring speciic object conigurations that are very diicult to

produce, and only happen by chance. Since the search tries to

minimize test cases as a secondary criterion while the random walk

is likely to invoke many more methods on individual objects, the
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Figure 8: Classiications of the branch types in the four

groups

chances of accidentally producing a valid object coniguration then

simply is higher for the random walk. It is interesting to see that

branches in the easy group result in very few distinct itness values;

it is likely that they are not embedded within complex conditional

code constructs, and depend on well explored parameters. The

ruggedness suggested by the itness landscape analysis in these

cases thus likely is not the result of gradients, but of frequently

lipping if-conditions, such as easy reference or null comparisons.

To investigate this hypothesis, Figure 8 shows the types of if-

conditions, based on their underlying Java bytecode instructions,

using the classiication by Shamshiri et al [27]: The most com-

mon branch type among all four groups is the łInteger-Zerož cate-

gory, which is produced by the Java compiler mainly for boolean

predicates such as if(x), where � is a boolean variable. It is well

known that such boolean predicates result in plateaus in the itness

landscape [17]. The search group contains slightly more łInteger-

Integerž branches, which is the only category of branches that can

possibly result in gradients. As expected, the easy group contains

the most łReference-Nullž and łReference-Referencež comparisons,

thus contributing to their low diiculty and low number of discrete

itness values. The branches covered only by the random walk con-

sist of only łInteger-Nullž (i.e., boolean) branches, supporting the

conjecture that these are if-conditions querying properties of com-

plex objects that are diicult to produce. Consequently, many of

the diicult aspects of the itness landscape could thus potentially

be overcome using testability transformations [11] to remove the

boolean lags.

RQ 3: Plateaus in the itness landscape are caused by lack of

inter-procedural guidance, the diiculty of satisfying preconditions

on complex objects, and the prevalence of boolean lags.

4 RELATED WORK

Aleti et al. [1] previously investigated the itness landscape in whole

test suite generation [7]. In this study, the properties of the itness

landscape were analyzed using information acquired during the

evolution, such as the sequence of itness values of the best individ-

uals and the number of itness improvements, and then correlated

with the branch and method coverage of the GA. The study results

suggest that the search space has many plateaus, and the use of the

crossover is useless when the landscape is dominated by plateaus.

Although this conirms our indings regarding plateaus, we con-

sidered a more ine-grained objective function on a branch level,

rather than aggregating all the branches into a single objective

function. Moreover, our study investigates the factors that cause

the itness landscape properties such as the underlying properties

of the source code.

Vogel et al. [30] studied the itness landscape of test suite gen-

eration for mobile applications using multi-objective evolutionary

search algorithms. Their itness landscape analysis focuses on the

global topology of the landscape, i.e., how solutions and the it-

ness are distributed, and not on local structure, i.e., ruggedness and

smoothness. The analysis is based on 11 metrics that character-

ize the Pareto-optimal solutions, population, and connectedness

of Pareto-optimal solutions. These metrics are applied after every

generation of the algorithm, revealing that the search stagnates

because of the lack of diversity. This type of analysis is orthogonal

to the landscape analysis we applied in this paper, and could be

replicated for unit test generation as well.

5 CONCLUSIONS

Understanding the performance of evolutionary algorithms in gen-

erating unit tests requires understanding the underlying structure

of the itness landscape. To this purpose, we studied the itness land-

scape in terms of its ruggedness and neutrality. Our study showed

that the itness landscape is highly dominated by neutral areas,

i.e., plateaus. Branches that have a large degree of neutrality in

their landscape seem to be harder to cover, whereas branches that

have a small degree of neutrality in their landscape seem to be easy

to cover. Indeed, for this particular search problem, ruggedness

does not seem to be detrimental to the search as it indicates the

existence of gradients that make a branch easy to cover by GA, and

possibly harder to cover by a random walk. The main causes for the

often neutral itness landscapes we identiied in our analysis are (1)

accessibility of the methods that contain the branches (i.e., private

methods are diicult to cover), (2) the diiculty of satisfying the

preconditions of methods (i.e., calling them without causing excep-

tions), but also (3) the classic lag problem (i.e., boolean comparisons

ofering no guidance) in search-based software testing. These in-

sights ofer a potential avenue to improving the itness landscape,

for example by adding inter-procedural distance information and

testability transformations.
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