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ABSTRACT

Recent progress in the runtime analysis of evolutionary algorithms

(EAs) has allowed the derivation of upper bounds on the expected

runtime of standard steady-state GAs. These upper bounds have

shown speed-ups of the GAs using crossover and mutation over the

same algorithms that only use mutation operators (i.e., steady-state

EAs) both for standard unimodal (i.e., OneMax) and multimodal

(i.e., Jump) benchmark functions. These upper bounds suggest that

populations are beneficial to the GA as well as higher mutation rates

than the default 1/𝑛 rate. However, making rigorous claims was

not possible because matching lower bounds were not available.

Proving lower bounds on crossover-based EAs is a notoriously

difficult task as it is hard to capture the progress that a diverse

population canmake.We use a potential function approach to prove

a tight lower bound on the expected runtime of the (2+1) GA for

OneMax for all mutation rates 𝑐/𝑛 with 𝑐 < 1.422. This provides

the last piece of the puzzle that completes the proof that larger

population sizes improve the performance of the standard steady-

state GA for OneMax for various mutation rates, and it proves

that the optimal mutation rate for the (2+1) GA on OneMax is

(
√
97 − 5)/(4𝑛) ≈ 1.2122/𝑛.

1 INTRODUCTION

Explaining when recombination and mutation based genetic algo-

rithms (GAs) perform better than more traditional general purpose

search heuristics that use mutation alone is one of the fundamental

problems in evolution-inspired computation. Traditionally proofs

showing that crossover is a useful operator relied either on exces-

sively low crossover rates [9, 11] or on some diversity-enforcing

mechanism to make recombination effective by increasing the prob-

ability that members of the population are different [5, 6, 13, 15, 18].

However, it was never shown whether this enforced diversity was

necessary or whether it was an additional requirement for the

proofs to hold. Recently some results have appeared proving the

superiority of standard steady state GAs1 over mutation-only al-

gorithms, without the need of any additional diversity enforcing

mechanisms. Dang at al. [4] proved that for sufficiently large popu-

lation sizes the (𝜇+1) GA is at least a linear factor faster than the best

algorithm using only standard bit mutation for the Jump benchmark

function. Hence, they showed that crossover may help algorithms

to escape more quickly from local optima. Sutton [19] even proved

that for the NP-hard Closest String problem from computational

biology, the (𝜇+1) GA with sufficiently large population size and

restarts is a fixed parameter tractable (FPT) algorithm while if only

standard bit mutation is used (i.e., (𝜇+1) EA) it is not.

1Steady state GAs, are those that replace at most a subset of the population in each
generation (usually one new individual is created). Typically they use standard bit
mutation which flips each bit independently with probability 𝑐/𝑛.

Strikingly, recombination has also been proven to be useful on

unimodal functions. Lengler [14] has shown that there exist mono-

tone functions for which the (𝜇+1) EA with not too low standard

bit mutation rate 𝑐/𝑛 (i.e., 𝑐 > 2.13) requires exponential runtime

with high probability while the (𝜇+1) GA with sufficiently large

population sizes can solve them in 𝑂 (𝑛 log𝑛) expected runtime for

arbitrary mutation rates i.e., Θ(1)/𝑛. Analyses have revealed that

the (𝜇+1) GA is faster than the (𝜇+1) EA using any standard bit mu-

tation rate and population size, even on unimodal functions where

the latter is particularly efficient i.e., OneMax [2, 3]. Furthermore,

if the fitness of offspring that are identical to their parents is not

unnecessarily re-evaluated, then the algorithm is faster than any

unary unbiased black box algorithm for the problem [12], albeit

slower than if the diversity is enforced [1, 18]. To prove these re-

sults, precise analyses up to the leading constants are required since

for OneMax the algorithms have the same asymptotic expected

runtime 𝑂 (𝑛 log𝑛) for moderate population sizes.

An important insight from these analyses is that if diversity

is enforced as in Sudholt’s work [18], then inevitably there are

no advantages of using population sizes greater than 𝜇 = 2 for

OneMax. On the other hand, the analysis of Corus and Oliveto [3]

provides upper bounds that decrease with the population size (up

to some sub-logarithmic limit). For large enough population sizes

the best derived upper bound is roughly 1.64𝑛 ln𝑛 while, for 𝜇 = 2,

Corus and Oliveto only provide a larger upper bound of 4𝑒𝑐𝑛 ln𝑛
𝑐 (𝑐+4) +

𝑂 (𝑛) [2]. Due to a mistake in one probability calculation this turns

out to actually be 9𝑒𝑐𝑛 ln𝑛
𝑐 (2𝑐+9) +𝑂 (𝑛).

Indeed, all the positive results summarised above regarding the

plain (𝜇+1) GA required sufficiently large population sizes. While

the comparative statements with the mutation-based algorithms

were possible because of the availability of lower bounds on their

expected runtime, rigorously showing whether the suggested pop-

ulation sizes are actually necessary requires lower bounds on the

expected runtime of the (𝜇+1) GA. Proving lower bounds for GAs

with crossover is a notoriously hard task. The only available analy-

sis concerning a standard GA is the proof that the simple genetic

algorithm (SGA [7]) cannot solve OneMax in polynomial time with

overwhelming probability due to the ineffectiveness of the fitness

proportional selection operator [16, 17]. There have been recent

attempts to generalize proof methods like the family tree technique

to crossover-based algorithms [20]; however, these only apply in a

specific setting without mutation.

Providing lower bounds on the expected runtime of the (𝜇+1) GA

for OneMax has turned out to be surprisingly difficult. Sudholt

simplified the analysis by considering a łgreedyž (2+1) GA that

always selects amongst the fittest individuals in the population and

is sped-up by automatically achieving the best possible crossover

operation between different parents [18]. A less greedy (2+1) GA



GECCO ’20, July 8ś12, 2020, Cancún, Mexico Pietro S. Oliveto, Dirk Sudholt, and Carsten Witt

was considered by Corus and Oliveto where individuals are only

immediately crossed over optimally if the Hamming distance be-

tween the parents is larger than 2 [2]. These simplified algorithms

allow the analysis to ignore the improvements which may occur in

standard GAs when one parent is crossed over with another one

of different fitness. However, it was never proven that the algo-

rithms are indeed faster than the standard (2+1) GA, hence that

the bounds are also valid for the latter algorithm. In this paper we

provide a lower bound for the (2+1) GA with no simplifications

that matches its upper bound up to the leading constant, hence

providing a rigorous proof that larger populations are beneficial to

the GA for OneMax. The preciseness of the results also allows us

to derive that the optimal mutation rate 𝑐/𝑛 for the algorithm is

approximately 𝑐 = 1.21221445 for any 𝑐 ∈ (0, 1.422].
A major difficulty in proving rigorous lower bounds for popula-

tions with crossover is to find a way to aggregate the state of the

algorithm such that it accurately captures the current distance from

the optimum, but also the potential improvements of the crossover

operator. These advancements could be very big if the parents

have a large Hamming distance, and our aim is to show that this

rarely happens. We solve the aggregation problem for the (2+1) GA

by defining a potential function that captures the current fitness

and opportunities for easy improvements through crossover. By

showing bounds on the expected increase in the potential, we are

able to quantify how the distance to the optimum decreases in one

generation. The challenge lies in proving this for every possible

population, from those with identical individuals to those with

a good amount of diversity. Once the potential is appropriately

bounded, we can use standard drift analysis arguments to bound

the expected time from below.

1.1 Main Contributions

The expected optimisation time of the (2+1) GA is bounded from

above as follows.

Theorem 1. The expected optimisation time of the (2+1) GA with

mutation rate 𝑐/𝑛, 𝑐 > 0 a constant, on OneMax is at most

9𝑒𝑐

𝑐 (2𝑐 + 9) · 𝑛 ln𝑛 +𝑂 (𝑛).

For 𝑐 = 1 this is 9
11 · 𝑒𝑛 ln(𝑛) +𝑂 (𝑛) ≈ 2.224𝑛 ln(𝑛) +𝑂 (𝑛). The

upper bound follows from applying the analytical framework in [2]

with a corrected transition probability for 𝑝𝑟 , using the value 1/(4𝑒)
instead of 5/(24𝑒). It can also be proven with mild adaptations of

the proof of [18, Theorem 4].

Our main contribution is the following lower bound that matches

the upper bound proven in Theorem 1 up to small-order terms.

Theorem 2. The expected optimisation time of the (2+1) GA with

mutation rate 𝑐/𝑛, and 0 < 𝑐 ≤ 1.422 a constant, on OneMax is at

least
9𝑒𝑐

𝑐 (2𝑐 + 9) · 𝑛 ln𝑛 −𝑂 (𝑛 log log𝑛) .

Since the bounds from Theorems 1 and 2 have the same leading

constant 9𝑒𝑐

𝑐 (2𝑐+9) , which is minimised for

𝑐 =

√
97 − 5
4

≈ 1.21221445,

Algorithm 1 (2+1) GA

Initialize 𝑃 = {𝑥1, 𝑥2} by selecting two search points from {0, 1}𝑛
independently and uniformly at random (u. a. r.).

for 𝑡 ← 1, 2, . . . do

Select 𝑦1 and 𝑦2 from 𝑃 u.a.r. with replacement.

Create 𝑧 by applying uniform crossover to 𝑦1 and 𝑦2.

Flip each bit in 𝑧 independently with probability 𝑐/𝑛.
Remove the worst of 𝑥1, 𝑥2 and 𝑧, breaking ties u. a. r.

end for

we identify this as the optimal mutation rate for the (2+1) GA (up to

small-order terms) within the range of rates covered by Theorem 2.

Theorem 3. Amongst all mutation rates 𝑐/𝑛 with 𝑐 ∈ (0, 1.422],
the choice 𝑐 =

√
97−5
4 is the optimal mutation rate of the (2+1) GA on

OneMax, up to small-order terms. Then the expected optimisation

time is ≈ 2.18417𝑛 ln𝑛 +𝑂 (𝑛).

The best identified mutation rate for the (2+1) GA is lower than

the one minimising the upper bound for larger population sizes 𝜇 ≥
5 (it is at least 1.425/𝑛 and increases with 𝜇) always providing upper

bounds below 1.7𝑛 ln𝑛 and decreasing with 𝜇 [2]. This implies that

the (2+1) GA with mutation rate
√
97−5
4𝑛 is at least 28% slower than

any (𝜇+1) GA with 𝜇 ≥ 5 and appropriate mutation rates.

In this extended abstract, many proofs are removed because of

space constraints.

2 PRELIMINARIES

The (2+1) GA is defined in Algorithm 1. The algorithm initialises

the population with two randomly chosen individuals. At each

generation it selects two random parents with replacement to be

mated via uniform crossover. The operator assigns each bit to the

offspring by selecting the corresponding bit from one parent with

probability 1/2 and from the other with the same probability. Stan-

dard bit mutation is then applied to the offspring by flipping each

of its bits independently with probability 𝑐/𝑛. Finally, the worst
individual amongst the parents and the offspring is removed to

select the new population. Ties are broken uniformly at random.

We will analyse the expected runtime of the algorithm to opti-

mise the function 𝑓 (𝑥) = OneMax(𝑥) = ∑
𝑛

𝑖=1 𝑥𝑖 , which counts the

number of 1-bits in a bitstring. We write a population {𝑥1, 𝑥2} in
order of monotonically decreasing fitness, that is, 𝑓 (𝑥1) ≥ 𝑓 (𝑥2).
Let 𝑛11 be the number of bit positions where both parents have

ones and likewise for 𝑛00 and the number of zeros. Let 𝑛10 be the

number of positions where 𝑥1 has a 1 and 𝑥2 has a 0 and likewise for

𝑛01. Then we have 𝑓 (𝑥1) = 𝑛11 + 𝑛10 and 𝑓 (𝑥2) = 𝑛11 + 𝑛01. Since
by assumption, 𝑓 (𝑥1) ≥ 𝑓 (𝑥2), we have 𝑛10 ≥ 𝑛01 and 𝑛10 = 𝑛01
is equivalent to the two individuals having equal fitness. In case

𝑛10 = 0, both individuals are identical. Such a population is called

monomorphic in population genetics, and we use this term here.

Note that the (2+1) GA is an unbiased algorithm in the sense of

Lehre and Witt [12]. Hence, due to symmetry of bit positions, it

suffices to know 𝑛11, 𝑛10 and 𝑛01 to fully characterise the state of

the algorithm. Note that 𝑛00 can be derived as 𝑛 − 𝑛11 − 𝑛10 − 𝑛01.
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The following lemma characterises probabilities of setting a bit

to 1 in the offspring after a crossover of two different parents and a

mutation of the result.

Lemma 4. Consider a crossover of two parents 𝑥,𝑦 followed by

mutation with mutation rate 𝑝𝑚 , resulting in an offspring 𝑧. For all 𝑖 ,

P(𝑧𝑖 = 1) =



1 − 𝑝𝑚 if 𝑥𝑖 = 𝑦𝑖 = 1

1/2 if 𝑥𝑖 ≠ 𝑦𝑖

𝑝𝑚 if 𝑥𝑖 = 𝑦𝑖 = 0.

Proof. If 𝑥𝑖 = 𝑦𝑖 then crossover will create an offspring with

the same bit value. The statement for 𝑥𝑖 ≠ 𝑦𝑖 holds because of sym-

metry, or using the following, alternative argument. The offspring

has a 1 if crossover creates a 1 and mutation does not flip bit 𝑖 , or if

crossover creates a 0 and mutation does flip bit 𝑖 . The probability of

the former event is 1/2 · (1 − 𝑝𝑚) and the probability of the latter

event is 1/2 · 𝑝𝑚 . Together, this gives 1/2. □

Note that differing bits 𝑥𝑖 ≠ 𝑦𝑖 are set to 1 with probability 1/2,
irrespective of the mutation rate. Hence, when two parents are

selected, we only need to consider the effect of mutation on the bits

where the parents agree. We frequently and tacitly use this fact.

3 A POTENTIAL FUNCTION APPROACH

Our lower bound applies when only considering populations where

the number of zeros in the fitter parent is at most 𝑛/polylog(𝑛) and
at least polylog(𝑛). This implies that all probabilities that involve

flipping a 0 to 1 are polylogarithmically small.

The main tool for our lower bound is going to be drift analysis,

applied to a potential function that captures the current state and

potential easy fitness improvements.

Definition 1. For a population 𝑃 with values 𝑛11, 𝑛10, 𝑛01, 𝑛00
we define the potential of 𝑃 as

𝜑 (𝑃) = 𝑛11 + 𝑛10 +
𝑛01

3
.

The intuition is that 𝑛11 + 𝑛10 describes the current best fitness
in the population. The term 𝑛01/3 adds potential to the best fitness

as the population has the potential to exploit the diversity given

by the 𝑛01 1-bits that only exist in the less fit individual during a

successful crossover operation.

The choice of the factor 1/3 is motivated as follows. We know

from previous work [2, 18] that the most helpful populations for

improvements are those where two search points have the same

number of ones and Hamming distance 2, that is, 𝑛10 = 𝑛01 = 1.

(Larger Hamming distances have the potential for larger fitness

improvements, but such populations are rarely reached when the

number of zeros becomes reasonably small.)

Assume the current state has 𝑛10 = 𝑛01 = 1, corresponding to

a potential of 𝑛11 + 𝑛10 + 1/3. The most likely transitions (and,

when only𝑂 (𝑛/polylog(𝑛)) zeros are left, the only transitions with
probability Ω(1)) are (1) collapsing the population to copies of one

parent (and potential𝑛11+𝑛10) and (2) creating a surplus of one 1-bit
by crossover and not flipping anything else (potential 𝑛11 +𝑛10 + 1).
The probability of the former event is roughly2 (1− 𝑝𝑚)𝑛/4, which
2In this informal discussion we ignore events of smaller probability (e. g. picking the
same parent twice and creating the other population member by a lucky mutation).

is the probability of selecting the same parent twice, not flipping any

bits and then selecting the other population member for removal

plus the probability of selecting different parents, creating one

parent by crossover and not flipping any bits. The probability of

the latter event is roughly (1 − 𝑝𝑚)𝑛/8, which is the probability of

selecting different parents, setting both differing bits to 1 and not

flipping any bits in the subsequent mutation.

Comparing these terms, the conditional probability of an im-

provement via crossover is roughly 1/3. In case a monomorphic

population is reached, the potential reduces by 1/3 and this hap-

pens with conditional probability 1 − 1/3. In the latter event, the

potential increases by 1 − 1/3 and this happens with conditional

probability 1/3. The net effect of these transitions in the expected

change of the potential is (1 − 1/3)1/3 − 1/3(1 − 1/3) = 0. So the

potential balances out the effects of łvolatilež states left quickly.

Obviously, our analysis still needs to account for other, less likely

transitions. For populations with 𝑛10 = 𝑛01 > 1 the conditional

transition probabilities change as the probability of creating one

of the parents by crossover depends on the Hamming distance

𝑛10 + 𝑛01 between parents. For 𝑛10 = 𝑛01 > 1 the likely progress in

a successful crossover may be smaller than 𝑛01/3. Hence the term
+𝑛01/3 in Definition 1 is a precise estimate for the likely progress

when 𝑛01 = 1 and for larger 𝑛01 it is an overestimation.

It suffices to restrict our considerations to moderate values of

𝑛10 and 𝑛01. The reason is that the (2+1) GA always has a constant

probability of creating a monomorphic population in one genera-

tion, regardless of the current population. This means that large

values of 𝑛10 and 𝑛01 are very unlikely.

Lemma 5. Let 𝑡 ≥ log2 𝑛 and 𝑡 = 𝑛𝑂 (1) . With probability 1 −
𝑛−Ω (log𝑛) , all populations within the time interval [log2 𝑛, 𝑡] have
Hamming distance at most log2 𝑛 between their two individuals.

Proof. We call a generation that creates a population of two

identical individuals a monomorphic generation. The crucial idea is

to show that monomorphic generations are very frequent so that

large Hamming distances are unlikely to occur.

The probability of a monomorphic generation happening is at

least (1/4) (1 − 1/𝑛)𝑛 (1/3) = Ω(1) since it is sufficient to select a

fittest parent twice, to clone it and to remove the other parent (which

has probability at least 1/3). For a number 𝑡 ≥ 0 of generations after

a monomorphic one, let 𝐷𝑡 denote the maximum number of bits in

which the two parents ever have differed during these 𝑡 generations.

The crucial idea is that only mutations can increase this 𝐷-value.

The total number of bits flipped in 𝑡 generations is the sum of 𝑡𝑛

Poisson trials with success probability 𝑐/𝑛 each. Hence, within 𝑡

generations following a monomorphic one, the 𝐷-value is bounded

from above by 2𝑐𝑡 with probability 1−2−Ω (𝑡 ) according to Chernoff
bounds, and clearly the Hamming distance is no larger than the

𝐷-value. We set 𝑡 ≔ (log2 𝑛)/(2𝑐) to bound the 𝐷-value by log2 𝑛.

The proof is completed by noting that the probability of not

observing a monomorphic generation within log2 𝑛 generations

is (1 − Ω(1))log2 𝑛 = 𝑛−Ω (log𝑛) . Together with the failure bound

2−Ω (𝑡 ) , which is𝑛−Ω (log𝑛) for 𝑡 = (log2 𝑛)/(2𝑐), and a union bound,
this means that in any polynomial number of generations following

the first monomorphic one the Hamming distance never exceeds

log2 𝑛 with probability 1 − 𝑛𝑂 (1)𝑛−Ω (log𝑛) = 1 − 𝑛−Ω (log𝑛) . □
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4 ROADMAP FOR THE ANALYSIS

We give a deliberately informal, high-level view of our analysis,

where Δ := 𝜑 (𝑃𝑡+1) − 𝜑 (𝑃𝑡 ) denotes the change in potential in

one generation. By the law of total probability, Δ can be split up

according to the number of zeros flipped by mutation:

E(Δ) = E(Δ | no zeros flip) · P(no zeros flip)
+ E(Δ | one zero flips) · P(one zero flips)
+ E(Δ | at least 2 zeros flip) · P(at least 2 zeros flip) .

The case that no zeros flip does not increase the potential, hence we

aim to bound the first line from above by 0. The second line captures

the most important case: one zero flips and subsequent progress is

made. The second line will be bounded by the dominant term in

our claimed lower bound. The third line involves the probability of

flipping at least two zeros. If the number of zeros is small, this is

unlikely and thus the third line only contributes a small order term.

The above high-level view is not particularly accurate. Firstly,

the above estimations need to account for error terms. Secondly,

the notion of ł𝑖 zeros flipž used above is not well-defined. This is

because the number of zeros that can flip during mutation depends

on the parent selection. The same parents may be selected twice,

and then the number of zeros depends on the fitness of the parent.

If two different parents are used, we only consider mutations of

bits that agree in both parents, as per Lemma 4.

Hence, we need to distinguish between different events from

the parent selection. To formalise this, let 𝑃11, 𝑃22, and 𝑃12 denote

the events that parent selection chooses the first parent twice, the

second parent twice and both parents, respectively. We further

denote by 𝐹00 the number of flipping bits amongst the 𝑛00 bits and

likewise for 𝐹11 and 𝑛11 bits. We use asterisks to indicate the union

of sets: 𝐹0∗ is the number of flipping bits among 𝑛01 + 𝑛00 bits and
𝐹∗0 is the number of flipping bits among 𝑛10 + 𝑛00 bits. Variables
𝐹1∗ and 𝐹∗1 are defined analogously. Armed with this notation, we

express the third line rigorously with a combination of events.

Lemma 6. For all populations with 𝑛11 ≥ 𝑛 − 𝑛/log3 𝑛 and 𝑛10 +
𝑛01 ≤ log2 𝑛,

E(Δ | 𝑃11, 𝐹0∗ ≥ 2)P(𝐹0∗ ≥ 2)
+ E(Δ | 𝑃22, 𝐹∗0 ≥ 2)P(𝐹∗0 ≥ 2)
+ E(Δ | 𝑃12, 𝐹00 ≥ 2)P(𝐹00 ≥ 2) = 𝑂 (𝑛0∗/(𝑛 log𝑛))

Proof. We give one common way of bounding the three lines

from the statement. For all 𝐹 ∈ {𝐹0∗, 𝐹∗0, 𝐹00}, the drift can only

increase by at most 𝑛01 + 𝐹 as every flipping 0-bit can only increase

the potential by at most 1 and crossover can increase the potential

on all 𝑛01 by at most 1. Also note that P(𝐹∗0 ≥ 2) has the largest
probability amongst all variables 𝐹 (as the underlying number of

zeros is maximal for 𝐹∗0). Thus, all 3 lines are bounded as

E(Δ | 𝐹 ≥ 2)P(𝐹∗0 ≥ 2)

=

∞∑

𝑖=2

E(Δ | 𝐹 = 𝑖)P(𝐹∗0 = 𝑖) ≤
∞∑

𝑖=2

(𝑛01 + 𝑖) · P(𝐹∗0 = 𝑖)

≤
∞∑

𝑖=2

(𝑛01 + 𝑖)
(𝑐𝑛0∗

𝑛

)𝑖
=

(𝑐𝑛0∗
𝑛

)2 ∞∑

𝑖=0

(𝑛01 + 𝑖 + 2)
(𝑐𝑛0∗

𝑛

)𝑖

Since 𝑛0∗ ≤ 𝑛−𝑛11 ≤ 𝑛/log3 𝑛, we get
(
𝑐𝑛0∗
𝑛

)2
= 𝑂 (𝑛0∗/(𝑛 log3 𝑛)).

The sum is bounded by 𝑛01+2+
∑∞
𝑖=0 𝑖

(
𝑐𝑛0∗
𝑛

)𝑖
, which is 𝑛01+𝑂 (1) =

𝑂 (log2 𝑛). Together, this implies the claim. □

The cases of no zeros flipping and one zero flipping are more

difficult to handle. Corresponding drift estimates will be derived in

the following sections.

5 POTENTIAL DRIFT WHEN NO ZEROS FLIP

We now consider the potential drift when no zeros flip. When the

distance to the optimum is 𝑜 (𝑛), this case is by far the most frequent

case. This also means that our drift bounds have to be precise, as

even a small error termmay have a big impact and spoil the analysis.

We start by considering the drift conditional on selecting the

same parent twice.

Lemma 7. For all populations with 𝑛10 = 𝑛01,

E(Δ | 𝑃11, 𝐹0∗ = 0)P(𝐹0∗ = 0) = −𝑛01
9

(
1 − 𝑐

𝑛

)𝑛

E(Δ | 𝑃22, 𝐹∗0 = 0)P(𝐹∗0 = 0) = −𝑛01
9

(
1 − 𝑐

𝑛

)𝑛
.

For all populations with 𝑛10 > 𝑛01,

E(Δ | 𝑃11, 𝐹0∗ = 0)P(𝐹0∗ = 0) = −𝑛01
3

(
1 − 𝑐

𝑛

)𝑛

E(Δ | 𝑃22, 𝐹∗0 = 0)P(𝐹∗0 = 0) = 0.

Proof. First assume 𝑛10 = 𝑛01 and consider the event 𝑃11. Given

𝐹0∗ = 0, that is, if no 0-bit is flipped, the offspring can only be

accepted if no 1-bit is flipped, i. e., 𝐹1∗ = 0. These events happen

with probability P(𝐹0∗ = 0)P(𝐹1∗ = 0) = (1 − 𝑐/𝑛)𝑛 and they lead

to an offspring that is identical to 𝑥1. Since all search points have

equal fitness, 𝑥2 is removed with probability 1/3. This leads to
a monomorphic population and the potential decreases by 𝑛01/3.
Multiplying the above terms proves the claimed equality. The case

of 𝑃22 follows analogously, considering 𝐹∗0 and 𝐹∗1 instead.
For 𝑛10 > 𝑛01, if the fitter parent 𝑥

1 is selected twice, a copy of it

is created with probability (1 − 𝑐/𝑛)𝑛 and then 𝑥2 is removed. This

decreases the potential by𝑛01/3. Multiplying the above terms yields

an expectation of −𝑛01/3 · (1 − 𝑐/𝑛)𝑛 . Note that other operations
cannot increase the potential since no 0-bit is being flipped and

flipping 1-bits in 𝑥1 does not decrease the potential.

If 𝑥2 is selected twice as parent, the potential cannot increase

since no 0-bits are flipped, and it cannot decrease as any 1-bit being

flipped will lead to the offspring being rejected. □

Now we consider the drift in the potential when two different

parents are chosen. We first deal with the case of both search points

having equal fitness, 𝑛10 = 𝑛01. The following lemma gives a closed

formula for the potential drift in this case.

Lemma 8. Let 𝑆 ∼ Bin(𝑛10 + 𝑛01, 1/2) and ℓ := 𝑛10 − 𝐹00 + 𝐹11.
Then for all populations with 𝑛10 = 𝑛01,

E(Δ | 𝑃12, 𝐹00, 𝐹11)

= P(𝑆 ≥ ℓ) ·
(
5

6
· E(𝑆 | 𝑆 ≥ ℓ) + 𝐹00 −

2𝐹11

3
− 𝑛10

)

+ P(𝑆 = ℓ) · 𝑛10 − 𝐹00 − 𝐹11
18
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Proof. Consider a step where both parents are selected and

𝐹00, 𝐹11 are known. The number of bits set to 1 by crossover is

given by 𝑆 ∼ Bin(𝑛10 + 𝑛01, 1/2). By the law of total probability,

E(Δ | 𝑃12, 𝐹00, 𝐹11) =
∑

𝑠∈Z
E(Δ | 𝑃12, 𝐹00, 𝐹11, 𝑆 = 𝑠) · P(𝑆 = 𝑠) .

Since 𝑛10 = 𝑛01, the fitness of both parents is 𝑛11 + 𝑛10 and the

fitness of the offspring is 𝑛11 + 𝑠 + 𝐹00 − 𝐹11. If 𝑠 < ℓ , the latter is

less than 𝑛11 + 𝑛10 and the offspring will be rejected. If 𝑠 > ℓ , the

offspring is fitter than the parent, one of the parents will be chosen

uniformly at random for removal. If the offspring is as fit as both

parents, the offspring is removed with probability 1/3. Thus,

E(Δ | 𝑃12, 𝐹00, 𝐹11)

=

∑

𝑠∈Z
E(Δ | 𝑃12, 𝐹00, 𝐹11, 𝑆 = 𝑠) · P(𝑆 = 𝑠)

=

∑

𝑠>ℓ

E(Δ | 𝑆 = 𝑠) · P(𝑆 = 𝑠) + 2

3
· E(Δ | 𝑆 = ℓ) · P(𝑆 = ℓ)

=

∑

𝑠≥ℓ
E(Δ | 𝑆 = 𝑠) · P(𝑆 = 𝑠) − 1

3
· E(Δ | 𝑆 = ℓ) · P(𝑆 = ℓ) .

Now we estimate E(Δ | 𝑆 = 𝑠)P(𝑆 = 𝑠) for 𝑠 ≥ ℓ . Let 𝑆10 be the

number of bits among the 𝑛10 bits that are set to 1 in the offspring

and define 𝑆01 analogously for the 𝑛01 bits. Note that 𝑆 := 𝑆10 + 𝑆01
where 𝑆10 ∼ Bin(𝑛10, 1/2) and 𝑆01 ∼ Bin(𝑛01, 1/2).

Given 𝑆10 = 𝑠10 and 𝑆01 = 𝑠01, the potential difference Δ is

derived as follows. Among the 𝑛11 bits, 𝐹11 bits flip to 0, reducing

their contribution from 1 to 1/3 each, leading to a contribution of

−2𝐹11/3 to the potential difference. All the 𝑛10 bits contribute 1 to

the potential 𝜑 (𝑃𝑡 ). In 𝑃𝑡+1, 𝑠10 bits contribute 1 and the remaining

𝑛10 − 𝑠10 bits contribute 1/3 each. Hence the contribution to the

potential difference is −2(𝑛10 − 𝑠10)/3. The 𝑛01 bits contribute 1/3
each in 𝜑 (𝑃𝑡 ) and in 𝑃𝑡+1 we have 𝑠01 bits contributing 1 each and

the other 𝑛01 − 𝑠01 bits contributing 0. Hence the contribution to

the potential difference is 𝑠01 − 𝑛01/3. Finally, the contribution of

the 𝑛00 bits to the potential difference is 𝐹00. Together,

(Δ | 𝑆10 = 𝑠10, 𝑆01 = 𝑠01) = 𝐹00 −
2𝐹11

3
− 2(𝑛10 − 𝑠10)

3
+ 𝑠01 −

𝑛01

3

= 𝐹00 −
2𝐹11

3
− 𝑛10 + 𝑠 −

1

3
· 𝑠10 . (1)

By the law of total probability,

E(Δ | 𝑆 = 𝑠)

=

𝑠∑

𝑠10=0

E(Δ | 𝑆 = 𝑠, 𝑆10 = 𝑠10)P(𝑆10 = 𝑠10 | 𝑆 = 𝑠)

=

𝑠∑

𝑠10=0

(
𝐹00 −

2𝐹11

3
− 𝑛10 + 𝑠 −

1

3
· 𝑠10

)
P(𝑆10 = 𝑠10 | 𝑆 = 𝑠)

= 𝐹00 −
2𝐹11

3
− 𝑛10 + 𝑠 −

1

3

𝑠∑

𝑠10=0

𝑠10 · P(𝑆10 = 𝑠10 | 𝑆 = 𝑠)

= 𝐹00 −
2𝐹11

3
− 𝑛10 + 𝑠 −

1

3
· E(𝑆10 | 𝑆 = 𝑠) .

Now, (𝑆10 | 𝑆 = 𝑠) follows a hypergeometric distribution with

parameters 𝑛10 (number of red balls), 𝑛10+𝑛01 (number of balls) and

𝑠 (number of draws). The expectation is thus 𝑠 ·𝑛10/(𝑛10+𝑛01) = 𝑠/2.
Plugging this in yields

E(Δ | 𝑆 = 𝑠) = 𝐹00 −
2𝐹11

3
− 𝑛10 +

5

6
· 𝑠 . (2)

Together, this gives

E(Δ | 𝑃12, 𝐹00, 𝐹11)

=

∑

𝑠≥ℓ
E(Δ | 𝑆 = 𝑠) · P(𝑆 = 𝑠) − 1

3
· E(Δ | 𝑆 = ℓ) · P(𝑆 = ℓ)

=

∑

𝑠≥ℓ

(
𝐹00 −

2𝐹11

3
− 𝑛10 +

5

6
· 𝑠
)
· P(𝑆 = 𝑠)

− 1

3
·
(
𝐹00 −

2𝐹11

3
− 𝑛10 +

5

6
· ℓ
)
· P(𝑆 = ℓ) .

Using
∑

𝑠≥ℓ
𝑠 · P(𝑆 = 𝑠) =

∑

𝑠≥ℓ
𝑠 · P(𝑆 = 𝑠 ∧ 𝑆 ≥ ℓ)

=

∑

𝑠≥ℓ
𝑠 · P(𝑆 = 𝑠 | 𝑆 ≥ ℓ)P(𝑆 ≥ ℓ) = E(𝑆 | 𝑆 ≥ ℓ)P(𝑆 ≥ ℓ),

the first terms simplify as

∑

𝑠≥ℓ

(
𝐹00 −

2𝐹11

3
− 𝑛10 +

5

6
· 𝑠
)
· P(𝑆 = 𝑠)

=

(
𝐹00 −

2𝐹11

3
− 𝑛10

)∑

𝑠≥ℓ
P(𝑆 = 𝑠) + 5

6

∑

𝑠≥ℓ
𝑠 · P(𝑆 = 𝑠)

=

(
𝐹00 −

2𝐹11

3
− 𝑛10

)
P(𝑆 ≥ ℓ) + 5

6
· E(𝑆 | 𝑆 ≥ ℓ)P(𝑆 ≥ ℓ) .

The last term simplifies as

− 1

3
·
(
𝐹00 −

2𝐹11

3
− 𝑛10 +

5

6
· ℓ
)
· P(𝑆 = ℓ)

= − 1

3
·
(
𝐹00 −

2𝐹11

3
− 𝑛10 +

5

6
· (𝑛10 − 𝐹00 + 𝐹11)

)
· P(𝑆 = ℓ)

= − 1

3
·
(
𝐹00

6
+ 𝐹11

6
− 𝑛10

6

)
· P(𝑆 = ℓ)

= − 𝐹00 + 𝐹11 − 𝑛10
18

· P(𝑆 = ℓ) = 𝑛10 − 𝐹00 − 𝐹11
18

· P(𝑆 = ℓ) .

Together, this proves the claim. □

The bound from Lemma 8 depends on the expected surplus

E(𝑆 | 𝑆 ≥ ℓ) generated by a crossover on the bits that differ between
the two parents, where ℓ reflects the fitness threshold above which

offspring are accepted. We use the following formula to simplify

such expressions. The proof goes back to work by Gruder [8] that

is highlighted in a paper by Johnson [10].

Lemma 9. Let 𝑆 ∼ Bin(𝑛, 1/2), then for all ℓ ∈ N,

E(𝑆 | 𝑆 ≥ ℓ)P(𝑆 ≥ ℓ) = ℓ

2
· P(𝑆 = ℓ) + 𝑛

2
· P(𝑆 ≥ ℓ).

Using Lemma 9, we obtain the following simplified formula.
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Lemma 10. Let 𝑆 ∼ Bin(𝑛10 + 𝑛01, 1/2). Then for all populations

with 𝑛10 = 𝑛01,

E(Δ | 𝑃12, 𝐹00, 𝐹11)

= P(𝑆 ≥ 𝑛10 − 𝐹00 + 𝐹11) ·
(
𝐹00 −

2𝐹11

3
− 𝑛10

6

)

+ P(𝑆 = 𝑛10 − 𝐹00 + 𝐹11) ·
17𝑛10 − 17𝐹00 + 13𝐹11

36
.

We use Lemma 10 to show that, to get an upper bound on the

drift when 𝐹00 = 0, we only need to consider 𝐹11 ∈ {0, 1} as larger
values lead to a non-positive drift. This is not obvious, but follows

from a lengthy and trite calculation.

Lemma 11. For all 𝑛10 = 𝑛01 and all 𝑖 ≥ 2,

E(Δ | 𝑃12, 𝐹00 = 0, 𝐹11 = 𝑖) ≤ 0.

Now we are able to give an upper bound on the potential drift.

Lemma 12. For every population with 𝑛10 = 𝑛01,

E(Δ | 𝑃12, 𝐹00 = 0) ≤



0 if 𝑛10 = 0
1
9 · P(𝐹11 = 0) if 𝑛10 = 1
1
8 · P(𝐹11 = 0) + 1

64 · P(𝐹11 = 1) if 𝑛10 ≥ 2.

For the case of unequal fitness, we use similar arguments as

before. This scenario has more involved calculations as we need to

distinguish different cases: the offspring may be at least as good

as the fitter parent, and then the calculations are similar to the

equal-fitness scenario. The offspring may also be worse than the

fitter parent and better than the worse parent. In this case, the

potential is derived from a different formula as the values for 𝑛10
and 𝑛01 in the next generation are still determined according to the

fitter parent. In case the offspring’s fitness is equal to that of the

worse parent, there is a tie and the offspring is only accepted with

probability 1/2. The lemma defines two thresholds ℓ1 and ℓ2 that

reflect the number of bits crossover needs to set to 1 to achieve the

fitness of 𝑥1 and 𝑥2, respectively.

Lemma 13. Let 𝑆 ∼ Bin(𝑛10 + 𝑛01, 1/2), ℓ1 ≔ 𝑛10 − 𝐹00 + 𝐹11 and
ℓ2 ≔ 𝑛01 − 𝐹00 + 𝐹11. Then for all populations with 𝑛10 > 𝑛01,

E(Δ | 𝑃12, 𝐹00, 𝐹11) = P(𝑆 > ℓ1) ·
2𝐹00 − 2𝐹11 − 𝑛10 + 𝑛01

3

+ P(𝑆 = ℓ1) ·
𝐹00 − 𝐹11 + 𝑛01

3

+ P(𝑆 > ℓ2) ·
2𝐹00 − 𝑛01

6

+ P(𝑆 = ℓ2) ·
𝐹00

6
.

Considering 𝑃12 and crossover is easy for 𝐹00 = 0 and 𝑛10 > 𝑛01
as the potential drift is always non-positive.

Lemma 14. For all 𝑛10 > 𝑛01 and all 𝐹11 ∈ N0,

E(Δ | 𝑃12, 𝐹00 = 0, 𝐹11) ≤ 0.

Assembling the previous drift bounds under various conditions,

we get the following drift bounds.

Lemma 15. Assume 𝑐 ≤ 56/9, 𝑛10 = 𝑛01 and 𝑛11 ≤ 𝑛 − 𝑐 .
E(Δ | 𝑃11, 𝐹0∗ = 0) · P(𝑃11, 𝐹0∗ = 0)
+ E(Δ | 𝑃22, 𝐹∗0 = 0) · P(𝑃22, 𝐹∗0 = 0)
+ E(Δ | 𝑃12, 𝐹00 = 0) · P(𝑃12, 𝐹00 = 0)

≤
{
2𝑐𝑛2

10
9𝑛 if 𝑛10 = 𝑛01

−𝑛01
12

(
1 − 𝑐

𝑛

)𝑛
if 𝑛10 > 𝑛01.

Proof. For 𝑛10 = 𝑛01, we argue that Lemma 12 implies

E(Δ | 𝑃12, 𝐹00 = 0) ≤ 𝑛01

9

(
1 − 𝑐

𝑛

)𝑛11

.

This is obvious for 𝑛10 ≤ 1; for 𝑛10 ≥ 2 it follows from P(𝐹11 = 1) =
𝑐𝑛11/𝑛 · (1 − 𝑐/𝑛)𝑛−1 = 𝑐𝑛11/(𝑛−𝑐) · (1 − 𝑐/𝑛)𝑛 ≤ 𝑐 (1 − 𝑐/𝑛)𝑛 and

1/8 + 𝑐/64 ≤ 2/9 ≤ 𝑛01/9 using 𝑐 ≤ 56/9.
By Lemma 7 and Lemma 12, along with P(𝑃12) = P(𝑃11 ∪ 𝑃22) =

1/2 and P(𝐹00 = 0) = (1 − 𝑐/𝑛)𝑛00 , the left-hand side is at most

𝑛10

18

(
1 − 𝑐

𝑛

)𝑛11+𝑛00

− 𝑛10

18

(
1 − 𝑐

𝑛

)𝑛

=
𝑛10

18

(
1 − 𝑐

𝑛

)𝑛11+𝑛00
(
1 −

(
1 − 𝑐

𝑛

)𝑛10+𝑛01
)

≤ 𝑛10

18

(
1 − 𝑐

𝑛

)𝑛11+𝑛00
(
1 −

(
1 − 𝑐 (𝑛10 + 𝑛01)

𝑛

))

=
𝑛10

18

(
1 − 𝑐

𝑛

)𝑛11+𝑛00 𝑐 (𝑛10 + 𝑛01)
𝑛

≤
2𝑐𝑛210
9𝑛

.

The bound for the case 𝑛10 > 𝑛01 follows immediately from Lem-

mas 7 and 14, along with P(𝑃11) = 1/4. □

6 POTENTIAL DRIFT WHEN ONE ZERO FLIPS

In this section we show that the drift is bounded by a term that

yields the leading constant we are aiming for in our main result.

Note that here we can afford to include error terms of lower order.

Lemma 16. For all populations with 𝑛10 = 𝑛01,

E(Δ | 𝑃11, 𝐹0∗ = 1) ≤ P(𝐹1∗ = 0)
(
1 − 𝑛01

6

)
+ P(𝐹1∗ = 1)

(
2

9
− 𝑛01

9

)

E(Δ | 𝑃22, 𝐹∗0 = 1) ≤ P(𝐹∗1 = 0)
(
1 − 𝑛01

6

)
+ P(𝐹∗1 = 1)

(
2

9
− 𝑛01

9

)
.

For all populations with 𝑛10 > 𝑛01,

E(Δ | 𝑃11, 𝐹0∗ = 1)

≤
{
1
3 +

2
3 · P(𝐹1∗ = 0) if 𝑛01 = 0

(
1 − 𝑛01

3

)
· P(𝐹1∗ = 0) +

(
1
3 −

𝑛01
3

)
· P(𝐹1∗ = 1) otherwise.

E(Δ | 𝑃22, 𝐹∗0 = 1) ≤ 1

3
· P(𝐹∗1 = 0) + 1

6
· P(𝐹∗1 = 1).

Proof. First assume 𝑛10 = 𝑛01 and consider the event 𝑃11. Given

𝐹0∗ = 1, the offspring is accepted with certainty if no 1-bit is flipped.

With probability 1/2 the parent survives and then the new potential

is at most 𝑛11 + 𝑛10 + 1. Consequently, the potential changes by
at most 1 − 𝑛01/3 due to the loss of diversity. With the remaining

probability 1/2, the potential increases by at most 1. The overall

expected change in potential in this case is thus at most 1−𝑛01/6. If
a single 1-bit also flips together with the 0-bit, then the offspring has

the same fitness as both parents and the individual to be removed

is selected uniformly at random. If the offspring is removed, the
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potential does not change. If the parent is removed, the potential

increases by at most 1/3. If the other population member is removed,

the potential increases by at most 1/3 − 𝑛10/3 due to the loss of

diversity. The expected change in potential in this case is thus at

most 2/9−𝑛10/9. If more than one 1-bits flip, then the offspring will

have lower fitness than both other members and it will be rejected.

Summing up the terms proves the first claim and the case of 𝑃22
follows analogously, considering 𝐹∗0 and 𝐹∗1 instead.

For 𝑛10 > 𝑛01, given 𝐹0∗ = 1 and that the fitter parent 𝑥1 is

selected twice, we consider separate cases according to the size of

𝑛01. If 𝑛01 = 0, then no diversity can be lost. Thus, if no 1-bits flip,

the potential increases by 1 because the new offspring has higher

fitness than 𝑥1 and 𝑥2 is rejected. If at least one 1-bit flips, then

the best fitness does not change and the potential increases by at

most 1/3. Overall, for the case when 𝑛01 = 0, the potential changes

by P(𝐹1∗ = 0) + 1/3 · P(𝐹1∗ > 0) = 1/3 + 2/3 · P(𝐹1∗ = 0). If 𝑛01 > 0

and no 1-bits flip, then the potential changes by at most 1 − 𝑛01/3
since the diversity is lost because 𝑥2 is removed. If instead at least

one 1-bit flips, then the potential changes by at most 1/3 − 𝑛01/3
since the best fitness does not change and the diversity may be lost

if 𝑥2 is removed. Since for 𝑛01 > 0 these terms are negative, and the

offspring is accepted with probability 1 if 𝐹1∗ = 1 the claim follows

by summing up the two terms.

If 𝑥2 is selected twice and no 1-bits are flipped, then the potential

increases by at most 1/3 (i.e., if an 𝑛00 bit is flipped) since the parent
is removed and the diversity is kept. If a single 1-bit is flipped then

the potential increases again by at most 1/3. However, since the
offspring has the same fitness as its parent, it is necessary that the

parent is removed which happens with probability 1/2. If more

than one 1-bits are flipped, then the offspring is rejected. Summing

up the terms completes the proof. □

The proof of Lemma 16 has revealed a counterintuitive effect. A

population of individuals with very different fitness values 𝑓 (𝑥1) ≫
𝑓 (𝑥2) can have an advantage over a population where both mem-

bers have the same fitness 𝑓 (𝑥1). This is because, conditioning on

a 0-bit flipping, if the fitter parent is chosen twice, a near-arbitrary

number of 1-bits can flip at the same time and the outcome may

still be accepted. This increases the potential and explains why

Lemma 16 contains an unexpectedly large potential drift in the case

𝑛10 > 𝑛01 = 0.

When 𝐹11 ≥ 2, the drift under 𝑃12 is non-positive for 𝑛10 ≥ 10,

except for 𝐹11 = 𝑛10−1, where it is exponentially small in 𝑛10.

Lemma 17. For all 𝑛10 = 𝑛01, 𝑛10 ≥ 10 and all 2 ≤ 𝑖 ≤ 𝑛10 − 1,

E(Δ | 𝑃12, 𝐹00 = 1, 𝐹11 = 𝑖) ≤
{
5𝑛3102

−2𝑛10/3 if 𝑖 = 𝑛10 − 1
0 otherwise.

Using Lemmas 16 and 17 and considering the drift under 𝑃12
separately for 𝐹11 ∈ {0, 1} and for all 𝐹11 when 𝑛10 ≤ 10, we get:

Lemma 18. Assume 𝑐 ≤ 2.71, 𝑛10 + 𝑛01 ≤ log2 𝑛, 𝑛11 ≥ 𝑛 −
𝑛/log3 𝑛 and 𝑛00 ≥ 𝑛10 log𝑛.

E(Δ | 𝑃11, 𝐹0∗ = 1) · P(𝑃11, 𝐹0∗ = 1)
+ E(Δ | 𝑃22, 𝐹∗0 = 1) · P(𝑃22, 𝐹∗0 = 1)
+ E(Δ | 𝑃12, 𝐹00 = 1) · P(𝑃12, 𝐹00 = 1)

≤




𝑐 (2𝑐+9)
9𝑒𝑐 · 𝑛00

𝑛
· (1 +𝑂 (1/log𝑛)) if 𝑛10 = 𝑛01

𝑐

𝑒𝑐

(
1
4 +

𝑐

48 +
𝑒
𝑐

4 +𝑂 (1/log𝑛)
)
𝑛00
𝑛

if 𝑛10 > 𝑛01 = 0

𝑐

𝑒𝑐

(
1
4 +

𝑐

24 +
𝑒
𝑐

3 +𝑂 (1/𝑛)
)
𝑛00
𝑛

if 𝑛10 > 𝑛01 > 0.

7 PUTTING EVERYTHING TOGETHER

Combining results from previous sections, for different numbers of

flipping zeros, yields the following unconditional drift bound.

Lemma 19. If 𝑐 ≤ 1.422, 𝑛10 + 𝑛01 ≤ log2 𝑛, 𝑛11 ≥ 𝑛 − 𝑛/log3 𝑛
and 𝑛00 ≥ log5 𝑛, then

E(Δ) ≤ 𝑐 (2𝑐 + 9)
9𝑒𝑐

· 𝑛00
𝑛
· (1 +𝑂 (1/log𝑛)).

Proof. This follows from adding drift bounds from Lemmas 6, 15

and 18. For 𝑛10 = 𝑛01, Lemma 18 gives the stated bound. The terms

𝑂 (𝑛210/𝑛) = 𝑂 ((log4 𝑛)/𝑛) from Lemma 15 and 𝑂 (𝑛0∗/(𝑛 log𝑛)) =
𝑂 (𝑛00/(𝑛 log𝑛)) can both be absorbed in the𝑂 (1/log𝑛) term since

𝑛00/𝑛 ≥ log5 𝑛/𝑛.
For 𝑛10 > 𝑛01 = 0, the bound from Lemma 18 is at most the

bound from the same lemma for 𝑛10 = 𝑛01 since

𝑐

𝑒𝑐

(
1

4
+ 𝑐

48
+ 𝑒𝑐

4

)
≤ 𝑐 (2𝑐 + 9)

9𝑒𝑐

for 𝑐 ≤ 1.422. Then the claim follows as above.

For 𝑛10 > 𝑛01 > 0 note that Lemma 15 yields a negative upper

bound of −𝑛01/8 · (1 − 𝑐/𝑛)𝑛 = −Ω(1). Since 𝑛00 ≤ 𝑛/log3 𝑛, we
obtain a negative drift bound if 𝑛 is large enough. □

To translate the upper bound from Lemma 19 into a lower bound

on the expected runtime, we use the lower-bound version of the

multiplicative drift theorem [21, Theorem 2.2].

Theorem 20 (Multiplicative drift, lower bound, e. g., [21]).

Let 𝑋𝑡 , 𝑡 ≥ 0, be a stochastic process, adapted to a filtration F𝑡 , over
a state space 𝑆 ⊆ R≥𝑥min , where 𝑥min > 0. Assume that 𝑋𝑡 is non-

increasing, i. e., 𝑋𝑡+1 ≤ 𝑋𝑡 for all 𝑡 ≥ 0. Let 𝑇 be the smallest 𝑡 ≥ 0

such that 𝑋𝑡 ≤ 𝑥min. If there exist positive real numbers 𝛽, 𝛿 > 0 such

that for all 𝑡 < 𝑇 it holds that

(1) E(𝑋𝑡 − 𝑋𝑡+1 | F𝑡 ) ≤ 𝛿𝑋𝑡

(2) P(𝑋𝑡 − 𝑋𝑡+1 ≥ 𝛽𝑋𝑡 ) ≤ 𝛽𝛿/ln(𝑋𝑡 )
then

E(𝑇 | F0) ≥
1 − 𝛽
1 + 𝛽

ln(𝑋0/𝑥min)
𝛿

Theorem 20 requires an upper bound on the drift of the potential

function and a sufficiently small probability for large jumps of this

value. Such large jumps can occur if the two individuals of the

(2+1) GA have a large Hamming distance. Recall that Lemma 5

shows this to be unlikely.

The following lemma shows that a drift of the potential can be

translated into a lower bound on the expected optimisation time.
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This is not immediate since the potential function is a weighted

combination of two quantities.

Lemma 21. Let 𝑁𝑡 denote the number of 𝑛00-bits at time 𝑡 of the

(2+1) GA and 𝑇 the first point in time where 𝑛00 ≤ log5 𝑛. Assume

that𝑛01+𝑛10 ≤ log2 𝑛 for all points in time before𝑇 , and𝑁0 ≥ log5 𝑛.

If E(𝜑𝑡+1 − 𝜑𝑡 | 𝜑𝑡 ) ≤ 𝛿𝑁𝑡 for some 𝑛−𝑂 (1) ≤ 𝛿 < 1 and all 𝑡 < 𝑇 ,

then

E(𝑇 | 𝜑0) ≥ (1 −𝑂 (1/log𝑛))
ln𝑛 −𝑂 (ln ln𝑛)

𝛿
.

Proof. We introduce a distance function 𝜑𝑡 ≔ 𝑛 − 𝜑𝑡 = 𝑛00 +
2
3𝑛01 as the mirror image of our potential to obtain a function

to be minimised, as required in Theorem 20. Moreover, we write

Δ𝑡 = 𝜑𝑡 − 𝜑𝑡+1. The key idea is to show that the statement on

E(𝑇 | 𝜑0) holds under the slightly different drift condition

E
(
Δ𝑡 | 𝜑𝑡

)
≤ 𝛿𝜑𝑡 (3)

and then to prove that the actual drift condition E(𝜑𝑡+1 − 𝜑𝑡 | 𝜑𝑡 ) ≤
𝛿𝑁𝑡 leads to the same result, up to lower-order terms.

We consider the process from the first point in time where 𝜑𝑡 ≤
𝑛/log3 𝑛, assume (3) to hold for all 𝑡 < 𝑇 and estimate the remaining

expected time to minimise the distance 𝜑𝑡 . Lemma 5 and the facts

that at most log𝑛 bits flip per generation and that the distance

does not drop below 𝑛/log3 𝑛 within the first log2 𝑛 generations

(each happening with probability 1 − 𝑛−Ω (log𝑛) ), imply that 𝜑0 ≥
𝑛/(2 log3 𝑛) with respect to our time count. We assume this to

happen. By Lemma 5, with probability 1 − 𝑛−Ω (log𝑛) it holds that
𝑛10 + 𝑛01 ≤ log2 𝑛 for any polynomial number of steps. Assuming

this for a sufficiently long period obtained from applying Markov’s

inequality on E
(
𝑇 | 𝜑0

)
, our assumptions only change the bound

on the expected value by a 1 − 𝑛−Ω (log𝑛) factor.
Clearly, since 𝑛10 +𝑛01 ≤ log2 𝑛, crossover followed by a neutral

mutation can change the 𝜑-value by at most log2 𝑛. Moreover, each

mutation flips 𝑘 or more bits with probability at most

(
𝑛

𝑘

) ( 𝑐
𝑛

)𝑘
≤ 𝑐𝑘

𝑘!
; (4)

in particular it flips at most log2 𝑛 bits with probability 1−𝑛−Ω (log𝑛) .
Adding up these effects, we arrive at P

(
𝜑𝑡 − 𝜑𝑡+1 ≥ 2 log2 𝑛

)
=

𝑛−Ω (log𝑛) . The time to minimise the distance function is no smaller

than the time to reach a distance of at most 𝑥min ≔ log5 𝑛 (we stop

at this point to fulfill the condition on 𝑛00 in Lemma 19). Along with

𝛽 ≔ 2/log𝑛 and using 𝑋𝑡 ≔ 𝜑𝑡 , we verify the second condition of

Theorem 20 by estimating

P(𝑋𝑡 − 𝑋𝑡+1 ≥ 𝛽𝑋𝑡 ) ≤

P(𝑋𝑡 − 𝑋𝑡+1 ≥ 𝛽𝑥min) = P
(
𝑋𝑡 − 𝑋𝑡+1 ≥ 2 log2 𝑛

)
= 𝑛−Ω (log𝑛) .

Finally, we estimate this bound as 𝑛−Ω (𝑛) ≤ 𝛽𝛿/log𝑛 ≤ 𝛽𝛿/log(𝑋𝑡 )
since both 𝛽 and 𝛿 are at least inversely polynomial in 𝑛. Hence,

P(𝑋𝑡 − 𝑋𝑡+1 ≥ 𝛽𝑋𝑡 ) ≤ 𝛽𝛿/log(𝑋𝑡 ), which satisfies the condition.

Applying the theorem and recalling our assumption𝜑0 ≥ 𝑛/(2 log𝑛),

E(𝑇 | 𝑋0) ≥
1 − 𝛽
1 + 𝛽 ·

ln(𝜑0/𝑥min)
𝛿

= (1 −𝑂 (1/log𝑛)) ln(𝑛/log
4 𝑛)

𝛿

which is (1 −𝑂 (1/log𝑛)) ln(𝑛)−𝑂 (ln ln𝑛)
𝛿

. Recall that the uncondi-

tional expected time is only by a factor 1 − 𝑛−Ω (log𝑛) smaller.

Finally, we relate 𝑁𝑡 to the distance function 𝜑𝑡 and note first

that 𝜑𝑡 ≥ 𝑁𝑡 . Since, for 𝑡 < 𝑇 , our assumptions imply 𝜑𝑡 = 𝑛00 +
(2/3)𝑛01 ≤ (1 + 1/log𝑛)𝑁𝑡 , the prerequisite

E(𝜑𝑡+1 − 𝜑𝑡 | 𝜑𝑡 ) ≤ 𝛿𝑁𝑡

along with the fact Δ𝑡 = 𝜑𝑡+1 − 𝜑𝑡 imply

E
(
Δ𝑡 | 𝜑𝑡

)
≤ 𝛿 (1 − 1/log𝑛)𝜑𝑡 .

Hence, (3) has been established with parameter 𝛿 (1 − 1/log𝑛) so
that

E(𝑇 | 𝜑0) ≥ (1 −𝑂 (1/log𝑛))
ln(𝑛/log4 𝑛)
(1 − 1/log𝑛)𝛿 ,

which is again (1 −𝑂 (1/log𝑛)) ln(𝑛/log
4
𝑛)

𝛿
as claimed. □

We are now ready to prove our main result.

Proof of Theorem 2. With probability 1 − 2−Ω (𝑛) the initial

population has a maximum number of (2/3)𝑛 one-bits. Since the

number of one-bits crossover creates among the 𝑛10 and 𝑛01 bits

follows a binomial distribution with parameters 𝑛10 + 𝑛01 and 1/2,
Chernoff bounds imply that each crossover operation improves the

OneMax-value by at most 𝑛2/3 with probability 1 − 2−Ω (𝑛1/3) . The
same holds for each mutation with constant rate 𝑐 as seen in (4).

Hence, the subsequent 2 log2 𝑛 generations do not increase the

OneMax-value to more than (3/4)𝑛 with probability 1 − 2−Ω (𝑛1/3) .
We consider the first point in time when 𝑛11 ≥ 𝑛 − 𝑛/log3 𝑛. By
the same arguments as before, we then have 𝑛11 ≤ 𝑛 −𝑛/(2 log3 𝑛)
with overwhelming probability. Now Lemma 5 is in force, implying

that we can apply Lemma 21 with

𝛿 ≤ 𝑐 (2𝑐 + 9)
9𝑒𝑐𝑛

· (1 +𝑂 (1/log𝑛)) .

according to Lemma 19. Hence, the expected optimization time is

bounded from below by
(
1 −𝑂

(
1

log𝑛

))
9𝑒𝑐𝑛 ln𝑛 −𝑂 (𝑛 ln ln𝑛)

𝑐 (2𝑐 + 9) ,

which is 9𝑒𝑐

𝑐 (2𝑐+9) · 𝑛 ln𝑛 −𝑂 (𝑛 ln ln𝑛) as claimed. □

8 CONCLUSIONS

Proving lower bounds for crossover-based GAs is a notoriously hard

problem. We have provided such a lower bound for the (2+1) GA

on OneMax through a careful analysis of a potential function that

captures both the current best fitness and the potential for finding

improvements through crossover combining different łbuilding

blocksž of good solutions. Our lower bound is tight up to small-order

terms. This for the first time proves rigorously that populations are

provably beneficial for standard steady-state genetic algorithms.

We also identified the optimal mutation rate for the (2+1) GA as

𝑐 = (
√
97 − 5)/(4𝑛) for the considered range of mutation rates 𝑐/𝑛.

Our lower bound applies for 𝑐 ≤ 1.422 and an obvious open

question is whether the leading constant in the expected runtime

remains at 9𝑒𝑐/(𝑐 (2𝑐 + 9)) when this threshold is exceeded.
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