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ABSTRACT   

Establishing that a nanoparticle dispersion can, in fact, be treated as a solution has an important 

practical ramification, namely the application of solubility theories for solvent selection. 

However, what distinguishes a solution and dispersion has remained ambiguously understood. 

Based on the recent progress in statistical thermodynamics on multiple-component solutions, 

here we establish the condition upon which a nanoparticle dispersion can be considered a single-

phased solution. We shall provide experimental evidence already found in the literature showing 

the solution nature of nanoparticle dispersions. 
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1. Introduction 

Dispersions of nanoparticles and colloids have not only been of scientific interest but also of 

technological importance. In the literature, the terms such as colloidal dispersion, suspension, and 

solution have been used interchangeably [1]. IUPAC has provided a definition for dispersion 

which has evolved over the years [2–4]. The latest definition, in the context of polymer dispersion, 

is “[m]aterial comprising more than one phase where at least one of the phases consists of finely 

divided phase domains, often in the colloidal size range, dispersed throughout a continuous phase” 

(italics have been added for emphasis) [4]. The size of the continuous phase domain is one of the 

characterizing feature of dispersion [3]. In addition, the term “suspension” is used specially when 

dispersed phase particles are greater than colloidal in size [1]. However, polymer and protein 

“solutions” are often treated effectively as colloidal dispersions [1].  

 

Such conflicting statements raise the following questions. What, really, is the difference between 

a dispersion and a suspension, or a dispersion and a solution? Here, the difference in scale between 

colloidal (defined as “a state of subdivision, implying that the molecules or polymolecular particles 

dispersed in a medium have at least in one direction a dimension roughly between 1 nm and 1 μm, 

or that in a system discontinuities are found at distances of that order” [2]) and molecular (defined 

as “[a]n electrically neutral entity consisting of more than one atom” [2]) is evident. However, can 

the phase stability be defined specially in terms of thermodynamic phases and degrees of freedom 

[5–7]? Indeed, whether a carbon nanotube dispersion is a “true solution” in a thermodynamic sense 

has been debated in the literature [8–12]. What, really, is the condition upon which a dispersion is 

considered to be in a stable, single phase?  
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These questions arise both for a theoretical and applied perspective. Dispersion plays a key role 

in product formulation which involves nanoparticles, polymers and solid particles [13–16]. A 

rational approach to nanoparticle dispersion would be beneficial for choosing and screening 

candidate solvents, if solution models can be applied to dispersions [17–19]. From a theoretical 

perspective, what distinguishes a solution from surface adsorption has been founded on the Gibbs 

phase rule, which governs the number of independently-quantifiable interactions via statistical 

thermodynamics,[5–7], yet the condition for when a mixture (dispersion) can be considered a 

solution has not been written down in an experimentally-tractable manner. Hence, the chief aim of 

this paper is twofold:  

1. to establish the condition upon which a dispersion can be considered a single phase and, 

therefore, a solution, and  

2. to provide experimental evidence already found in the literature in the light of the criterion.  

 

In the following, we shall establish a universal theoretical criterion upon which a dispersion can 

be considered a solution, based on recent progress in thermodynamic phase stability condition 

[20,21] and statistical thermodynamics of fluctuation [5–7,22,23]. The same criterion will be 

shown to be the foundation for a wide range of experimental techniques. Some techniques, such 

as gravitational sedimentation and analytical ultracentrifugation, employ an external field (such as 

gravity and centrifugal force), whereas others, such as osmotic and scattering measurements, do 

not employ an external field. However, the application of the external field is merely to visualize 

the same universal criterion, as will be clarified below. The conclusion from gravitational and 
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centrifugal sedimentation is equivalent to scattering and osmotic measurements, because they all 

probe the same criterion.    

 

We start the discussion with the behaviour of systems in the presence of gravity or centrifugal 

forces, because the common notion is that dispersions settle out, whereas solutions remain stable. 

As we shall show below, phase separation is a discontinuity in the concentration profiles under an 

external field that couples with the mass or density.  

 

2. Detecting phase separation via sedimentation under gravity  

 

Whether a system separates or crashes out after standing under gravity has been invoked as the 

criterion distinguishing a solution from dispersion [11,24]. However, even molecular solutions, 

under gravity, do exhibit concentration inhomogeneity [21,25]. Hence, it is necessary to write 

down the condition for gravity-induced phase separation in a quantitative manner.  

  

Consider a vertical column that contains solvent (species 1) and “dispersion” (species 2) in 

equilibrium and let ℎ be the height from the bottom. Let us first note that the chemical potential of 

the solution species, 𝜇2, must be constant everywhere [21,25],  𝑑𝜇2 = 0 = (𝜕𝜇2𝜕𝑃 )ℎ,𝑐 𝑑𝑃 + (𝜕𝜇2𝜕ℎ )𝑃,𝑐 𝑑ℎ + (𝜕𝜇2𝜕𝑐 )ℎ,𝑃 𝑑𝑐     (1)  

due to the mutual cancellation of the chemical potential changes due to gravitational potential 

energy, pressure and the molality composition of the “dispersion”, 𝑐. See Appendix A for more 

detailed explanation on our derivation. The partial derivatives can be evaluated as the following 

[21,25]:  
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(𝜕𝜇2𝜕𝑃 )ℎ,𝑐 = 𝑣2          (2)  

(𝜕𝜇2𝜕ℎ )𝑃,𝑐 = 𝑀2𝑔          (3) 

where 𝑀2 is the molar mass of species 2. Note that the partial molar volume 𝑣2 is now dependent 

on the height ℎ and that the changes in 𝑃 and ℎ are related as 𝑑𝑃 = −𝜌𝑔𝑑ℎ          (4) 

where  𝜌 = 𝑐1𝑀1 + 𝑐2𝑀2          (5) 

Combining all above, we obtain   (𝜕𝜇2𝜕𝑐 )ℎ (− 𝑑𝑐𝑑ℎ)   = (𝑀2 − 𝑣2𝜌)𝑔        (6)  

 

What is important here is that the composition 𝑐 depends on ℎ. Nevertheless, we can show that 

the following stability condition, reminiscent of the one for homogeneous solution, is applicable 

at each ℎ:    (𝜕𝜇2𝜕𝑐 )𝑇,𝑃 > 0          (7) 

To derive Eq. (7), let us introduce the free energy of mixing in a horizontal-slice subsystem at the 

height ℎ, defined as   𝑔𝑚𝑖𝑥 = (1 − 𝑥2)𝜇1 + 𝑥2𝜇2 − (1 − 𝑥2)𝜇1𝑜 − 𝑥2𝜇2𝑜      (8)  

where 𝑥𝑖 is the mole fraction of the species 𝑖. Note that 𝜇𝑖 is independent of ℎ but 𝑥𝑖 is dependent 

on ℎ. Here we generalize the stability condition in the absence of an external field [20] to the 

solution under gravity, as   

𝜕2𝑔𝑚𝑖𝑥𝜕𝑥22 > 0           (9)  
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Since the Gibbs-Duhem equation at constant temperature and pressure applies to the horizontal-

slice subsystem at every ℎ, within which the pressure (gravity) is taken as constant,  𝑥1𝑑𝜇1 + 𝑥2𝑑𝜇2 = 0          (10)  

Using Eq. (10), Eq. (9) can be rewritten as  

𝜕2𝑔𝑚𝑖𝑥𝜕𝑥22 = 𝜕𝜇2𝜕𝑥2 − 𝜕𝜇1𝜕𝑥2 = (1 + 𝑥2𝑥1) 𝜕𝜇2𝜕𝑥2 = 1𝑥1 𝜕𝜇2𝜕𝑥2 > 0      (11)  

Since 𝑐 increases monotonously with 𝑥2 because 𝑐 = 𝑥2/𝑥1, Eq. (11) is equivalent to Eq. (7).  

 

Now we have the stability condition at hand in the presence of gravity (Eq. (7)). Eq. (6) shows 

that, because its left-hand side is always finite, the stability condition is broken ((𝜕𝜇2𝜕𝑐 ) → 0) only 

when − 𝑑𝑐𝑑ℎ  diverges. Thus, whether the dispersion really “separates” should be judged 

thermodynamically, by the discontinuous change in nanoparticle concentration 𝑐 along the height. 

The chief role of gravity here is to make the thermodynamic stability condition (Eq. (7)) visible 

through the continuity / discontinuity of concentration profile along the height.  

 

Let us apply our stability theory to gold nanospheres dispersed in water, whose diameter range 

from 13 to 150 nm, reported by Midelet et al. [26], who have obtained the equilibrium distribution 𝑐(ℎ) at 𝑡 → ∞ based on their sedimentation kinetic that has been shown to follow the classical 

Mason-Weaver theory [27],   𝑐(ℎ) = 𝐵𝑐0 exp (− ℎℎ0)         (12)  

where 𝑐0 is the initial concentration, ℎ0 = 𝑘𝑇𝑀2−𝑣2𝜌 is the characteristic height, and 𝐵 is a constant 

arising from the conservation of mass within a system of finite size, all reported in Ref [26]. Hence 

the stability condition is whether  
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− 𝑑𝑐(ℎ)𝑑ℎ = 𝐵𝑐0ℎ0 exp (− ℎℎ0)         (13) 

is finite. Figure 1 shows that − 1𝑐0 𝑑𝑐(ℎ)𝑑ℎ  is obviously finite for smaller-sized nanoparticles. 

However, as the particle diameter increases − 1𝑐0 𝑑𝑐(ℎ)𝑑ℎ  increases drastically, bringing the system 

closer to phase separation. Based on the above, how can we judge if the system is phase separated? 

A possible practical criterion would be when ℎ0 , the characteristic length in the variation of 

concentration profile, becomes in the same order as the particle size. In our example in Figure 1, 

the largest particle has ℎ0 = 12 μm, which is still two order of magnitude larger than its diameter 

(150 nm). However, these two values are much closer than for the smallest nanoparticle, 13 nm in 

diameter with ℎ = 18 mm.    

 

Note that our stability condition, namely the convergence of 𝑑𝑐/𝑑ℎ, is a general condition that 

can be used regardless of the model, whereas its application to gold nanoparticle dispersions have 

relied upon the Mason-Weaver theory [27] which pre-supposes particles in dilution, in which ℎ =0 as “bottom” of the dispersion. However, for sufficiently large 𝑐, there is a sediment phase in ℎ <0 region where 𝑐(ℎ) is expected to be near-constant. Incorporating such a case would be difficult, 

yet even in such cases we can still take ℎ = 0 as the bottom of the “dispersion” phase (i.e. the top 

of the sediment phase) and look for the characteristic length ℎ0 in the exponential evolution of 𝑐(ℎ) in the dispersion region (ℎ > 0).  

 

3. Evidence from osmotic stability via ultracentrifugation and scattering  
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Gravity-induced sedimentation is a slow process which can take weeks before reaching 

equilibrium [26–29]. Hence, a quicker evaluation of phase stability is needed in practice.  

Sedimentation equilibrium using analytical ultracentrifuge (AUC) [30–32] and light, X-ray or 

neutron scattering [23,33,34], despite their apparent difference, provides an equivalent route to 

evaluating phase stability. Note also that the same formalism can be applied to the centrifugal 

forces (with the angular velocity 𝜔 and radius 𝑟 from the axis of rotation) to derive a well-known 

relationship,  (𝜕𝜇2𝜕𝑐 )𝑟 (− 𝑑𝑐𝑑(𝑟2))   = 12 (𝑀2 − 𝑣2𝜌)𝜔2        (14) 

in which the divergence of − 𝑑𝑐𝑑(𝑟2) breaks the phase stability [21,31,35]. Thus, the chief role of the 

centrifugal field is to visualize the thermodynamic stability condition (Eq. (7)) through the 

continuity / discontinuity concentration profile, 𝑐(𝑟), along the radius.  

 

What is particularly useful is that the thermodynamic stability condition (Eq. (7)) can be 

expressed in a different yet equivalent expression, in terms of the osmotic pressure Π, as  (𝜕Π𝜕𝑐 )𝑇,𝜇1 > 0           (15a) 

( 𝜕Π𝜕𝑐2)𝑇,𝜇1 > 0           (15b) 

The equivalence between Eqs. (7) and (15) is shown in Appendix B. It is through the osmotic 

representation of the stability condition that a close relationship between AUC and scattering, 

unexpected as it may seem, becomes apparent. Both techniques can probe how the osmotic 

pressure Π depend on the particle concentration. AUC probes this via [36,37]  

(𝜕Π𝜕𝑐 )𝑇,𝜇1 = (𝜕𝜌𝜕𝑐)𝑃.𝜇12𝜔2𝑑 ln 𝑐 𝑑𝑟2           (16) 
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Scattering probes this condition via  ( 𝜕Π𝜕𝑐2)𝑇,𝜇1 = 𝑅𝑇lim𝑞→0 𝑆(𝑞,𝑐2)         (17)  

where the structure factor, 𝑆(𝑞, 𝑐2), as a function of the wavenumber 𝑞, can be obtained from the 

scattering intensity, 𝐼(𝑞, 𝑐2), as   𝑆(𝑞, 𝑐2) = 𝐼(𝑞,𝑐2)𝑃(𝑞)           (18) 

where 𝑃(𝑞) is the form factor [38–40]. Under this condition, the well-known relationship between 

the divergence of lim𝑞→0 𝑆(𝑞, 𝑐2) and phase separation can be seen clearly in Eq. (17). The stability 

condition expressed osmotically in Eq. (18) is more complex than the approach in Section 2 for 

the need to consider both (𝜕𝜌𝜕𝑐)𝑃.𝜇1and 
𝑑 ln 𝑐 𝑑𝑟2 . In fact, the former is related to the condition of phase 

separation without the external force (centrifugal force) whereas the latter is expressed as a profile 

of 𝑐 as a function of 𝑟 and is concerned with centrifugal sedimentation. The relationship to the 

virial coefficients will turn out to be useful in our discussion below.  

 

What is common between AUC and scattering is a link to the osmotic pressure Π and its particle 

concentration dependence. It is common in the literature to report the osmotic second osmotic 

virial coefficient. However, there are two types of virial coefficients: molality (𝑐)-based 𝐴22 and 

molarity (𝑐2)-based 𝐵22, each related to Π as  

Π𝑅𝑇 = 𝑐1𝑐 + 𝐴22𝑐2 + 𝑜(𝑐2)         (19) 

Π𝑅𝑇 = 𝑐2 + 𝐵22𝑐22 + 𝑜(𝑐22)         (20) 

Even though, a direct conversion of 𝐵22 to 𝐴22  [35] involves the partial molar volume of the 

particle which may not be available in the literature, we can exploit an equivalent form of the 
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stability condition, Eq. (15b),  which comes from the monotonous relationship between 𝑐 and 𝑐2 

[41]. Hence, both molarity- and molality-based virial coefficients can be used as the measure of 

stability.  

 

The virial expansion establishes a formal analogy between osmotic pressure and gas pressure. 

This is why a “gas-like” phase reported in dispersed hydrophobic silica particles [42] and a 

“colloidal gas” phase for the mixtures of colloid and non-adsorbing polymers [43] both signify 

single-phase behaviour, where the former used up to the fourth virial coefficient to demonstrate 

phase stability. However, a positive second virial coefficient without higher-order contributions is 

a sufficient piece of evidence for phase stability, because Π  is an increasing function of 

concentration (either 𝑐 or 𝑐2) in the concentration region in which the measurement took place, 

hence the phase stability condition (Eq. (15) or Eq. (20)) is satisfied. A finite, positive 𝐵22 has 

been reported for magnetic nanoparticle (oleic acid-coated iron oxide), dispersed in decalin using 

AUC [44,45]; silica nanoparticles in aqueous polyethylene oxide solutions exhibits an increasing Π along the nanoparticle concentration [46]; a large positive yet finite 𝐵22 via turbidity has been 

reported from PDMS-grafted silica nanoparticles in octamethyltrisiloxane solvent [47]. For SAXS, 

most of the experiments aim at determining the size and shape of nanoparticles using the Porod 

region of 𝑞 [48–51], unlike the case of biological macromolecules and their assemblies [38,52] for 

which the 𝑞 → 0  behaviour has mainly been studied. Yet a finite, positive 𝐵22  for carbon 

nanotubes in NMP evidences its phase stability [8].   

 

We emphasise that that our main concern here is not the sign of 𝐵22, which infers the tendency 

for nanoparticles towards aggregation or repulsion [38,52]. Rather, the thermodynamic stability 
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condition is the finiteness of ( 𝜕Π𝜕𝑐2)𝑇,𝜇1, namely, the finiteness of lim𝑞→0 𝑆(𝑞, 𝑐2) according to Eq. (17). 

Hence a finite 𝐵22 determined from a convergent series in Eq. (18) is therefore a guarantee for the 

finiteness of  ( 𝜕Π𝜕𝑐2)𝑇,𝜇1 at small 𝑐2. Thus, we can extend the range of available evidence further by 

noting that the finiteness of ( 𝜕Π𝜕𝑐2)𝑇,𝜇1 as the thermodynamic stability condition, based on Eqs. (17) 

and (18), is equivalent to the convergence of scattering intensity 𝐼(𝑞, 𝑐2) at the 𝑞 → 0 limit.  

  

When the radius of gyration 𝑅𝑔 of a nanoparticle is calculated from the Guinier plot, ln 𝐼(𝑞) =
ln 𝐼(0) − 𝑞2𝑅𝑔3 , pre-supposes the convergence of 𝐼(0) . Even though interparticle interference, 

arising from nanoparticle aggregation or repulsion between them, makes 𝐼(𝑞) deviate from the 

form factor, the deviation due to interparticle interference, namely the structure factor [38,52], 

remains finite at 𝑞 → 0 when the thermodynamic stability condition is satisfied, as can be seen 

from Eqs. (17) and (20). The question here is not about the accuracy of fitting 𝑅𝑔 in the presence 

of interparticle interference but about the fact that 𝑅𝑔 can be determined as a finite parameter, 

which comes from the fact that the concentration effect is indeed a correction to the form factor, 

and that the structure factor, 1/ ( 𝜕Π𝜕𝑐2)𝑇,𝜇1 , is finite, hence did not make 𝐼(𝑞) diverge at 𝑞 → 0. 

Thus, a report of 𝑅𝑔 from the Guinier plot provides evidence for phase stability. Consequently, the 

routine report of 𝑅𝑔 for nanoparticles [48–51] serves as the evidence for a single-phase behaviour 

of nanoparticle dispersions.  

  

4. How a degree of freedom is lost in fluctuation  
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All the discussion so far were based on the thermodynamic stability condition, which also has the 

following relationship to concentration fluctuation, 〈(𝛿𝑐)2 〉 [53,54]:    (𝜕𝜇2𝜕𝑐 )𝑇,𝑃 = 𝑘𝐵𝑇〈𝑁1〉 1〈(𝛿𝑐)2 〉          (21) 

This relationship provides a complementary insight into phase stability and how it is broken via 

the order of magnitude of 〈(𝛿𝑐)2 〉 [22,23,33,54–56]. To this end, expressing the relative error of 𝑐 in terms of the Kirkwood-Buff integrals (KBIs), 𝐺𝑖𝑗, between the species 𝑖 and 𝑗 [22,54,55] is 

helpful.    

√〈(𝛿𝑐)2〉𝑐2 = √ 1𝑐1𝑥2+𝐺22+𝐺11−2𝐺12𝑉          (22) 

See Appendix C for derivation. Now we perform an order-of-magnitude analysis of Eq. (22), 

whose significance is explained also in Appendix C. According to Eq. (22),   

• if the system is in a single phase, the KBIs are all convergent with the magnitude of 𝑂(1), 

hence√〈(𝛿𝑐)2〉𝑐2   is 𝑂(1/√𝑉) and 〈(𝛿𝑐)2〉 is 𝑂(1/𝑉);  

• if the system is phase separated, the KBIs are divergent with the magnitude of 𝑂(𝑉),[5] 

hence  √〈(𝛿𝑐)2〉𝑐2  and 〈(𝛿𝑐)2〉 are both 𝑂(1).  

 

Thus, under phase stability, 𝑐  is allowed the error (fluctuation) 〈(𝛿𝑐)2 〉  of the order 𝑂(1/𝑉) [56]. When the stability condition is broken, the fluctuation reaches the same order as 𝑐 

(namely, 𝑂(1)), which means that 𝑐 can no longer be determined within the required precision.   

 

Thus, when the KBIs reaches the order of the system volume, the fluctuation (error) of 

concentration becomes in the same order of magnitude as the concentration itself. Concentration, 
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therefore, ceases to be a thermodynamic variable, that is to say, one thermodynamic degree of 

freedom is lost. This is the microscopic interpretation of phase instability via Eqs. (21) and (22).  

 

5. Connection to phase diagram, solubility and particle-particle interaction  

 

So far, we have focused on a direct observation of phase stability condition via scattering and 

osmotic pressure, as well as via visualisation using external fields (gravity and centrifugal forces). 

Another piece of evidence for the single-phased nature of nanoparticle dispersion comes from the 

temperature dependence of nanoparticle solubility [57], taken together with evidence that 

solubility is reversible and thermodynamic [57], and that nanoparticle concentration below 

saturation concentration can be attained as indicated with the phase diagram [58]. According to 

the Gibbs phase rule, when a dispersion (consisting of solvent and nanoparticles, i.e., 2 

components) is in a single phase, its degree of freedom is 2 − 1 + 2 = 3. Under constant pressure, 

the system still has 2 degrees of freedom, meaning that the temperature and nanoparticle 

concentration can be changed independently below the phase boundary. This is consistent with the 

degrees of freedom for a mixture in a single phase calculated from the Gibbs phase rule. The same 

degrees of freedom remain even when solvent mixtures with fixed composition are used, allowing 

the independent change of temperature and nanoparticle concentration, evidencing again the 

single-phase nature of nanoparticle dispersion.  

 

However, care must be taken when applying the concept of solubility, or solvation free energy, 

directly to the modelling of phase stability. The transfer free energy of a nanoparticle from its pure 

phase to dispersion could be modelled as the difference in nanoparticle’s solvation free energy 
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between the two phases [59]. Yet, contrary to their assumption [59], a positive free energy of 

transfer does not automatically mean phase separation, because it can simply be from low 

solubility. However, at a nanoparticle concentration, transfer free energy becomes concentration-

independent, which has been referred to as “saturation nanoparticle concentration” [59]. This is 

equivalent to the concentration at which the thermodynamic phase stability (Eq. (7)) is broken. 

Thus, the existence of saturation concentration can indeed be used to infer phase separation.  

 

In addition to solvation free energy, pairwise interaction free energy between two nanoparticles 

as a function of separation, Φ(𝑟), have been modelled using the DLVO theory and its extension, 

xDLVO theory [60,61]. The basic premise of this approach is that the nanoparticle is stable when 

the minimum of pairwise interaction energy is more than the thermal energy. However, there are 

two reasons as to why this supposition is fundamentally different from the stability condition in 

the thermodynamic sense. Firstly, to judge whether the thermodynamic stability condition is 

broken, calculating higher-order virial coefficients is indispensable, as has already been discussed 

in Section 3. Secondly, even the second virial coefficient, which is a contributor to the 

thermodynamic stability condition, involves contributions not only from the free energy minimum 

but also from all particle-particle distances from zero to infinity, as can be seen from its definition 

[62,63],  𝐵22 = − 12 ∫ 𝑑𝑟 [exp (− Φ(𝑟)𝑘𝐵𝑇 )]∞0 4𝜋𝑟2       (23)  

It is for these reasons that the DLVO theory cannot probe the thermodynamic stability condition. 

However, if there is any correlation between the thermodynamic stability condition and the 

suppositions of DLVO theory is a worthwhile question for further investigation.  
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The solution-like nature of nanoparticles in solvents makes it possible to use the tools and 

insights from the statistical thermodynamics of solutions and to apply them to rationalize 

experimental observations. Size-selective precipitation of nanoparticles is important not only in 

fabricating uniform-sized nanoparticle samples but also as a support for the single-phase nature of 

dispersions [64–67]. Especially important is the establishment of the partition coefficient, 

regardless of dispersant concentration, between dispersed and flocculated phases [66,67]. 

Consequently, the modulation of the partition coefficient, or equivalently the transfer free energy, 

upon the addition of poor solvents (referred to as species 3) can be described as [5,68]  − (𝜕𝜇2∗𝜕𝜇3)𝑇,𝑃,𝑐2→0 = 𝑐3(𝐺23 − 𝐺21)        (24) 

where 𝐺21  and 𝐺23  are the Kirkwood-Buff integrals describing nanoparticle-poor solvent and 

nanoparticle-good solvent interactions, respectively. Even though this equation is exact under 

dilute nanoparticle concentration, it is applicable when the effect of poor solvent on a nanoparticle 

is much stronger than nanoparticle-nanoparticle interaction [69]. 𝐺21 and 𝐺23 can be quantified 

when Eq. (24) is solved simultaneously with the volume of nanoparticle,  𝑉2 = −𝑐1𝑉1𝐺21 − 𝑐3𝑉3𝐺23 + 𝑅𝑇𝜅𝑇        (25)  

where 𝑉1  and 𝑉3  are the partial molar volumes of good and poor solvents in the bulk phase, 

respectively, and 𝜅𝑇 is the isothermal compressibility of the bulk solvent mixture, which makes a 

negligibly small contribution [5,68].  

 

Clarification of the mechanism of precipitation requires the calculation of 𝐺21 and 𝐺23, just like 

many other chemical and biochemical processes whose mechanisms have been elucidated via such 

calculations.  However, qualitative insight can be drawn already from Eq. (24). The addition of 

poor solvents increases 𝜇3 while the chemical potential of nanoparticle, 𝜇2, goes up. Therefore, 
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− (𝜕𝜇2∗𝜕𝜇3)𝑇,𝑃,𝑐2→0is negative and is more so for a poorer solvent. Consequently, according to Eq. 

(24), 𝐺23 − 𝐺21 < 0, showing that the poor solvent is more excluded overall from the nanoparticle 

compared to the good solvent. The question of size-dependent precipitation could thus be 

quantified via the Kirkwood-Buff integrals, directly from experimental data, in a model-free 

manner. Note that there is a large excluded volume effect to the Kirkwood-Buff integrals, which 

are dependent on particle size; this may give rise to the discrimination based on size.  

 

Thus, upon the establishment of dispersion phase stability, state-of-the-art tools from the 

statistical thermodynamics of solutions can be applied to rationalize nanoparticle solubility and its 

modulation by poor solvents. Hence “dispersion phase stability” is a subset of “solution stability”.  

 

6. Conclusion  

This paper has established the condition upon which a “nanoparticle dispersion” can be considered 

as a solution in a single phase and how this condition can be probed using experimental 

measurements from diverse techniques. The key was the stability condition, a universal 

thermodynamic condition applicable to wide-ranging and seemingly unrelated experimental 

techniques, such as gravitational sedimentation, ultracentrifugation, osmotic pressure, turbidity 

and scattering. The thermodynamic stability condition is universally applicable regardless of 

whether an external field, such as gravity or centrifugal force, has been applied. The role of the 

external field is chiefly to visualise thermodynamic stability condition via the continuity of 

concentration profile. We have thus established a universal guideline for establishing a 

nanoparticle dispersion as a solution.  
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Prior to this paper, no such universal guideline was established. In addition to the previous 

evidence supporting the solution nature of nanoparticles based on phase diagrams [42] [43], our 

new guideline has increased the available evidence from experimental observations, previously 

not expected or intended to be the evidence. Moreover, conditions based on solvation free energy 

difference [59] and the xDLVO theory [60,61] are shown not have a direct connection to the 

stability condition.  

 

Having established the universal criterion for the solution nature of a nanoparticles in solvents, 

the future work focuses not only on systematic experimental investigation to probe nanoparticle 

phase stability which is currently underway but also to apply the statistical thermodynamics theory 

of preferential solvation (as outlined in Section 4) to the quantification of interactions underpinning 

dispersion stability and size-selective precipitation.  
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Appendix A  

 

Here we present derivations and justifications for needed to derive Eq. (6).  

 

To derive Eq. (1), it is necessary to observe that the chemical potential 𝜇2, being an intensive 

thermodynamic quantity (which does not depend on system size), depends only on intensive 

thermodynamic quantities [20]. In the absence of the gravity, a single-phase system consisting of 

two components has three degrees of freedom, according to the Gibbs phase rule [20]. Under 

constant temperature, the remaining degrees of freedom is two. This means that 𝜇2 is a function 

of two intensive parameters. Here we choose 𝑃 and 𝑐  as the two intensive parameters. In the 

presence of the gravity, 𝜇2 depends also on the height ℎ. Therefore, we can express the change of 𝜇2, 𝑑𝜇2, in terms of 𝑑𝑃, 𝑑𝑐, and 𝑑ℎ as,   𝑑𝜇2 = (𝜕𝜇2𝜕𝑃 )ℎ,𝑐 𝑑𝑃 + (𝜕𝜇2𝜕ℎ )𝑃,𝑐 𝑑ℎ + (𝜕𝜇2𝜕𝑐 )ℎ,𝑃 𝑑𝑐      (A1)  

Combining Eq. (A1) with the constancy of 𝜇2, namely, 𝑑𝜇2 = 0, yields Eq. (1).  

 

Eqs. (2) and (3) come from the definition of the partial molar volume as well as gravitational 

potential energy. Eq. (4) can be justified from the fact that the lower the position the larger the 

pressure, and the increment in the pressure 𝑑𝑃 upon the reduction of height (−𝑑ℎ) comes from 

per-area gravity of the solution, 𝜌𝑔𝑑ℎ. Eq. (6) can be derived straightforwardly from Eqs. (1)-(5).   

 

Appendix B 

 



 19 

Here we show that the phase stability under isobaric condition is equivalent to that under osmotic 

equilibrium. To do so, we need to convert an isobaric system 𝜇2(𝑐, 𝑃) to an osmotic system 𝜇2(𝑐, 𝜇1), via  𝑑𝜇2 = (𝜕𝜇2𝜕𝑐 )𝑇,𝑃 𝑑𝑐 + (𝜕𝜇2𝜕𝑃 )𝑇,𝑐 𝑑𝑃 = (𝜕𝜇2𝜕𝑐 )𝑇,𝑃 𝑑𝑐 + 𝑣2𝑑𝑃     (B1) 

together with the following relationship from the Gibbs-Duhem equation  (𝜕𝜇2𝜕𝑐 )𝑇,𝜇1 = 1𝑐2 (𝜕𝑃𝜕𝑐)𝑇,𝜇1         (B2) 

 

Eq. (B1) can be justified by the fact that the chemical potential, 𝜇2, is an intensive physical 

quantity independent of system size. Hence 𝜇2  depends only on intensive physical quantities. 

According to the Gibbs phase rule, there are 2 − 1 + 2 = 3 independent intensive parameters for 

a two-component, single-phase system. Under constant temperature, the remaining degrees of 

freedom is two. Consequently, when 𝑐  and 𝑃  are chosen as the intensive parameters, 𝜇2  is 

dependent upon them, i.e., 𝜇2(𝑐, 𝑃); when 𝑐 and 𝜇1 are chosen, the same logic leads to 𝜇2(𝑐, 𝜇1). 

Eq. (B1) is obtained from the total differentiation for 𝜇2(𝑐, 𝑃). Eq. (B2) comes from the Gibbs-

Duhem equation under constant 𝑇 , 𝑐1𝑑𝜇1 + 𝑐2𝑑𝜇2 = 𝑑𝑃 . Differentiating this equation with 

respect to 𝑐 while keeping 𝜇1 constant (𝑑𝜇1 = 0) yields Eq. (B2).  

 

Combining Eqs. (B1) and (B2), we obtain  

1𝑐2 (𝜕𝑃𝜕𝑐)𝑇,𝜇1 = (𝜕𝜇2𝜕𝑐 )𝑇,𝑃 + 𝑣2 (𝜕𝑃𝜕𝑐)𝑇,𝜇1         (B3)  

Finally, the Gibbs-Duhem equation (𝑐1𝑣1 + 𝑐2𝑣2 = 1), when used in conjunction with Eq. (B3), 

can simplify Eq. (B3) to the following form:  

 (𝜕𝜇2𝜕𝑐 )𝑇,𝑃 = 𝑐1𝑣1𝑐2 (𝜕𝑃𝜕𝑐)𝑇,𝜇1 = 𝑐1𝑣1𝑐2 (𝜕Π𝜕𝑐 )𝑇,𝜇1       (B4)  
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where the osmotic pressure Π in the rightmost term comes from the physical meaning of (𝜕𝑃𝜕𝑐)𝑇,𝜇1; 

the constant 𝜇1  signifies the presence of the semi-permeable membrane which passes through 

water only. Accordingly, the change of pressure that accompanies the change of 𝑐 is in fact that of 

the osmotic pressure. Thus, Eq. (B4) shows that the phase stability condition can be written in two 

different yet equivalent manner  (𝜕𝜇2𝜕𝑐 )𝑇,𝑃 > 0 or (𝜕Π𝜕𝑐 )𝑇,𝜇1 > 0        (B5)  

 

The stability condition for a binary system (Eq. (B5)) can be readily generalized to multiple-

component systems. Here, let us only consider a three-component system for simplicity. Let 𝑖 = 3 

be an additional component. When the solvent composition (the ratio between components 1 and 

3) are fixed, Eq. (B5) is still valid, provided that 𝑐 be extended to  𝑐 = 𝑁2𝑁1+𝑁3. This requires a semi-

permeable membrane which passes through components 1 and 3 but not 2. When nanoparticle 

concentration is dilute, keeping the ratio between 𝑁1 and 𝑁3 together with 𝜇1 is equivalent to the 

constancy of both 𝜇1 and 𝜇3, under which condition Eq. (B5) is still valid. 

 

Appendix C 

 

First, we derive Eq. (22) from Eq. (21). Eq. (21) comes from Eq. (30) of Ref [22]. We need to 

rewrite 〈(𝛿𝑐)2 〉 in terms of the Kirkwood-Buff integrals (KBIs), defined as [56]  𝐺𝑖𝑗 = 𝑉 〈𝛿𝑁𝑖𝛿𝑁𝑗 〉−𝛿𝑖𝑗〈𝑁𝑗〉〈𝑁𝑖〉〈𝑁𝑗〉          (C1) 
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where 𝑁𝑖 is the number of component 𝑖 and 𝛿𝑖𝑗 is Kronecker’s delta. This necessitates us to link 

the concentration fluctuation 〈(𝛿𝑐)2 〉 in terms of the number fluctuations. The link between the 

two is provided by the following equation (see Eq. (17) of Ref [22]).   〈(𝛿𝑐)2 〉 = 1〈𝑁1〉2 [〈(𝛿𝑁2)2 〉 − 2〈𝑁2〉〈𝑁1〉 〈𝛿𝑁1𝛿𝑁2 〉 + 〈𝑁2〉2〈𝑁1〉2 〈(𝛿𝑁1)2 〉]    (C2)  

From Eq. (C1), it follows that  〈(𝛿𝑁1)2 〉 = 〈𝑁1〉2𝑉 𝐺11 + 〈𝑁1〉         (C3) 

〈(𝛿𝑁2)2 〉 = 〈𝑁2〉2𝑉 𝐺22 + 〈𝑁2〉         (C4) 

〈𝛿𝑁1𝛿𝑁2 〉 = 〈𝑁1〉〈𝑁2〉𝑉 𝐺12         (C5) 

Substituting Eqs. (C3)-(C5) into Eq. (C2) yields 〈(𝛿𝑐)2 〉 = 〈𝑁2〉2〈𝑁1〉2 1𝑉 [ 𝑉〈𝑁1〉 + 𝑉〈𝑁2〉 + 𝐺11 + 𝐺22 − 2𝐺12]      (C6)  

Using 𝑐 = 〈𝑁2〉/〈𝑁1〉 , 
1〈𝑁1〉 + 1〈𝑁2〉 = 〈𝑁1〉+〈𝑁2〉〈𝑁1〉〈𝑁2〉 = 1〈𝑁1〉𝑥2  (where the mole fraction 𝑥2 = 〈𝑁2〉〈𝑁1〉+〈𝑁2〉 ), 

and 𝑐1 = 〈𝑁1〉/𝑉, Eq. (C6) can be rewritten as  

〈(𝛿𝑐)2 〉𝑐2 = 1𝑉 [ 1𝑐1𝑥2 + 𝐺11 + 𝐺22 − 2𝐺12]       (C7)  

which yields Eq. (22) straightway.  

 

The second aim of this Appendix is to explain how to perform the order-of-magnitude analysis. 

As a first step, let us remember that there are two types of thermodynamic quantities: extensive 

and intensive. Extensive quantities (such as 𝑁𝑖, 𝑉, energy and free energy) scales with system size 

whereas intensive quantities (such as 𝑃, 𝑇 and 𝜇𝑖) are independent of the system size. Here, we 

incorporate concentrations, such as 𝑐 = 𝑁2/𝑁1 and 𝑐𝑖 = 𝑁𝑖/𝑉, as intensive quantities. Note that 

the extensive quantities, such as 𝑁𝑖 and 𝑉, are macroscopic in scale; this is expressed as 𝑂(𝑉), in 
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the same order of magnitude as the system size, 𝑉 . Consequently, 𝑐  and 𝑐𝑖 , following their 

definitions, are 
𝑂(𝑉)𝑂(𝑉) = 𝑂(1), which do not scale with the system size.  

 

Based on this setup, let us carry out an order of magnitude analysis of Eq. (22). When the 

dispersion is in a single phase, 𝜇2 , being free energy per mole, by definition, is 𝑂(1), hence (𝜕𝜇2𝜕𝑐 )𝑇,𝑃 = 𝑂(1). Consequently, the right-hand side of Eq. (22) must also be 𝑂(1). Since 〈𝑁1〉 =
𝑂(𝑉), 〈(𝛿𝑐)2 〉 = 𝑂 (1𝑉), as has been employed in the main text.  

 

When the phase stability condition is broken, (𝜕𝜇2𝜕𝑐 )𝑇,𝑃 = 0, meaning that its order of magnitude 

becomes smaller than 𝑂(1), which is denoted as 𝑜(1). As discussed in the main text, this takes 

place when 〈(𝛿𝑐)2 〉 = 𝑂(1), as can be seen in Eq. (22).  
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Figure 1. Phase stability of gold nanoparticles with different diameters (13−150 nm), based on the 

experimental data in Ref [26]. Phase stability under gravity is guaranteed by the convergence of  − 𝑑𝑐𝑑ℎ. As the nanoparticle diameter increases − 𝑑𝑐𝑑ℎ becomes closer to divergence.  

 

 

 


