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DivIVA Controls Progeny Morphology
and Diverse ParA Proteins Regulate
Cell Division or Gliding Motility in
Bdellovibrio bacteriovorus
David S. Milner†‡, Luke J. Ray†, Emma B. Saxon†, Carey Lambert1, Rob Till1,

Andrew K. Fenton‡ and Renee Elizabeth Sockett*

Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham,

Nottingham, United Kingdom

The predatory bacterium B. bacteriovorus grows and divides inside the periplasm of

Gram-negative bacteria, forming a structure known as a bdelloplast. Cell division of

predators inside the dead prey cell is not by binary fission but instead by synchronous

division of a single elongated filamentous cell into odd or even numbers of progeny

cells. Bdellovibrio replication and cell division processes are dependent on the finite

level of nutrients available from inside the prey bacterium. The filamentous growth

and division process of the predator maximizes the number of progeny produced by

the finite nutrients in a way that binary fission could not. To learn more about such

an unusual growth profile, we studied the role of DivIVA in the growing Bdellovibrio

cell. This protein is well known for its link to polar cell growth and spore formation

in Gram-positive bacteria, but little is known about its function in a predatory growth

context. We show that DivIVA is expressed in the growing B. bacteriovorus cell

and controls cell morphology during filamentous cell division, but not the number of

progeny produced. Bacterial Two Hybrid (BTH) analysis shows DivIVA may interact with

proteins that respond to metabolic indicators of amino-acid biosynthesis or changes

in redox state. Such changes may be relevant signals to the predator, indicating

the consumption of prey nutrients within the sealed bdelloplast environment. ParA,

a chromosome segregation protein, also contributes to bacterial septation in many

species. The B. bacteriovorus genome contains three ParA homologs; we identify a

canonical ParAB pair required for predatory cell division and show a BTH interaction

between a gene product encoded from the same operon as DivIVA with the canonical

ParA. The remaining ParA proteins are both expressed in Bdellovibrio but are not

required for predator cell division. Instead, one of these ParA proteins coordinates

gliding motility, changing the frequency at which the cells reverse direction. Our work

will prime further studies into how one bacterium can co-ordinate its cell division with

the destruction of another bacterium that it dwells within.
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INTRODUCTION

B. bacteriovorus is a small predatory bacterium that invades
and replicates within other Gram-negative bacteria, forming a
rounded structure called a ‘bdelloplast’. Inside the dead prey
bacterium, the Bdellovibrio cell elongates to form a multiploid
filament, before synchronous septation liberates odd or even
numbered progeny (Fenton et al., 2010a). Predatory mutants
of B. bacteriovorus can be saved and cultured slowly by host-
independent (HI) axenic growth, requiring an amino acid rich
medium (Seidler and Starr, 1969; Cotter and Thomashow, 1992).
HI growth also involves septation of a filamentous cell, akin
to that in the bdelloplast, although HI cells are pleiomorphic,
and division can occur either synchronously or asynchronously
(Cotter and Thomashow, 1992; Hobley et al., 2012b). During
Bdellovibrio predatory growth in the prey bdelloplast (and as HI
cells), cellular components must be partitioned along the filament
prior to division to ensure that they are faithfully segregated prior
to synchronous septation. This contrasts the binary fission model
of division, seen in most other bacteria, where conventional
septation results in two daughter cells.

Pre-divisional partitioning is a process required for the
organization of prokaryote cellular components, including
chromosomes, plasmids, individual proteins [such as
E. coli proteins UidR (transcriptional repressor), HisG
(ATP phosphoribosyltransferase) and MalI (transcriptional
repressor)], chemotaxis clusters and carboxysomes (Bignell and
Thomas, 2001; Ringgaard et al., 2011, Roberts et al., 2012; Cho,
2015, Kuwada et al., 2015). The partitioning of DNA ensures
that cell division does not occur across nucleoids, whilst the
partitioning of proteins ensures that each daughter cell receives
the prerequisite components for optimum fitness. Whilst some
partitioning events may be stochastic, other events require active
organization (Huh and Paulsson, 2011). A major checkpoint
in the division cycle is the segregation of chromosomes, such
that each progeny has a complete copy of the genome. In many
bacterial species, such as Vibrio and Caulobacter, chromosome
segregation is driven by a three component ParABS system which
guides newly replicated chromosomes to bacterial cell poles,
facilitating DNA segregation (Hui et al., 2010; Mierzejewska and
Jagura-Burdzy, 2012, Espinosa et al., 2017). Here we identify a
canonical ParAB system in B. bacteriovorus and show that it is
required for efficient predatory growth.

In many bacteria, chromosomal segregation during cell
division is controlled by the three element ParABS system
via a ratchet diffusion model, as recently reviewed (Jindal
and Emberly, 2019). ParB binds to centromere-like parS DNA
sequences forming the ParBS nucleoprotein complex. ParA, an
ATPase, will dimerize and bind DNA non-specifically in the
presence of ATP. Chromosome segregation is facilitated by
ParA-ATP interacting with ParBS complexes which activates
the ATPase activity of ParA, causing it to dissociate from
the chromosome, and for the ParBS complex to move. ParA-
ADP can then be phosphorylated and will bind to DNA again
after a delay. Therefore, as ParBS moves, it leaves an area
of DNA behind it with no bound ParA-ATP, preventing the
direction of ParBS movement from reversing. This allows the

ParBS to move unidirectionally along a concentration gradient
of bound ParA-ATP. This is a very attractive model but it is
unclear how this system could maintain the position of multiple
B. bacterivorous chromosomes along the growing filamentous cell
prior to division.

In addition to parA and parB, there are several genes in
the B. bacteriovorus genome that code for proteins that have
been identified in other bacteria as key control elements for
cell division. One of these is a divIVA homolog, hereafter
referred to as divIVABd, which has been shown to encode a
protein with a number of cell growth and septation related roles
in Gram-positive bacteria, including septal site selection and
chromosome segregation (Thomaides et al., 2001; Hammond
et al., 2019). In Gram-negative bacteria, few studies have focused
on the function of DivIVA homologs, which are typically limited
to some Oligoflexia and Deltaproteobacteria (Akiyama et al.,
2003), so we aimed to establish the function of DivIVABd in
B. bacteriovorus HD100, a Gram-negative predatory bacterium
which grows inside prey.

Other bacterial genomes containing divIVA homologs can
have non-conventional methods for septation. Mycobacteria are
reported to have both symmetrical septation, producing two
identical daughter cells, and asymmetric septation, where one
daughter cell is significantly larger than the other (Kieser and
Rubin, 2014; Vijay et al., 2014). In contrast, Streptomyces growth
and division is characterized by polar (apical) growth of branched
hyphae and the dispersion of spores, much like fungi (Flardh
et al., 2012). The background of other proteins in addition to
DivIVA (such as Noc and MinCD which are involved in the
co-ordination of division site), can vary between Gram-positive
bacteria so there is clearly no “one size fits all” scenario (Monahan
et al., 2014; Hammond et al., 2019). In addition, in Streptococci
and other bacteria, which like B. bacteriovorus lack MinCD, it
was noted that post translational modifications of the DivIVA
protein can also occur, and in Streptococci that a conserved
alanine residue A78 is important for mediating DivIVA protein-
protein interactions, suggesting a different regulatory network for
septation control (Fadda et al., 2007). In these and other Gram-
positive bacterial systems, DivIVA has been at least partially
characterized as having varied roles, from regulating septation
to polar cell wall growth (Hempel et al., 2008; Kang et al., 2008,
Flardh et al., 2012; Ginda et al., 2013, Hammond et al., 2019).
As apical growth is seen for the B. bacteriovorus filament, we
postulated that DivIVA may be involved in this growth mode
(Fenton et al., 2010a).

In Bacillus subtilis, the coiled-coil DivIVA protein is localized
to negatively curved membranes by an N-terminus membrane-
binding domain (Lenarcic et al., 2009). This localization allows
DivIVA to interact with partner proteins to facilitate septum
formation at mid-cell and chromosome segregation (Edwards
and Errington, 1997; Marston and Errington, 1999, Thomaides
et al., 2001). In other species the DivIVA protein directs hyphal
tip extension in Streptomyces coelicolor (Flärdh, 2003; Hempel
et al., 2008) and regulates polar growth in Corynebacterium
glutamicum and Mycobacterium smegmatis (Kang et al., 2008;
Letek et al., 2008, Donovan and Bramkamp, 2014; Kieser
and Rubin, 2014, Meniche et al., 2014). However, in the
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cyanobacterium Synechococcus elongatus the DivIVA homolog
Cdv3 does not contain the conserved residues linked to negative
curvature sensing (MacCready et al., 2017).

Previous work has shown DivIVA and ParA directly interact
in M. smegmatis (Ginda et al., 2013; Ramirez et al., 2013),
establishing a link between the functions of both proteins. In
other bacteria, DivIVA interacts with MinD, a ParA-like ATPase
that functions in division site selection, either directly, such as in
Listeria monocytogenes (Kaval et al., 2014), or indirectly, such as
in B. subtilis where the interaction occurs via MinJ (Patrick and
Kearns, 2008; Van Baarle and Bramkamp, 2010, Eswaramoorthy
et al., 2011). In theM. smegmatismodel, DivIVA directs subpolar
addition to the cell wall during division (Kang et al., 2008),
suggesting there is coordination between cell elongation and
chromosome segregation. Given these roles across bacteria,
DivIVA is a strong candidate to provide this type of coordination
in B. bacteriovorus where complex, multi-septa division occurs
along a filamentous cell (Fenton et al., 2010a).

Bacterial chromosomes often also encode orphan ParA-like
proteins, which are additional ParA homologs not encoded from
a canonical parAB locus. These ParA-like proteins perform roles
distinct from ParA, for example PldP determines division sites
in Corynebacterium glutamicum (Donovan et al., 2010; Donovan
and Bramkamp, 2014), a ParA/Soj-like protein inM. tuberculosis
interacts with the MzF6 protein regulating cell growth (Ramirez
et al., 2013), and PpfA is involved in partitioning cytoplasmic
chemotaxis clusters in Rhodobacter sphaeroides (Thompson et al.,
2006; Roberts et al., 2012). These orphan parA-like genes are
often, but not exclusively, found within operons containing genes
for the processes in which they are involved. For example,
parC (partitioning of chemotaxis) genes have been identified in
chemotaxis operons in numerous bacterial species (Ringgaard
et al., 2011). In Vibrio cholerae, ParC is involved in partitioning
chemotaxis proteins, thus playing a role in chemotaxis itself,
and influencing swimming and swarming (Ringgaard et al.,
2011). To date no ParA-like proteins have been reported to
influence gliding motility, however, discrete cellular locations for
gliding motor complexes, at different points along a cell axis, are
required for gliding function and Par proteins could participate
in their positioning.

Bacterial gliding is a process characterized by the non-
flagellar movement of a single cell on a solid surface and has
been previously observed in many bacterial species, including
B. bacteriovorus (Spormann, 1999; Mendez et al., 2008, Lambert
et al., 2011; Asada et al., 2012, Zhu and McBride, 2016).
Gliding motility can be subdivided into two categories; social (S)-
motility, surface movement using pilus retraction inMyxococcus
xanthus; and adventurous (A)-gliding motility, characterized
by the movement of individual cells (McBride and Zhu, 2013;
Jakobczak et al., 2015, Zhu andMcBride, 2016). B. bacteriovorus is
known to exhibit a form of A-motility which uses gliding engines
and is independent of pili (Lambert et al., 2011). Abolition of
gliding (for example, in a diguanylyl cyclase (dgcA) mutant),
renders the Bdellovibrio cells unable to glide out and exit a
prey cell after lysis (Hobley et al., 2012a). Thus gliding may
be particularly relevant when Bdellovibrio prey upon bacteria
within biofilms.

The B. bacteriovorus HD100 genome contains two orphan
parA-like genes (bd1326 and bd2331), in addition to the typical
parAB locus (bd3906-5). Both of these parA-like genes in
B. bacteriovorus are located at loci where neighboring genes
encode putative proteins with unknown functions, rather than a
ParB homolog. A study into the early prey invasion ‘predatosome’
of B. bacteriovorus revealed that both the parA-like genes were
up-regulated during HI filamentous growth, but not at the 30min
stage of prey invasion by flagellate predators in liquid cultures
(Lambert et al., 2010). However, this work focused upon early
invasion events, and not those at later time points. If these ParA-
like proteins function during division, as canonical ParA does,
then it is reasonable to expect them to be up-regulated later
in the cell cycle once the bdelloplast is established at a time
when the B. bacteriovorus filamentous cell is rapidly growing. If
relevant to gliding motility, we would not expect to see this up-
regulation when the cell is flagellate or sessile. Hereafter, the three
ParA homologs of B. bacteriovorus will be referred to as ParA1
(Bd1326), ParA2 (Bd2331) and ParA3 (Bd3906), the latter which
is co-expressed with the gene for ParB (Bd3905).

In this study, we demonstrate that DivIVABd participates in
septal positioning during predatory replication with resultant
effects on progeny morphology. We postulate that its regulatory
role may be linked to cell partitioning through interaction with a
protein product of its co-transcribed neighboring gene and the
canonical parA3 gene-product. DivIVA may also interact with
proteins that could signal nutritional or oxygenic status within
the bdelloplast prior to predator septation. We also show by
fluorescent tagging that the canonical ParA3 is associated with
the cell division process and that the tag affects protein function
and perturbs B. bacteriovorus cell length.We further demonstrate
that two additional ParA homologs, ParA1 and ParA2, are
expressed in B. bacteriovorus, with gene deletion and fluorescent
localization assays revealing that both are non-essential, but that
ParA2 contributes to gliding motility behavior.

These results prime further biochemical studies on
the changing nature of the bdelloplast environment as
B. bacteriovorus grow within it. We show here that cell
division, morphological and movement behaviors of intra-
bacterial B. bacteriovorus are responding to DivIVABd or Par
protein controls and that some of these may be sensing changes
in bdelloplast biochemistry.

MATERIALS AND METHODS

Bioinformatics
Gene and protein sequences for B. bacteriovorus HD100 were
acquired from Xbase (Chaudhuri et al., 2008). Gene and protein
homologs were found with the NCBI BLAST program suite
(Altschul et al., 1990). Pairwise alignments were generated in
EMBOSS Needle and multiple alignments in EMBOSS ClustalO
(Rice et al., 2000; Sievers and Higgins, 2018). Alignments were
visualized in ESPript 3.0 (Robert and Gouet, 2014). Statistics
and graphs were processed in IBM SPSS Statistics for Windows,
Version 25.0. Armonk, NY: IBM Corp. Protein trees were
generated through MEGA-X version 10.0.05 using the Maximum
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Likelihood method, with 1000 bootstraps (Kumar et al., 2018)
and visualized in FigTree version 1.4.41.

Bacterial Strain Growth
B. bacteriovorus HD100 was used throughout and maintained in
Ca/HEPES buffer preying upon E. coli S17-1 prey as previously
described (Supplementary Tables S1A,B) (Lambert et al., 2006,
2016). Host independent B. bacteriovorus strains were grown
as previously described (Lambert and Sockett, 2013). Prey were
grown in YT broth for 16 h at 37 ◦C with shaking at 200 rpm
(Supplementary Table S1C).

Reverse Transcription PCR
RNA extraction and Reverse Transcriptase PCR (RT-PCR) assays
were performed as previously described (Lambert et al., 2006,
2016). Using a Promega SV total RNA isolation kit, total RNA
was extracted from samples taken throughout the time course.
RT-PCR assays were performed using the Qiagen One-step RT-
PCR kit. Reaction conditions are as follows: One cycle of 50 ◦C
for 30 min then 95 ◦C for 15 min, followed by 25-30 cycles
of 94 ◦C for 1 min, 48 ◦C for 1 min, 72 ◦C for 2 min,
and then a 10 min extension at 72 ◦C after the 25-30 cycles,
and ultimately held at 4 ◦C prior to gel analysis of products.
Primers used for amplification are listed in Supplementary

Table S2A. Primers used specifically for operon walking are listed
in Supplementary Table S2B.

Cloning Fluorescently Tagged and
Deletion Constructs
Fluorescent constructs were made using previously described
methods (Fenton et al., 2010b). Genes were cloned into a
vector by removal of the stop codon such that the C-terminus
of the gene product fused with the mCherry, or mTFP gene.
This was then subcloned into the vector pK18mobsacB and
then introduced into the B. bacteriovorus via a single crossover
event at the 5’ end of the gene, such that the ORF-tag is
transcribed from the endogenous promoter in a merodiploid
strain. To illuminate the cytoplasm of the B. bacteriovorus
cells within prey, we used a previously published strain with
full gene replacement of cytoplasmic marker protein Bd0064
with Bd0064mCerulean (Raghunathan et al., 2019). Genomic
deletions of specific B. bacteriovorus genes were made using
methods previously described (Capeness et al., 2013; Lambert
and Sockett, 2013, Lambert et al., 2016). Primers used for
amplification of genes are listed in Supplementary Tables S2C,D.

Fluorescent and Phase Contrast
Microscopy
Microscopy images were acquired using a Nikon Eclipse Ti-
E widefield inverted microscope equipped with an Andor Neo
sCMOS camera, as previously described (Kuru et al., 2017).
Semi synchronous predatory prey lysate cultures for time course
microscopy through the predatory cycle were prepared as
previously described (Lambert and Sockett, 2013). Images were

1http://tree.bio.ed.ac.uk/software/figtree/

processed in either SimplePCI software (HCImage.com) or FIJI
(ImageJ) (Schneider et al., 2012).

Gliding Motility Assays
Timelapse video microscopy was used to take images
of B. bacteriovorus HD100 strains immobilized on 1%
agarose/CaHEPES (Lambert et al., 2011). Single cells were
selected by generating random regions of interest (ROIs)
containing approximately 5–10 cells in each field of view.
Following the cells through each frame allowed the time at which
each cell started gliding to be observed. After an individual
cell had been gliding for one hour (allowing an establishment
period), the number of direction changes (reversals) was counted
manually and recorded. To determine the gliding status and
position of any fluorescent foci, cells were immobilized as
above. After 400 min of incubation (a time chosen to allow
prolonged incubation on a surface, and for gliding motility to
commence), images were acquired every 15 min for an hour and
analyzed in SimplePCI.

Predation Efficiency Assays
Predatorily grown (prey/host dependent HD) B. bacteriovorus
strains containing fluorescent tags were assayed against a fliC1
merodiploid which served as an antibiotic marked “wild type”
equivalent control. 50 ml predatory cultures were grown and
filtered through a 0.45 µm filter to remove any remaining prey
cells, these were matched by protein concentration using a Lowry
assay and subsequently enumerated to confirm the number of
B. bacteriovorus added. To serve as bacterial prey, a 50 ml culture
of luminescent S17-1 pCL100, which encodes luxCDABE, was
also grown under standard conditions. A 1.5 ml sample of each
B. bacteriovorus strain was heat-treated at 105◦C for 5 min
and allowed to cool to room temperature, generating the ‘heat
killed’ control cells. Equivalent amounts of each Lowry-matched
B. bacteriovorus strain was made up to 64 µl with the heat-
killed B. bacteriovorus preparation (64, 32, 16 and 8 µl live
B. bacteriovorus plus 0, 32, 48 or 56µl heat-killed cells). Predatory
cells were mixed with 200 µl of E. coli S17-1 pCL100 and diluted
to an OD600 of 1.0 in CaHEPES, in a 96-well microtiter plate.
Control wells had 64 µl heat-killed B. bacteriovorus only for
each strain. The plates were then covered with Breathe-Easy
membrane. The reduction in luminescence due to the killing
of the E. coli S17-1 pCL100 prey cells by B. bacteriovorus was
measured over time using a BMG FluoStar microplate reader.

Cell Morphology Measurements Using
MicrobeJ and Detection of Fluorescent
Foci of DivIVA
After image acquisition, cell measurements were generated using
MicrobeJ, a plugin for the FIJI software, as described previously
in Kuru et al., 2017 (Schindelin et al., 2012; Ducret et al.,
2016, Kuru et al., 2017). To detect fluorescent foci of DivIVA-
mCherry; the rounded, invaded, E. coli prey cells (bdelloplasts)
were detected in the phase channel by defining circularity as 0.96-
max and length as 1-max, with all other parameters as default.
B. bacteriovorus cells (with cytoplasmic Bd0064-mCerulean) were
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detected by the medial axis method in the mCerulean channel
as maxima 1, by defining area as 0.15-max, with all other
parameters as default. They were associated with the bdelloplasts
with a tolerance of 0.1. Fluorescent foci of DivIVA-mCherry
were detected as maxima 2 in the red channel by the “fit shape
to circle” method by defining area as 0-0.25, with all other
parameters as default. These were associated to maxima 1 with
a tolerance of 0.1. Manual inspection of the analyzed images
confirmed that the vast majority of cells were correctly assigned.
In cases where bdelloplasts appeared to be infected by two
Bdellovibrio, these weremanually removed from the analysis. The
shape measurements including the angularity, area, aspect ratio,
circularity, curvature, length, roundness, sinuosity, solidity and
width were measured for each type of cell.

Pairwise Bacterial Two Hybrid and Liquid
β-Galactosidase Assays
Pairwise Bacterial Two Hybrid (BTH) assays were performed
to test for interactions between DivIVABd, ParA3 and other
B. bacteriovorus proteins using protocols previously described
(Battesti and Bouveret, 2012). Liquid β-galactosidase assays
were performed using the single-step protocol (Schaefer et al.,
2016). Primers used for gene amplification are listed in
Supplementary Table S2E.

B. bacteriovorus HD100 Bacterial Two
Hybrid Library Construction and Assay
A B. bacteriovorusHD100 BTH library was constructed following
methods, adapted from those previously described (Handford
et al., 2009; Houot et al., 2012). Briefly, the HD100 genome was
extracted, using the Sigma-Aldrich GenElute Bacterial Genomic
DNA Kit, and restriction-digested into fragments between
500 bp and 2000 bp which were extracted via the Sigma-
Aldrich GenElute Gel Extraction Kit, according tomanufacturer’s
instructions. This was then ligated into four plasmids; pUT18,
pUT18C and pUT18 + 1, where + 1 denotes an additional
nucleotide added in the linker region to account for the frame
of the genome fragments. The ligations were transformed into
E. coli DH5α, and the resulting transformants were pooled.
Plasmids were extracted using the Sigma-Aldrich GenElute
Plasmid Miniprep Kit, resulting in a library of mixed genomic
fragments for each of the plasmids.

To perform the assay, a pKT25 plasmid containing the bait
gene was transformed into the E. coli BTH101 strain, which
was made chemically competent. These were transformed with
1µl of library plasmids. Incubation was for 48 h at 29oC
on MacConkey agar supplemented with 50 mg/ml Ampicillin,
25 mg/ml Kanamycin, 40 mg/ml X-gal and 20 mg/ml IPTG. Blue
colonies were grown in high salt Mumedia and the plasmids, bait
and library were extracted via miniprep. Competent E. coliDH5α
were then transformed with both plasmids and cured for the
pKT25 plasmid. The library plasmid was then extracted. This was
retested with the BTH pairwise protocol against the bait plasmid
to confirm transformants remain blue on the supplemented
MacConkey agar. These were then sequenced to determine the
interacting protein fragments encoded in the library fragments.

Once the genes in the fragments were identified, full length gene
copies were cloned into pUT18C and pKT25 and used again in
the pairwise assay above.

RESULTS

B. bacteriovorus DivIVABd Is Encoded on
a Four Gene Operon
DivIVA proteins are usually found in Gram-positive genomes.
Despite this, the Gram-negative B. bacteriovorus genome
contains a DivIVA homolog encoded by bd0464 and referred to
as DivIVABd (Figure 1A). Comparing this protein to features
of DivIVA in Bacillus subtilis (detailed in Supplementary

Information S1) revealed that DivIVABd can likely dimerize,
but substitutions in R18 suggest that it cannot inherently sense
negative curvature, likely requiring other protein interactions to
localize to curved bacterial cell poles.

DivIVA homologs of Gram-positive bacteria are typically
encoded downstream of a cell division and cell wall (dcw) cluster
and the ftsZ gene (Ayala et al., 1994; Cha and Stewart, 1997,
Massidda et al., 1998; Ramirez-Arcos et al., 2005). Although
B. bacteriovorus does have a dcw cluster, divIVABd (bd0464,
accession number: NP_967452.1) is not found near this region
(Figure 1A), rather it is downstream of a yggS homolog, bd0466,
which encodes a protein similar to the N-terminal barrel domain
of an alanine racemase (LeMagueres et al., 2005; Ito et al., 2013).
In E. coli, this domain binds the coenzyme Pyridoxal Phosphate
(PLP), with the required residues conserved in Bd0466 (Ito et al.,
2013). Recently, the function of YggS has been studied in other
bacteria, implicating it in the regulation of PLP and biosynthesis
of amino acids isoleucine and valine (Ito et al., 2013, 2016,
Prunetti et al., 2016; Ito et al., 2019). In species such as Bacillus
subtilis, Staphylococcus aureus, and Streptococcus pneumoniae, a
yggS protein is also found upstream of the divIVA homolog.

Between bd0466 and divIVABd is the gene bd0465, which
encodes a pyrroline-5-carboxylate reductase, ProC, homolog
(Figure 1A). ProC proteins catalyze the final step in the
biosynthesis pathway that converts glutamate to proline
(Nocek et al., 2005).

Alignment of the B. bacteriovorus DivIVABd with DivIVA
homologs of Streptococcus pneumoniae and Bacillus subtilis
(Figure 1B) showed that the N-terminal domain and coiled-
coil domains [confirmed using Multicoil prediction (Wolf et al.,
1997)] are conserved between the proteins. A NEEDLE global
alignment showed that DivIVABd and DivIVABsub share 24.6%
protein identity and 47.5% protein similarity, with differences
predominantly at the C-terminus. This is typical of DivIVA
proteins, as the C-terminus of different DivIVA homologs tends
to show greater variability (Tavares et al., 2008).

DivIVABd-mCherry Is Localized at the
Poles of B. bacteriovorus Attack Phase
Cells and Growing Filaments
As DivIVABd is lacking residues shown to be essential for
negative curvature sensing, F17 and R18 (highlighted in
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FIGURE 1 | Genomic context of the B. bacteriovorus divIVABd gene and protein alignment of DivIVABd with Gram-positive DivIVA homologs. (A) Map of the

B. bacteriovorus divIVA gene and neighboring region. The divIVABd gene is downstream of genes encoding a predicted yggS homolog (Bd0466 accession:

NP_967454.1) and pyrroline-5-carboxylate reductase (Bd0465 accession: NP_967453.1) and upstream of a gene encoding an YggU homolog (Bd0463 accession:

NP_967451.1). (B) Alignment of DivIVABb with DivIVA homologs in Streptococcus pneumoniae (DivIVASpn; accession: AAC95445.1) and Bacillus subtilis (DivIVABsub;

accession: P71021.1). Sequences are colored and annotated based on the DivIVABsub crystal structure. The blue bar under the sequences indicates the N terminal

domain and the yellow bar, the C terminal domain. The A78 residue, conserved in DivIVABd , was shown to be important for DivIVA function in B. subtilis, and an

A78T substitution in S. pneumoniae DivIVA disturbed protein localization and perturbed interactions with FtsK and late-stage divisome components. Residues F17

and R18 are highlighted by an orange box and arrow underneath the green cross-link indicator.

Figure 1B), we wanted to assess its localization in host-
dependent B. bacteriovorus cells. The protein was labeled
with C-terminal mCherry fluorescent protein and attack-phase

B. bacteriovorus cells were analyzed by fluorescent microscopy.
This revealed DivIVABd-mCherry localizes to both poles of host-
dependent B. bacteriovorus cells (Figure 2). This is consistent
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FIGURE 2 | (A) Phase and epifluorescence microscopy displaying the location of DivIVABd tagged with mCherry. Localization was observed during invasion and

growth within E. coli prey cells. The Bdellovibrio cytoplasm is constitutively fluorescent with Bd0064-mCerulean to visualize the cell within the bdelloplast.

DivIVA-mCherry localizes to the poles of the Bdellovibrio, except at the 3–4 h timepoints, where it is less clear due to the growing filament extending and twisting in

three dimensions as it elongates (see Supplementary Figure S1). Images are representative of three biological repeats. Scale bars are 2 µm. (B) Cellular position

maps of fluorescent foci of DivIVA-mCherry detected by MicrobeJ. All of the cells detected (including free swimming attack phase cells) were measured at time 0, but

only cells within bdelloplasts were measured at the other timepoints. Data are pooled from three independent experiments (N values of cells at each timepoint: T0-

845, T30- 110, T45–65, T1h- 226, and T2h- 120).

with the localization pattern of DivIVA homologs in Bacillus
and relevant to the monopolar localization in Streptococci
and Mycobacterium. (Marston et al., 1998; Fadda et al., 2007,
Nguyen et al., 2007).

Fluorescent localization of DivIVABd-mCherry was then
assessed at stages of intracellular growth. This showed that
the fluorescently tagged protein was found at both poles
of the growing B. bacteriovorus filament during predation
for up to 2 h in the prey bdelloplast (Figure 2). At later
timepoints (3–4 h post-invasion), the situation was less clear
as the growing filament twists in three dimensions as it
grows and divides in the bdelloplast. A mixture of some
single or double foci and more diffuse DivIVABd-mCherry
fluorescence was seen. This likely represents the DivIVABd-
mCherry migrating to the newly forming poles of the
B. bacteriovorus progeny (Figure 2 and further examples in
Supplementary Figure S1).

To determine whether expression of DivIVABd-mCherry
affected progeny number and the general predation rate,
we conducted an assay of predation on luminescent prey
(Lambert et al., 2003). This clearly showed that the predation
rate of the DivIVABd-mCherry strain was not different to
that of the FliC1 merodiploid (“wild-type” equivalent) control

(Supplementary Figure S2A; Mann-Whitney test p = 0.995;
n = 35). In addition, measuring intraperiplasmic growth area of
the B. bacteriovorus (as total area of mCerulean fluorescence)
showed no significant difference for this strain compared to
wild-type (Supplementary Figure S2B), suggesting that the
C-terminal mCherry tagging of DivIVABd has no detrimental
effect on growth.

Cells Lacking DivIVABd Show
Morphological Changes in Attack-Phase
B. bacteriovorus Progeny Cells
DivIVA is essential in Streptomyces coelicolor, Enterococcus
faecalis, and Mycobacterium smegmatis, so we wanted to
determine if this is also the case in B. bacteriovorus (Flärdh,
2003; Ramirez-Arcos et al., 2005, Kang et al., 2008). Deletion
of divIVABd was possible in predatory B. bacteriovorus,
demonstrating that DivIVABd is not essential for B. bacteriovorus
predatory growth and division.

Transmission electron microscopy of progeny (attack
phase) cells recently emerged from bdelloplasts revealed that
the B. bacteriovorus 1divIVABd strain had a morphological
defect resulting in shorter, wider cells (Figure 3). Wild-type
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FIGURE 3 | Morphological changes in the attack phase cells in B. bacteriovorus1divIVABd deletion strain grown with E. coli S17-1. TEM images of (A) Wild-type

HD100 (pSUP404.2) cells are long and slender, whilst 1divIVABd (pSUP404.2) cells (B) are shorter and wider. (C) A rare a doublet cell of 1divIVABd with pinched

septum. (D) B. bacteriovorus HD100 wild-type attack phase cell. Cells were stained with 0.5% uranyl acetate. Scale bars are 2 µm.

B. bacteriovorus HD100 pSUP404.2 (empty vector) cells
had a mean length of 1.40 ± 0.04 µm and mean width of
0.36 ± 0.01 µm (n = 75). The 1divIVABd mutant had a
shorter mean length of 1.01 ± 0.03 µm (p < 0.001; n = 75)
and larger mean width of 0.42 ± 0.01 µm (p < 0.01;
n = 75) (Figure 4). Additionally, rare doublet cells were
observed in the attack phase population (at less than 1%)
(Figure 3C compared to D). These appeared to have an
incompletely divided septum, which pinched in between the
non-divided cells, resulting in a single longer cell. These
morphological defects were also apparent through analysis
of attack phase cell images by phase contrast microscopy
and analyzed using the MicrobeJ plugin (Ducret et al., 2016).
This analysis showed wild type cells to have a mean length of
1.34 ± 0.06 µm and width of 0.47 ± 0.004 µm (n = 2,302). In
comparison, the 1divIVABd strain was shorter, 1.01 ± 0.004 µm
(p < 0.001, n = 2796), and marginally wider, 0.50 ± 0.004 µm
(p < 0.001, n = 2796).

To confirm these effects on morphology were due to the
lack of DivIVABd, we introduced a wild type divIVABd gene
expressed in trans on plasmid pSUP404.2 into the 1divIVABd

strain. When compared to 1divIVABd containing an empty
control vector this partially restored cell length and width
of attack phase cells when imaged by TEM (p < 0.001,

n = 75; Figure 4). This confirms that the deletion strain
phenotype is attributable to the loss of a functional divIVABd

locus. Further, there were no observed doublet cells in the
complemented strains. To investigate this link between cell
division and divVIAbd further, we complemented these strains
with a divIVABd-A78T mutated copy of the gene (Figure 4). In
Streptococcus pneumoniae, divIVA-A78T mutants had impaired
cell division but normal chromosome segregation (Fadda et al.,
2007). The 1divIVABd strain complemented with divIVA-A78T
had a mean length of 1.03 ± 0.13 µm, which was not
significantly different to 1divIVABd with an empty pSUP404.2
plasmid (n = 75). However, its width, 0.39 ± 0.05 µm,
was partially restored and significantly lower than 1divIVABd

(p < 0.01, n = 75).

B. bacteriovorus divIVA Is Expressed
Throughout Growth and Is
Co-transcribed With bd0465 and bd0466
Using a semi-quantitative Reverse Transcription PCR (RT-PCR)
approach, transcription of the divIVABd gene and the neighboring
genes bd0465 and bd0466 (Figure 1) were assessed across the
B. bacteriovorus predatory cycle (Figure 5).We hypothesized that
transcription of the gene cluster containing divIVABd might be
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FIGURE 4 | 1divIVABd strains are shorter and wider than wild type, and are partially restored through complementation. Bar charts showing the mean lengths (A)

and widths (B) of B. bacteriovorus strains containing a pSUP404.2 plasmid either empty, or encoding DivIVABd , or a mutant DivIVABd (A78T). 1divIVABd strains are

significantly shorter (P < 0.001) than wild type, with partial restoration of length when divIVABd is introduced on plasmid pSUP404.2 (P < 0.001). Average width of

1divIVABd strains is significantly greater than wild type (P < 0.001) with partial restoration when complemented with divIVABd (P < 0.05) or divIVABd (A78T)

(P < 0.01). Width measurements show that wild type HD100 containing a plasmid with divIVABd are thinner (P < 0.01), and wider with divIVABd (A78T) (P < 0.001),

suggesting that in trans expression levels may perturb DivIVA function. n = 75 for each population and data are from three biological repeats (all significance

calculated as *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, using a t-test). Images were acquired through transmission electron microscopy and analyzed in SimplePCI.
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FIGURE 5 | Expression pattern of B. bacteriovorus HD100 parA-like genes, parB, bactofilin, divIVABd , and its upstream genomic neighbors bd0465 and bd0466.

Expression was assessed alongside control gene dnaK throughout the predatory life cycle using RT-PCR with transcript specific primers. RNA was prepared from

identical volumes of infection cultures with B. bacteriovorus HD100 predator and E. coli S17-1 prey at time-points throughout the predatory life cycle. AP: RNA from

attack-phase B. bacteriovorus, 15–45: RNA from 15–45 min time-points through the predatory cycle, 1–4 h: RNA from 1–4 h through the time-course, E. coli: E. coli

S17-1 only template RNA, -ve: no template negative control, Gen: B. bacteriovorus HD100 genomic DNA template as positive control. Images are representative of

two biological repeats.

up-regulated when the gene products were required for function.
This approach showed that all three genes were constitutively
expressed throughout the host dependent cycle (Figure 5).

To validate the hypothesis that divIVABd is expressed in an
operon with its neighboring genes bd0465 and bd0466 (Figure 1),
we wanted to determine whether these genes were co-transcribed.
RNA-seq analysis suggested that transcription occurs across this
cluster of genes, but that divIVABd has its own promoter, as
it had a higher transcription level than bd0465 and bd0466
(Reads Per Kilobase Million for bd0466 = 9.56, bd0465 = 121.04,
divIVABd = 1554.641) (Capeness et al., 2013). Promoter walking
confirmed that bd0465 and divIVABd were co-transcribed, as
well as showing that divIVABd has its own promoter. An RT-
PCR assay confirmed that bd0466 and bd0465 were also co-
transcribed (Supplementary Figure S3).

Bd0465-mCherry and Bd0466-mTFP Are Localized in

the Cytoplasm and Pairwise BTH Testing Shows

Bd0465 Interacts With DivIVABd, Bd0466, and ParA3

Given that DivIVABd fluorescence was seen at polar foci
(Figure 2), we assessed the localization of Bd0465 and

Bd0466 through fluorescent microscopy. To do so Bd0465-
mCherry and Bd0466-mTFP constructs were conjugated
into wild type B. bacteriovorus HD100. In contrast to the
polar foci of DivIVABd-mCherry, both tagged proteins
were ubiquitously expressed in the cytoplasm in attack
phase cells. Images were taken throughout the predatory
life cycle, but the fluorescence was too faint to accurately
determine localization when the B. bacteriovorus was within the
bdelloplast (Supplementary Figure S4).

To determine if DivIVABd interacts with its co-transcribed
neighboring proteins we used the Bacterial Two Hybrid
assay. In addition, we also tested a selection of known
B. bacteriovorus cell division related proteins. Bacterial Two
Hybrid (BTH) assays were performed in a pairwise manner
between candidate proteins. For confirmation and quantification,
the positive interactions were subjected to β-galactosidase
assays. These assays showed significant results (p < 0.001)
for interactions between Bd0465-DivIVABd, Bd0465-Bd0466
and Bd0465-ParA3 (Figure 6 and Supplementary Figure S5).
No interaction was detected between DivIVABd-Bd0463, and
for DivIVABd with ParA1, ParA2 or ParA3. We later turned
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to analyze Par protein function (see below) as there is a
potential three-way interaction between Bd0465-DivIVABd, and
Bd0465-ParA3. Further potential DivVIAbd interacting partners
were sought by an unbiased BTH library screening method
(Supplementary Information S2).

B. bacteriovorus Has Three Genes With
Homology to Bacillus subtilis soj (parA)
Our cell morphology phenotype and fluorescence-localization
experiments suggest that DivIVABd may have an ancillary role
in co-ordinating division with cell growth (Figures 2–4). Its
link to canonical ParA3 (bd3906) through three-way (Bd0465-
DivIVABd, and Bd0465-ParA3) BTH protein interactions
(Figure 6) then led us to investigate the role of chromosome-
partitioning genes. Three genes in the B. bacteriovorus HD100
genome encode proteins with similarity to Soj, the ParA
ortholog in B. subtilis. The product of bd3906 shares 57.71%
protein identity with Soj, whilst the other predicted proteins
of ParA1 and ParA2 share 27.94% and 35.48% identity,
respectively (Supplementary Figure S6). Gene parA3 is
located upstream of a parB homolog, in the arrangement
typically seen at the parAB locus. Attempts at deleting parA3
were unsuccessful, despite screening many host dependent
and host independent exconjugants (Chang et al., 2011),
suggesting that ParA3 may be essential in B. bacteriovorus.
The products of the genes neighboring parA1 and parA2
(bd1327 and bd2329) do not show any strong homology
to ParB, or to any other proteins of known function, and
show only weak homology to each other (12% sequence
identity). Adjacent to parA1 is a bolA-like gene (bd1328).
BolA is a transcription factor involved in the regulation of
penicillin-binding proteins PBP5 and PBP6, and of MreB
(Guinote et al., 2011; Singh and Montgomery, 2014).

Expression of parA-like Genes Peaks
Toward the End of the B. bacteriovorus

Predatory Cycle, and all Three Genes
Have Differing Transcription Patterns
RT-PCR was carried out on all three parA-like genes in
B. bacteriovorus (Figure 5). This demonstrated that expression
of parA1 peaks at 3–4 h post infection at the very late stage
of B. bacteriovorus filamentous cell division and prey exit.
Expression of parA2 peaks at 2–4 h (with a peak at 15 min
post-infection), whilst the canonical parA3 shows an increase in
expression up to 45min post-infection, then exhibiting consistent
expression until the end of the predatory cycle. These later parA2
and parA3 profiles are consistent with stable expression across the
B. bacteriovorus filamentous growth phase (Figure 5).

RT-PCR analysis also suggested that all three parA genes
are encoded within operons (Supplementary Figure S7). Co-
expression of parA1, bd1327, and bd1328 (encoding a BolA
homolog) was observed at the 3 h time point, whilst parA2 was
found to be co-transcribed with bd2329 at 3 h post-infection. Co-
transcription of parA3, bd3905 (parB) and bd3904 (encoding a
bactofilin homolog) was observed at 1 h post-infection.

Fluorescent Tagging of the Canonical
ParA3 in B. bacteriovorus Creates Some
Longer Attack-Phase Cells and Slows
the Overall Rate of Predation
When parA3(bd3906) was originally tagged with mTFP, the
mean length of attack phase cells increased compared to wild
type (16.7% increase) suggesting that the tagged protein was
only partly functional (Figure 7). Quantification and analysis of
electron microscopy images showed the distribution of lengths,
with a higher number of very long cells observed in the parA3-
mTFP population. This was repeated with ParA3-mCherry (to
be comparable with the other two ParA1 and 2 strains tagged
with mCherry) and a similar small excess of very long cells was
detected in the population. Next we measured the predation
rate of B. bacteriovorus strains containing tagged parA1, parA2,
and parA3 (Figure 8). These data showed only the strains
containing the parA3-mTFP had a significantly slower overall
predatory growth (Figure 8). To see if tagging parA3 affected
nucleoid position and copy number, attack phase cells were
stained with DAPI. Through fluorescent microscopy and image
analysis in SimplePCI software, lengths of nucleoid and cell were
measured and the ratios compared. This ratio was significantly
lower for bd3906-mTFP (mean nucleoid length/cell length ratio
of 0.55 ± 0.15 µm) than wild type (0.63 ± 0.1 µm. P < 0.05)
suggesting a constant nucleoid length which is independent of
cell length (Supplementary Figure S8). However, there was no
significant difference between the proportion of anucleate cells
in wild type (0/804 cells) and Bd3906-mTFP cells (1/702 cells)
(Fisher’s exact test p = 0.466).

ParA2 May Have a Role in Gliding Motility
Initial experiments on deletions of parA1 and parA2 implicate a
role for ParA2 in gliding motility behavior, including the number
of reversals of gliding direction after the first hour on a solid
surface and the number of cells initiating productive (non-rapidly
reversing) gliding behavior after that hour-long adaptation period
(Supplementary Information S3 and Supplementary Figures

S9–S11). However, as both strains could be constructed in
predatory cultures, neither was required for predatory growth
and division. Using the top homologous sequences from
pBLAST, protein trees were constructed to show the relationship
between the three ParA homologs in B. bacteriovorus and
proteins of other prokaryotes (Supplementary Figure S12 and
Supplementary Information S4).

DISCUSSION

The constitutive expression of DivIVABd and its bi-polar
localization throughout 2 h of predatory growth until diffusion
around the time point of septation and new cell pole specification,
suggested that DivIVABd coordinates important processes from
the cell poles during predatory growth.

Morphological changes in the divIVA deletion strain may be a
consequence of aberrant cell wall regulation and changes in septal
positioning. Consequent adaptation to conserve cell volume
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FIGURE 6 | β-galactosidase assay results for pairwise and library screening bacterial two hybrid interactions. Points represent average Miller Units of

cotransformants (n = 16), error bar represent standard error. (A) shows significant interactions between DivIVABd (Bd0464) and Bd0465, Bd0465 and ParA3

(Bd3906), and Bd0465 and Bd0466 (all P < 0.001) when compared to the negative control. (B) shows significant interactions between protein fragments encoded

from BTH library plasmids, specifically partial proteins of Bd0548, Bd2106, Bd2107, and Bd3538, with DivIVABd plasmids (all P < 0.001). (C) shows results for

interactions between DivIVABd and full length proteins Bd0548, Bd2106, Bd2107, and Bd3538 (***P < 0.001, **P < 0.01, and *P < 0.05). Data are from two

biological repeats. Individual data points are presented in Supplementary Figure S5.
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FIGURE 7 | Cell length distributions for attack phase cells of wild type and ParA3-mTFP strains. (A) Distribution of cell lengths for B. bacteriovorus fliC1 merodiploid

strain (“wild type” equivalent, green) and HD100 ParA3-mTFP (yellow) populations (n = 100). The mean is denoted by the dotted line. Representative TEM images of

both populations are shown in (B). Scale bars are 1 µm and data are from three biological repeats.

could cause the short-wider morphology of B. bacteriovorus
progeny that had a divIVABd deletion. To determine whether
this is the case, septal and sub-polar peptidoglycan labeling
would be required, which is beyond the scope of this study.
We note that in M. smegmatis incorporation of new sub-
polar peptidoglycan is coordinated by a DivIVA homolog
(Kang et al., 2008; Ginda et al., 2013).

Interestingly, DivIVABd-mCherry was present at both poles
in newly formed B. bacteriovorus progeny, suggesting possible
inheritance of at least one focus of the protein rather than de novo
synthesis of both foci in progeny cells. Due to the constraints
of B. bacteriovorus growing in 3D inside another cell, as a long
twisting filament, prior to and during septation it is hard to
tell when the polar DivIVABd migrates to the septa. However,
some diffusion, but still some single foci, of DivIVABd-mCherry
were observed at the three hour time point of the predatory
cycle (Figure 2 and Supplementary Figure S1). This contrasts
with the bipolar fluorescence seen at two hours, suggesting a
transition in DivIVA position from filament growth to septation,
facilitating progeny inheritance of the protein. In B. subtilis,
DivIVA has been shown to migrate between the two poles of a

dividing cell (Bach et al., 2014). Although MinC and MinD are
not present in B. bacteriovorus, as they are in B. subtilis, DivIVABd

may still direct septal selection through other as-yet unidentified
processes, resulting in a similar function.

Although preliminary, a number of potential interacting
partners with DivIVABd have been identified, and have been
highlighted (Figure 6 and Supplementary Figure S5) for
future investigation. Probing a B. bacteriovorus Bacterial Two
Hybrid library identified four putative DivIVABd-interacting
proteins beyond those encoded by the divIVABd operon (see
discussion below). Although diverse, all these proteins would
be expected to change in levels in a B. bacteriovorus filament
that has been growing for a long period in a bdelloplast,
consuming oxygen and nutrients. Bd0548 MenE is a cytoplasmic
protein associated with synthesis of a menaquinone to allow
electron transport in more anaerobic conditions, such as those
generated by continued enclosed growth of B. bacteriovorus
inside the bdelloplast (Sharma et al., 1996). A pair of proteins
Bd2106/7, associated with haem biosynthesis and disulfide bond
formation in other bacteria (Zapun et al., 1993; Chan et al., 2006;
Heras et al., 2009), were also found to interact with DivIVABd.
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FIGURE 8 | Plot of prey luminescence decrease over time comparing the predation rates of B. bacteriovorus cells expressing C terminally, fluorescently tagged

ParA1, ParA2, or ParA3. Predation rate is measured as the drop in luminescence from the prey as they are preyed upon by Bdellovibrio, compared to wild type

equivalent strain B. bacteriovorus FliC1 merodiploid (blue) (n = 12 technical replicates per strain for three biological repeats). Only the tagged ParA3 strain (orange) is

delayed in causing a logarithmic drop in luminescence (which represents killing of the luminescent prey) compared to the other 3 strains. Control: E. coli prey only.

***p < 0.001, **p < 0.01, *p < 0.05, and NS not significant by Mann-Whitney U test.

Again, changes in synthesis of electron transport components
such as Fe-S proteins and cytochromes could occur to remodel
electron transport as the occupied bdelloplast was depleted for
oxygen when the B. bacteriovorus filament reaches a greater
biomass. The final DivIVABd interactor identified by BTH
was Bd3538, a TrmJ homolog. This is a potential oxidative
stress responsive protein in Gram-negative bacteria, which
is intriguing as deletion of divIVA in Streptococci leads to
an oxidative stress phenotype (Jaroensuk et al., 2016; Ni
et al., 2018). Again, this could be associated with oxidative
changes in the bdelloplast toward the end of filamentous
growth of the B. bacteriovorus and could signal the need to
divide and exit the dead prey cell. While the β-galactosidase
assays for interaction of the library fragments were strongly
positive, whole gene interactions were less substantial, prompting
future work to determine the strength and extent of these
protein interactions.

The pairwise protein-protein interactions with products
encoded from the divIVABd operon, shown by BTH analysis,
suggest that Bd0465 binds ParA3 (from the canonical ParAB
pair) and that Bd0465 binds DivIVA (Bd0464) and Bd0466.
This may coordinate the functions of DivIVABd and ParA3
of the canonical ParAB complex. ParA3, but neither of the
other two other ParAs, gave aberrant B. bacteriovorus cell
length distributions when fluorescently tagged, with ParA2 only
affecting gliding motility reversals when deleted and ParA1
having no measureable phenotype. Therefore the Bd0465-
DivIVABd -ParA3 interaction could act to synchronize the actions
of DivIVABd with chromosome segregation, as is thought to be
the case in M. smegmatis, albeit through an indirect interaction
(Kang et al., 2008; Ginda et al., 2013, Vijay et al., 2014). It may

possibly relate to Corynebacterium glutamicum, where DivIVA
was shown by protein-protein studies to interact with ParB
(Hammond et al., 2019). We also note (Figure 5) that the bd3904
bactofilin gene of B. bacteriovorus is cotranscribed with bd3905
parB. In Myxococcus, ParB interaction with bactofilin scaffolds
emanating from each cell pole restrains the chromosome
segregation machinery near poles until needed; something
similar may operate in B. bacteriovorus (Lin et al., 2017).

The interaction between Bd0465, a ProC homolog, and
Bd0466, an YggS homolog, has not been recorded in any
other bacteria. It is possible that this interaction is a part of a
signaling pathway that continues from Bd0466 to both ParA3
and DivIVABd. YggS proteins bind pyridoxal phosphate (PLP),
and a change in the level of this molecule may signal to the
division machinery to coordinate growth and septation. Recent
work has suggested that changes in PLP levels are associated with
changes in flux through the biosynthetic pathways for amino
acids (Ito et al., 2013; Prunetti et al., 2016, Ito et al., 2019). One
can see the necessity for such a signal due to B. bacteriovorus
producing progeny at a timepoint when prey cell resources have
been depleted. At a critical point in the predatory life cycle,
the invading B. bacteriovorus cell must detect when remaining
nutrients from the inside of the single prey cell are insufficient
to produce another progeny cell. At this time septation must
occur and the B. bacteriovorus cell must switch from growth
and biosynthesis to the less metabolically active, prey-hunting
attack phase progeny. The Bd0466 interaction with Bd0465 may
represent a pivotal part of this signaling pathway. This is further
supported by the constitutive expression of both bd0465 and
bd0466, as is the case with DivIVABd, and the diffuse, cytoplasmic
localization of the Bd0465/0466 proteins in the predator cells.
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This may lead to a specific association between Bd0466 and
Bd0465 occurring when PLP levels change; then in turn this
could affect the Bd0465 association with ParA3, possibly releasing
ParA3 for partitioning which may lead to Bd0465 association
with DivIVABd. Demonstrating the validity of this idea and the
dynamics of such a catch and release type of mechanism and its
effects on cell division inside the bdelloplast, is beyond this study,
but we hope that our results will prime such work.

CONCLUSION

In summary we report that Gram-negative B. bacteriovorus
HD100 uses DivIVA to define cell proportions during
synchronous division from a long filamentous cell inside a dead
prey bacterium. This process may involve an interaction with a
canonical ParA protein and proteins that bind indicators of the
nutritional contents and oxidative status of the dead prey cell.
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