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ABSTRACT

We propose a hybrid formulation of Turing Learning and study its

application in mobile robotics. Instead of using a single type of

discriminator, in the hybrid formulation, both active and passive

discriminators are used. Active discriminators come to their judg-

ments while interacting with the system under investigation, which

helps improve model accuracy. Passive discriminators come to their

judgments while only observing the system, allowing the reuse of

data samples, which for real robots would be costly to obtain. To

validate these ideas, we present a case study where a simulated

embodied robot is required to calibrate its distance sensor through a

process of self-modeling, and without metric information of where

it resides within the environment. The results show that the hybrid

formulation achieves a good level of accuracy with signiicantly

fewer data samples from the robot. The indings suggest that the

self-modeling process could be realized on a mobile physical robot

with a limited time and energy budget.
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1 INTRODUCTION

Turing Learning [6] is a class of machine learning algorithms where

a population of models compete against a population of discrim-

inators. The discriminators are provided with data samples that

are either genuine (i.e., obtained from the system under investi-

gation) or counterfeit (i.e., generated by using a model). They are

rewarded for making accurate judgments. The models in turn are re-

warded for misleading the discriminators. This idea, irst proposed
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at GECCO 2013 [5], is central to one of the most inluential methods

of machine learning, generative adversarial networks [3] (GANs). In

Turing Learning algorithms, a passive discriminator would merely

observe a data sample and make a judgment. An active discrimi-

nator would, while observing, control the conditions under which

the data sample is produced. The discriminator would thus act as

an interrogator, akin to the setup in the Turing test [7].

A disadvantage of current Turing Learning algorithms (including

GANs) is that they tend to rely on the availability of vasts amounts

of training data. This is particularly a problem for applications

in robotics. For example, in [6], the training data comprised the

recorded trajectories of individual robots of a swarm. In general,

this is a costly process, as the energy expended and time spent

increase, usually linearly, with the amount of training data to be

collected. In the context of a mobile robot inferring its sensors' posi-

tions, it was shown that Turing Learning with active discriminators

outperformed Turing Learning with passive ones in terms of model

accuracy [4]. However, the active learning approach is costly, as

for each judgment a bespoke data sample has to be created.

In this paper, we present a hybrid formulation of Turing Learning,

in which the model population competes against two discrimina-

tor populations, one composed of active discriminators, the other

composed of passive discriminators. We evaluate the system using

a simulated scenario, where a fully autonomous robot, which has

no knowledge where it is located within its environment, infers a

model for calibrating its laser-based distance sensor.

2 METHODOLOGY

The Turing Learning formulation that is discussed here was pro-

posed in [4] as a generalization of a family of algorithms where

models and discriminators are competitively optimized. In this pa-

per we deine the discriminator as a hybrid agentD which contains

two types of discriminators, an active discriminator D� , which acts

as an interrogator and thus may inluence the sampling process,

and a passive discriminator D� , which acts as a passive observer.

Hence,D = (D�,D� ). Note that althoughD� andD� are referred

to as single agents here, they are in general populations of agents.

The hybrid formulation is illustrated in Figure 1(a).

In the following, we present a case study where a fully au-

tonomous robot, which has no knowledge where it is located within

its environment, infers a model for calibrating a laser-based dis-

tance sensor by using the hybrid formulation of Turing Learning.

The study is conducted in simulation.

2.1 Robot Simulation Platform

We use a simulated e-puck2 robot [2] which is placed randomly

into a rectangular arena of dimensions 50 cm × 20 cm with two
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(a) (b) (c)

Figure 1: (a) Hybrid formulation of Turing Learning. AmodelM of system T competes with an active discriminator,D� , and a

passive discriminator,D� . (b) Training data distribution. Note that Turing Learning has no access to the ground-truth distance

of T . (c) Comparison between the hybrid formulation using 20 generations (D�&D� ) and its two components in isolation: the

active one (D�) and the passive one (D� ) using 10 generations. Each box represents 100 evolution runs.

unmovable cylindrical obstacles. The distance sensor reading is

simulated as a linear transformation of the distance (in cm) to the

closest object in the robot's front with a uniform noise:

�∗ = round(�∗ · � · � + �∗) (1)

where � ∈ Z is the true distance (in cm), �∗ and �∗, respectively,

are the slope and ofset parameters to be inferred, and � is a mul-

tiplicative noise term, which is uniformly chosen from the range

(0.95, 1.05).

2.2 Hybrid Turing Learning Implementation

The hybrid Turing Learning implementation is as follows:

• Training data. Every control cycle, one sensor reading, �∗, is

obtained using the ground-truth parameters, �∗ = 1.167 and

�∗ = −1.789, respectively [see Equation (1)]. The data distribution

is shown in Figure 1(b).

• Model representation. We assume thatmodel data simulations can

be conducted using an identical arena (though with an e-puck2

robot starting from a new, random location). Every control cycle,

one sensor reading, �∗, is produced using the model parameters,

�̂ and �̂, respectively, as well as � = 1 [see Equation (1)].

• Discriminator representation. The discriminator is represented

as an Elman neural network [1] with 5 hidden neurons. D� has

two additional outputs to drive the robot while observing its

sensor data for 10 s.D� passively observes the data that has been

collected while the robot moved forward with 10 cm⁄s for 5 s.

• Optimization algorithms. Each population is evolved by a (� + �)

evolution strategy with self-adaptive mutation strengths. We set

� = � = 50 leading to 100 candidates in each population.

• Coupling mechanism. The evaluation starts with passive discrim-

inators for one generation, where only a single training data

simulation is performed and resulting data samples are used for

every D� , and then proceeds with active discriminators for the

following generation. The process is then repeated.

• Termination criterion. The optimization process terminates after

100 generations.

3 RESULTS

We compare the hybrid formulation with two non-hybrid formu-

lations: the active one and the passive one [4]. For all three for-

mulations, the practical costs of a single run of � generations are

Table 1: Hours of training data required by the active (D�),

hybrid (D�&D� ), and passive (D� ) formulations.

formulation D� D�&D� D�

cost 0.278·� 0.140·� 0.0014·�

shown in Table 1. As can be seen, the hybrid formulation saves

almost half of the costs compared with the active formulation. We

also consider the situation when a limited budget allows no more

than 10 generations of the costly active formulation. We evaluate a

hybrid formulation of 20 generations as the cost of the passive setup

is remarkably low. Results are shown in Figure 1(c). In general, D�

helps infer the ofset parameter (�∗) well. D� helps infer the slope

parameter (�∗), but it is too costly to be used exclusively. The hybrid

formulation combines the advantages of the pure formulations and

can be used to adjust the learning strategy to the budget at hand.
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