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Summary. Standard network meta-analysis (NMA) and indirect comparisons combine aggre-
gate data from multiple studies on treatments of interest, assuming that any effect modifiers
are balanced across populations. Population adjustment methods relax this assumption using
individual patient data from one or more studies. However, current matching-adjusted indirect
comparison and simulated treatment comparison methods are limited to pairwise indirect com-
parisons and cannot predict into a specified target population. Existing meta-regression ap-
proaches incur aggregation bias. We propose a new method extending the standard NMA
framework. An individual level regression model is defined, and aggregate data are fitted by
integrating over the covariate distribution to form the likelihood. Motivated by the complexity of
the closed form integration, we propose a general numerical approach using quasi-Monte-Carlo
integration. Covariate correlation structures are accounted for by using copulas. Crucially for
decision making, comparisons may be provided in any target population with a given covariate

Address for correspondence: David M. Phillippo, School of Social and Community Medicine, University of
Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK.
E-mail: david.phillippo@bristol.ac.uk



2 D. M. Phillippo et al.

distribution. We illustrate the method with a network of plaque psoriasis treatments. Estimated
population-average treatment effects are similar across study populations, as differences in
the distributions of effect modifiers are small. A better fit is achieved than a random effects
NMA, uncertainty is substantially reduced by explaining within- and between-study variation,
and estimates are more interpretable.

Keywords: Effect modification; Indirect comparison; Individual patient data; Network meta-
analysis

1. Introduction

Health policy and reimbursement decisions require unbiased causal estimates of the relative

effectiveness of all relevant treatments or interventions for a given patient population. For ex-

ample, in England, the National Institute for Health and Care Excellence operates a technology

appraisal process in which a company submits evidence on the clinical and cost effectiveness

of their treatment compared with other relevant treatments. The gold standard of evidence on

relative effectiveness is randomized controlled trials in the population of interest. However, it

is rare that all relevant treatments have been compared head to head in a single randomized

controlled trial; instead, the evidence base is often comprised of several studies, each comparing

a subset of the treatments of interest.

In the simplest scenario, portrayed in Fig. 1, two treatments of interest (treatments 2 and 3)

have been compared separately with a common comparator (treatment 1) in 1 versus 2 and 1

versus 3 studies. The relative effect of treatment 3 compared with treatment 2 can be estimated

by using an indirect comparison d23 = d13 − d12, where dab is the relative effect of b compared

with a on a given scale (Bucher et al., 1997). When a larger number of studies and/or treatments

are available, a network meta-analysis (NMA) is the standard approach, of which indirect

comparison is a simple special case (Lu and Ades, 2004; Dias, Sutton, Ades and Welton, 2013;

Higgins and Whitehead, 1996; Ades, 2003; Lu and Ades, 2006). NMA combines direct evidence

(from head-to-head studies) and indirect evidence (via a common comparator) in a coherent

manner from studies that form a connected network of treatment comparisons. Relative effects

between any two treatments a, b ∈ {2, : : : , K} compared with the reference treatment 1 satisfy

the consistency equations dab =d1b −d1a, enabling any two treatments to be compared even if

not included in the same head-to-head trial.

Given summary outcomes y·jk on treatment k in study j, the standard NMA model can be

written as

y·jk ∼πAgg.θ·jk/,

g.θ·jk/=µj + δjk

where πAgg.·/ is a suitable likelihood for the aggregate data. θ·jk is the expected summary out-

come on treatment k in study j, which is transformed onto the linear predictor scale with a

suitable link function g.·/. The subscript ‘·’ denotes an aggregate level quantity, which will be

Fig. 1. Simple scenario with one 1 versus 2 and one 1 versus 3 study: individual patient data are available
for the 1 versus 2 study ( ); only aggregate data are available for the 1 versus 3 study ( ); an
indirect comparison compares treatments 2 and 3 via the common 1 arm
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helpful to distinguish later when introducing individual level data also. µj are study-specific

intercepts, and δjk is the study-specific relative effect of treatment k versus treatment 1. In a fixed

effect NMA, we have δjk =d1k. We often write dk =d1k and set d1 =0. In a random-effects NMA,

we instead have δjk ∼N.dk, τ2/, where τ2 is the heterogeneity variance (which is assumed com-

mon across comparisons), and we set δj1 =d1 =0. Under this parameterization (with treatment

1 as the reference treatment for the entire network), any study with more than one non-treatment

1 arm has multiple random effects which are given a multivariate normal distribution. Under

the assumption that the heterogeneity variance τ2 is common across all pairwise comparisons,

this has been shown to imply that the correlations between the random effects in each study j are

corr.δja, δjb/=0:5 for any a, b>1 (Higgins and Whitehead, 1996). Heterogeneity variances may

instead be assumed to be different for each comparison, implying a further set of consistency

relationships on the variances and correlations (Lu and Ades, 2009), although in practice a

sufficiently rich data structure is seldom available to estimate such a model. We describe models

making the common heterogeneity variance assumption throughout this paper, but note that

this assumption may be relaxed as previously described (Lu and Ades, 2009). This parameteri-

zation is entirely equivalent to the ‘baseline shift’ parameterization of NMA described elsewhere

in the literature, where relative effects are defined with respect to a reference arm in each study

(e.g. Dias, Sutton, Ades and Welton (2013)), as long as the correlations between random effects

are accounted for.

Covariates, whether measured or not, are balanced within each trial by randomization (at

least on average) but may differ in distribution between trials. We distinguish between covariates

that are effect modifiers, altering the relative effect on a given scale of an active treatment

compared with control, and those that are prognostic variables, affecting absolute outcomes

on all treatments equally. (Some covariates may be both prognostic and effect modifying.)

Standard methods for indirect comparison and NMA require only aggregate data from each

trial and make the assumption that the distributions of any effect modifying covariates are

balanced between trials so that relative effects are valid across all included study populations—

the constancy of relative effects assumption (Phillippo et al., 2018). When this assumption does

not hold, standard indirect comparisons and NMA are subject to bias. If individual patient data

(IPD) are available from every study, an IPD network meta-regression may be performed to

adjust for differences in observed effect modifiers and is considered the ‘gold standard’ method

(Berlin et al., 2002; Lambert et al., 2002; Dias, Sutton, Welton and Ades, 2011; Riley et al.,

2010). In a technology appraisal context, however, such levels of data availability are rare.

It is more common for a manufacturer preparing a submission to a reimbursement agency

to have IPD on their own studies, but only published aggregate data on their competitors’

studies.

Recently, matching-adjusted indirect comparison (MAIC) (Signorovitch et al., 2010; Ishak

et al., 2015) and simulated treatment comparison (STC) (Caro and Ishak, 2010; Ishak et al.,

2015) methods have been proposed that aim to use available IPD in conjunction with aggregate

data to adjust for differences in effect modifiers, through reweighting or regression adjustment

respectively, to produce population-adjusted indirect comparisons. These methods rely on the

assumption of conditional constancy of relative effects, which states that relative effects are

constant between populations at any particular level of a set of covariates (the effect modifiers)

(Phillippo et al., 2018). This is a weaker assumption than constancy of relative effects required

for aggregate data NMA. However, these methods are applicable in only the simple two-study

scenario with an IPD study on one treatment of interest and an aggregate data study on the

other treatment of interest (possibly sharing a common comparator, as in Fig. 1) and are not

generalizable to larger treatment networks. They are also limited to providing a comparison
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that is adjusted to the population of the trial for which only aggregate data are available, which

may not match the target population for the decision.

Meta-regression methods have also been proposed (Sutton et al., 2008; Donegan et al., 2013;

Jansen, 2012; Saramago et al., 2012; Thom et al., 2015), which combine available IPD with ag-

gregate data in an NMA framework and estimate interaction effects for effect modifiers. These

methods typically assume common regression coefficients at both the individual and the aggre-

gate level, which leads to aggregation bias (a form of ecological bias) when the model is non-linear

(Rothman et al., 2008). Two approaches have been proposed to account for this. The first is to

split the interaction effect into between-study (or aggregate level) and within-study (or individual

level) effects (Sutton et al., 2008; Donegan et al., 2013; Saramago et al., 2012; Thom et al., 2015).

However, in the two-study scenario (Fig. 1) there are insufficient data to identify the additional

between-study parameter alongside the treatment effect; this approach is therefore not applicable

in this scenario. The second approach is to define the aggregate level model by integrating the in-

dividual level model over the study population, avoiding aggregation bias by properly relating the

two levels. This approach derives from models that are used in the ecological inference literature

to incorporate individual level survey or cohort data along with aggregate level data collected by

group or area (Jackson et al., 2006, 2008). Jansen (2012) first applied such models to combine IPD

and aggregate data in NMA; however, so far this approach has been derived for only the simple

case of binary outcomes and binary covariates, where the integration reduces to summation.

In this paper, we aim to generalize the ideas of Jansen (2012) to extend to other outcomes

and likelihoods and to include continuous covariates. We propose the multilevel network meta-

regression model ML-NMR, which is a general method for population-adjusted indirect com-

parisons and NMA that can be applied to any connected network of evidence and produce

estimates in any specified target population. ML-NMR has the desirable property that stan-

dard IPD and aggregate data NMA are special cases.

To motivate the methods we begin by describing an example of treatments for plaque psoriasis.

We then detail ML-NMR, likelihoods at both the individual and the aggregate level, and a

general implementation of ML-NMR using numerical integration. We illustrate the methods

with an example and conclude with a discussion.

Data for the example (including simulated IPD) and code used for the analysis used can be

obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/1467985x/series-

a-datasets.

1.1. Example: plaque psoriasis

Six treatments for moderate-to-severe plaque psoriasis were compared with placebo over 12

weeks in four phase 3 trials. In trials UNCOVER-1, UNCOVER-2 and UNCOVER-3, patients

were randomized to receive placebo, etanercept (in UNCOVER-2 and UNCOVER-3 only),

ixekizumab every 2 weeks, Q2W, or ixekizumab every 4 weeks, Q4W (Griffiths et al., 2015;

Gordon et al., 2016). In the FIXTURE trial, patients were randomized to receive placebo,

secukinumab 150 mg, secukinumab 300 mg or etanercept (Langley et al., 2014). Fig. 2 displays

the resulting treatment network that was formed by the four studies. IPD were available for the

three UNCOVER trials. Outcomes of interest include success or failure to achieve 75%, 90%

and 100% improvement on the psoriasis area and severity index (PASI) scale (denoted PASI

75, PASI 90 and PASI 100 respectively) at 12 weeks. Information on five clinically relevant

covariates that were thought to be potential effect modifiers is available on individuals in the

UNCOVER trials, and summary statistics on the same covariates were extracted from the
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Fig. 2. The UNCOVER (Griffiths et al., 2015; Gordon et al., 2016) and FIXTURE (Langley et al., 2014)
trials form a network of six treatments: shading indicates comparisons made in a the UNCOVER-2 and UN-
COVER-3 trials, b the UNCOVER-1 trial and c the FIXTURE trial ( , availability of IPD on a comparison;

, availability of aggregate data on a comparison; PBO, placebo; IXE, ixekizumab; SEC, secukinumab;
ETN, etanercept); IXE and SEC were each investigated with two different dosing regimens; the MAIC analysis
included only information from the IXE Q2W, SEC 300 and ETN arms, whereas ML-NMR makes use of all
available information

Table 1. Baseline covariate summaries from the UNCOVER and FIXTURE trials†

Covariate Values for Values for Values for Values for
UNCOVER-1 UNCOVER-2 UNCOVER-3 FIXTURE

(N =1296) (N =1219) (N =1339) (N =1306)

Age, years 45.7 (12.9) 45.0 (13.0) 45.7 (13.1) 44.5 (12.9)
Body surface area, %‡ 27.7 (17.3) 26.0 (16.5) 28.3 (17.1) 34.4 (18.9)
Duration of psoriasis, years‡ 19.6 (11.9) 18.7 (12.5) 18.2 (12.2) 16.5 (12.0)
Baseline PASI score 20.1 (8.0) 19.6 (7.2) 20.9 (8.2) 23.7 (10.2)
Previous systemic treatment(%) ‡ 71.3 64.2 57.1 64.0
Psoriatic arthritis (%)‡ 26.3 23.6 20.5 14.7
Male (%) 68.1 67.0 68.2 71.1
Weight, kg‡ 92.2 (23.8) 91.6 (22.2) 91.2 (23.5) 83.3 (20.8)

†Reported sample size for the UNCOVER-2 and UNCOVER-3 trials after removing two individuals
from each study with missing weight. The statistics are the mean (with standard deviation in parentheses)
unless otherwise specified.
‡Covariate considered a potential effect modifier, to be included in population adjustment.

FIXTURE trial (Langley et al., 2014). Table 1 summarizes the distribution of these at baseline

in each trial.

A previous MAIC sought to create a population-adjusted indirect comparison between

ixekizumab Q2W and secukinumab 300 mg (the approved dosages), adjusting for these baseline

covariates, via the common etanercept arms in UNCOVER-2 and UNCOVER-3 and FIX-

TURE (Strober et al., 2016); data from UNCOVER-1 could not be used, as this study did not

include an etanercept arm. Furthermore, comparisons that were made using MAIC are valid

only for the population of the study with aggregate data (here FIXTURE) unless further as-
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sumptions are made. We shall use ML-NMR to incorporate all the available data, and produce

population-adjusted indirect comparisons between any pair of treatments in any chosen target

population. We shall illustrate this by producing estimates for both the FIXTURE and the UN-

COVER study populations, focusing on the PASI 75 outcome. Baseline PASI score and body

surface area are highly correlated since the PASI score is based on cut points of body surface

area, so we include only body surface area in the adjustment in line with the previous MAIC

(Strober et al., 2016).

2. Multilevel network meta-regression

Suppose that we wish to compare a set of K treatments, using a combination of IPD and

aggregate data from a set of J trials. The IPD studies provide outcomes yijk and covariates

xijk for each individual i in study j receiving treatment k. The aggregate data studies provide

summary outcomes y·jk for each treatment k in study j, such as means or event counts. Suppose

further that information is available on the joint covariate distribution fjk.x/ for individuals on

treatment k in study j.

The general framework for ML-NMR derives from the approach of Jackson et al. (2006,

2008), where the aggregate level model is an integration of the individual level model over the

population in each trial: individual,

yijk ∼πInd.θijk/, .1a/

g.θijk/=ηjk.xijk/=µj +xT
ijk.β1 +β2,k/+γk; .1b/

aggregate,

y·jk ∼πAgg.θ·jk/, .1c/

θ·jk =

∫
X

g−1{ηjk.x/}fjk.x/ dx: .1d/

The individual and aggregate level data are given appropriate likelihood distributions πInd.·/

and πAgg.·/. θijk and ηjk.xijk/ are the conditional mean outcome and linear predictor for an

individual on treatment k in trial j with covariate vector xijk. θ·jk is the marginal mean outcome

on treatment k in trial j. g.·/ is a suitable link function, and X denotes the support of x. The

coefficients µj are study-specific baselines, β1 are coefficients for prognostic variables and β2,k

are coefficients for effect modifiers that are specific to each treatment k. The effect of the kth

treatment (at the individual level), γk, is defined with respect to the reference treatment 1, and

we set γ1 =0 and β2,1 =0. Some coefficients in β1 or β2,k may be set to 0, if it is known that a

particular covariate is not prognostic or effect modifying respectively.

Implementation of the ML-NMR model (1) involves two key steps. Firstly, we must derive an

aggregate level likelihood πAgg.·/ (1c) from the individual level likelihood πInd.·/ (1a), ensuring

that the relationship between levels is maintained. For several individual level likelihoods the

corresponding aggregate likelihood is intuitive, but this is not always so. Secondly, the integral

in the aggregate level model (1d) must be evaluated; the form of the derivation depends on

the type of covariates (discrete, continuous or a mixture of both) and the link function g.·/.

Simply ‘plugging in’ the mean covariate values leads to aggregation bias whenever the model is

non-linear, since E{g.X/} �=g{E.X/}.
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2.1. From individual to aggregate likelihoods

The choice of an individual level likelihood distribution is natural; however, care must be taken

in subsequently defining the appropriate aggregate level likelihood distribution for the sum

(for binary or count data) or average (for continuous data) of the individual outcomes. For

example, if a normal individual likelihood yijk ∼N.θijk, σ2
jk/ is used, then the respective aggregate

likelihood for the mean of the (independent) individual outcomes will also be normal: y·jk ∼

N.θ·jk, N−1
jk σ2

jk/, where θ·jk is the mean over the individual θijk. Similarly, individual Poisson

event counts with likelihood yijk ∼Pois.θijk/ induce a Poisson aggregate likelihood for the total

number of events y·jk ∼Pois.θ·jk/, where θ·jk is the sum over the individual θijk.

The situation is not so straightforward when binary data are observed, as for our psoriasis

example. For each individual, the binary outcome of success or failure to achieve PASI 75 follows

a Bernoulli distribution, with some individual success probability pijk which is modelled with a

probit link function as

yijk ∼Bern.pijk/,

pijk =θijk =Φ{µj +xT
ijk.β1 +β2,k/+γk}

.2/

where Φ.·/ is the standard normal cumulative distribution function. A probit link was chosen

here to remain comparable with previous analyses; another choice is the logit link, although in

practice the results will be very similar (Chambers and Cox, 1967).

The total number of events is a sum over individual Bernoulli outcomes, each with different

success probabilities due to differences in prognostic factors and effect modifiers, and so the

respective aggregate likelihood could be considered approximately binomial,

y·jk ∼Bin.Njk, p̄jk/, .3/

with an average probability of success p̄jk. This approximation works well only when the in-

dividual event probabilities pijk are all approximately equal for a given study j and treatment

k (Ehm, 1991). The true aggregate likelihood is Poisson binomial, parameterized by a vector

pjk of success probabilities for each individual and has the same mean but a smaller variance

than the binomial approximation (3) (Wang, 1993). However, it is not possible to estimate pjk

from the available aggregate data, so we use an approximation (Le Cam, 1960), whereby both

parameters of a binomial distribution are adjusted to match both the variance and the mean of

the Poisson binomial:

y·jk ∼Bin.N ′
jk, p̄′

jk/, .4/

where

N ′
jk =

∑
i pijk

p̄′
jk

=Njk

p̄2
jk

p̄2
jk

,

p̄′
jk =

∑
i p2

ijk∑
i pijk

=
p̄2

jk

p̄jk

defining p̄2
jk =N−1

jk Σip
2
ijk. The mean probability parameter p̄jk is modelled with θ·jk (equation

(1d)) and a probit link:

p̄jk =θ·jk =

∫
X

Φ{ηjk.x/}fjk.x/dx:
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The second parameter p̄2
jk (which is related to the variance of the individual probabilities)

is modelled in a similar manner, where the integration in equation (1d) is over the squared

probabilities:

p̄2
jk =

∫
X

Φ{ηjk.x/}2fjk.x/dx:

A shifted binomial approximation further matches the skewness of the Poisson binomial

distribution by adjusting three parameters (the third being an additional ‘shift’ parameter)

(Peköz et al., 2009); however, in practice the largest improvements arise from the use of the

two-parameter approximation (4) over the simple approximation (3), with the three-parameter

approximation giving little additional improvement at the expense of greater complexity and

computational cost (Peköz et al., 2010). We therefore use the two-parameter approximation in

our models.

2.2. Deriving the aggregate level model

Implementing ML-NMR involves an integration step in the aggregate level model (1d). In a

Bayesian framework, ML-NMR is likely to be implemented by using Markov chain Monte Carlo

(MCMC) sampling, e.g. in WinBUGS, JAGS or Stan. At each iteration of the MCMC algorithm,

we must evaluate integral (1d) at a given set of values for the parameters .µj, β1, β2,k, γk/. In

a frequentist analysis, integral (1d) is evaluated at every iteration of an estimation routine (e.g.

maximizing the likelihood). In this paper, we focus on the Bayesian approach.

If the covariates x are all discrete, then integral (1d) becomes a summation which is straight-

forward to perform:

θ·jk =
∑
x∈X

g−1{ηjk.x/}fjk.x/, .5/

where now X is the set of discrete levels of x, and fjk.x/ is the proportion of individuals in

each level on treatment k in the jth trial. Jansen (2012) described how a network meta-analysis

combining IPD and aggregate data may be performed by using equation (5) in a logistic re-

gression scenario with only discrete covariates, and using the simple one-parameter binomial

approximation to the Poisson binomial likelihood (equation (3) above).

For continuous covariates, we can use either algebraic or numerical methods to implement

ML-NMR. Analytic approaches to performing the aggregation integral (1d) provide insight into

the mathematical nature of the multilevel model (see the on-line appendix A.1). However, such

approaches are context specific, requiring a different approach for each link function, and are of

little use when the marginalization integral becomes intractable (most notably when covariates

are skewed). There is, therefore, a need for a general numerical approach which is both flexible

and sufficiently robust to be widely applicable, regardless of the model form or the distributions

of covariates.

2.2.1. A general numerical method

We propose to evaluate the aggregation integral (1d) by using numerical integration at each

iteration of the MCMC (or maximum likelihood) algorithm. Quadrature rules are fast and

accurate but degrade in higher dimensions (e.g. beyond two or three covariates) and may rely

on the specific form of fjk.·/ or g.·/ (such as Gaussian quadrature). Instead, we shall use Monte

Carlo integration to evaluate integral (1d).
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The integral (1d) over the covariate distribution fjk.·/ is approximated by a summation over

Ñ values of x̃jk ∼fjk.·/:

θ·jk =

∫
X

g−1{ηjk.x/}fjk.x/dx

≈
1

Ñ

∑
g−1{ηjk.x̃jk/}:

.6/

For standard Monte Carlo integration, x̃jk are sampled (pseudo)randomly from the covariate

distribution fjk.·/; however, this can require large numbers of integration points to obtain

sufficiently accurate estimates. The approximation can be made more efficient by using a quasi-

random sample of points (quasi-Monte-Carlo sampling (QMC)), which are chosen sequentially

to cover the covariate space X more uniformly than pseudorandom samples, resulting in fewer

integration points needed to achieve the same accuracy. We obtain a quasi-random sample of

x̃jk from the covariate distribution fjk.·/ by using a Sobol’ sequence (Sobol’, 1967). The Sobol’

sequence generates points in the unit hypercube with one dimension for each covariate, which

are then transformed to the required distribution by using the inverse cumulative distribution

function method. The integration points x̃jk are treated as fixed inputs for the MCMC run and

used to evaluate sum (6) at each iteration (i.e. at each posterior sample of the model parameters).

QMC integration may achieve integration error rates of the order Ñ
−1

, compared with standard

Monte Carlo sampling which achieves only Ñ
−1=2

(Niederreiter, 1978; Caflisch, 1998). In other

words, when using 10000 integration points drawn from a Sobol’ sequence, we would expect

accuracy down to around four decimal places, compared with an accuracy of two decimal places

by using standard Monte Carlo sampling.

The goodness of fit may be assessed by using the residual deviance. For binary data, calculation

of the residual deviance for the individual level Bernoulli likelihood is straightforward; for the

aggregate level likelihood we again use a binomial approximation for tractability.

We implement this numerical approach in a Bayesian framework by using R (R Core Team,

2017) and Stan (Carpenter et al., 2017); full general purpose code is available in the on-line sup-

plementary materials for the probit regression case, which can be adapted to other likelihoods

and link functions. The code makes use of QR-decomposition and centring which make com-

putation highly efficient. The computation time is driven by the amount of IPD that is available

and the number of integration points chosen and is not markedly increased over an equivalent

full IPD network meta-regression. For example, the ML-NMR model for the plaque psoriasis

example takes around 5 min to run on a modern desktop computer.

2.2.2. Using published marginal covariate information

When using ML-NMR in practice, we typically have access to only limited covariate informa-

tion from the aggregate data studies. This is often in the form of published marginal covariate

summaries, and we have no information on the correlation structure between the covariates

or on the distributional form of the marginal distributions. Where the forms of the marginal

covariate distributions in the aggregate data studies are unknown, we can instead choose distri-

butional forms for these covariates on the basis of their theoretical properties and/or to match

approximately the observed distributional forms in the IPD studies. For example, a covariate

may be well known to be approximately log-normal and/or observed as such in the IPD, and we

can then assume a marginal distribution for this covariate in the aggregate data studies to match

the published summary statistics. To account for the missing correlation structure, rather than

assuming that all correlations are 0 (which may be unreasonable), we can utilize the correlation
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structure that is observed among the covariates in the IPD studies and assume that this holds

for the covariates in the aggregate data studies. It seems reasonable to assume that, although the

marginal summaries for each covariate may change from study to study (e.g. the proportion of

males, or mean and standard deviation of weight), the relationships between covariates are likely

to remain similar (for example the duration of disease is positively correlated with the number

of previous lines of treatment). We encode this assumption in the joint covariate distributions

for the aggregate data studies by using a Gaussian copula (Nelsen, 2006), so that the correlation

matrix of the covariates in the aggregate data studies match those of the IPD studies, while

retaining the given marginal distributions (see the on-line appendix A.3).

2.3. Using the shared effect modifier assumption

The data requirements for estimating a treatment effect and independent effect modifier inter-

action terms for a given treatment k are either

(a) IPD from one or more trials including treatment k or

(b) sufficiently many aggregate data studies including treatment k, with enough variation

in covariate values (equivalent to the requirements of a standard aggregate data meta-

regression).

In the case that neither of these requirements can be met, either informative prior distributions

or additional assumptions are required to estimate the model.

The shared effect modifier assumption (Phillippo et al., 2016, 2018) can make the model

estimable by assuming that the effect modifier interaction coefficients β2,k are identical among

a set or class of treatments k ∈T . The data requirements that were described above then apply

to the set T as a whole, rather than to each individual treatment.

To relax the shared effect modifier assumption for a set of treatments T , we can instead

assume that the interactions are exchangeable. A hierarchical model is placed on the interaction

coefficients

β2,k;l ∼N.mβ2,l, σ
2
β2,l/ .7/

for k ∈T and each coefficient β2,k;l in the vector β2,k, where l indexes the various covariates.

The hyperparameters mβ2,l and σ2
β2,l are themselves given prior distributions in a Bayesian

framework. There may be multiple (mutually exclusive) treatment sets T1, T2, : : : within the

treatment network, and some of these may contain only a single treatment on its own. Different

assumptions regarding the effect modifier interactions may be made within each set if required.

In practice, the data requirements for estimating exchangeable interactions (7) may also be

beyond the data that are available. In particular, the estimation of the variance components σ2
β2,l

is challenging and improves only with increasing numbers of treatments in T and/or informative

prior distributions. If there are multiple treatment sets within the network for which the shared

effect modifier assumption is made, then the variance components could be assumed equal

between the treatment sets to aid estimation further.

2.4. Assessing residual heterogeneity and inconsistency

The key assumption of population adjustment methods is that relative effects are constant given

the effect modifiers adjusted for (conditional constancy of relative effects; see Phillippo et al.

(2016, 2018)). Within the ML-NMR framework, this assumption corresponds to the individual

level relative effects γk being constant across populations—in other words, we fit a fixed effect

model. In the two-study scenario (Fig. 1) this is an untestable assumption. However, with a
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larger network of studies and treatments it is possible to assess the conditional constancy of

relative effects assumption.

A random-effects model may be fitted to check for any residual heterogeneity remaining after

adjusting for the given effect modifiers. This is achieved by modifying the linear predictor ηjk.x/

in equation (1) as follows: fixed effect,

ηjk.x/=µj +xT.β1 +β2,k/+ δjk, δjk =γk; .8/

random effects,

ηjk.x/=µj +xT.β1 +β2,k/+ δjk, .9a/

δjk ∼N.γk, τ2/, .9b/

corr.δja, δjb/=0:5 .9c/

where δj1 = 0. The random effects are multivariate normal with marginal distributions given

by expression (9b) and correlations equal to 0.5, equation (9c), under the assumption of com-

mon heterogeneity variance τ2 (Higgins and Whitehead, 1996). For two-arm studies against

treatment 1, there is a single univariate normal random effect on the non-treatment 1 arm,

with distribution given by expression (9b). The appropriateness of the conditional constancy

of relative effects assumption can then be assessed by comparing model fit (e.g. by using the

deviance information criterion; Spiegelhalter et al. (2002)) between the fixed and random-effects

models and by examining the posterior distribution of the residual heterogeneity variance τ2.

The random-effects model (9) is likely to be more widely applicable in practice than the ex-

changeable interactions model (7) as a relaxation of the standard ML-NMR model (1), since

the data requirements are lesser.

For ML-NMR, consistency applies to both the individual level treatment effects and the effect

modifier interactions (as described for meta-regression by Donegan et al. (2017)):

γab =γb −γa, .10a/

β2,ab =β2,b −β2,a: .10b/

Standard approaches for investigating inconsistency such as unrelated mean effects models

(Dias, Welton, Sutton, Caldwell, Lu and Ades, 2011) and node splitting models (Dias et al., 2010)

can also be applied in the context of ML-NMR. We describe application of these approaches

to ML-NMR models in the on-line appendix A.4.

The presence of residual heterogeneity or inconsistency has several potential causes. For ex-

ample, there may be effect modifiers that have not been included in the model or other model

misspecification, the assumed joint covariate distributions used to adjust the results from aggre-

gate studies may be incorrect or the shared effect modifier assumption (if it was used) may be

invalid. Attempts may be made to rectify these issues in a revised model—if data permit—and

the residual heterogeneity and inconsistency of the revised model may then be checked.

2.5. Producing estimates for a specific target population

To be relevant for decision making, population-adjusted estimates must be produced for the

relevant target population. ML-NMR can produce population-adjusted estimates of quantities

of interest in any target population for which covariate information is available. For example,

the quantities of interest may be average treatment effects (contrasts), or the proportion of
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individuals achieving PASI 75 response. In general, we consider estimating the average h̄.P/ of

a quantity h.x, ξ/ in a target population P , which is some function of the covariates x and a

set ξ of the parameters µ.P/, β1, β2,k and γk (with the required parameters depending on the

quantity of interest). As a function of the parameters, h̄.P/ has a posterior distribution; when

using MCMC sampling, h̄.P/ is evaluated at each iteration to obtain posterior samples.

Given the joint covariate distribution f.P/.·/ in the target population, h̄.P/ is obtained by

integrating over the joint covariate distribution (as a generalization of equation (1d)):

h̄.P/ =

∫
X

h.x, ξ/f.P/.x/dx: .11/

The integral may be evaluated by using QMC integration, as described above.

Alternatively, if the target population is represented by a study or registry with individual

covariate information available, h̄.P/ is obtained by taking the average of h.x, ξ/ applied to each

individual in P :

h̄.P/ =
1

NP

NP∑
i=1

h.xi, ξ/, .12/

where NP is the number of individuals in the sample, each with covariate information xi.

To calculate the population-average relative effect dab.P/ between treatments b and a, we define

h.x, β2,a, β2,b, γa, γb/=xT.β2,b −β2,a/+γb −γa: .13/

In this case, since the population-average relative effects are given on the transformed linear

predictor scale, both equation (12) and equation (11) are equivalent to ‘plugging-in’ mean

covariate values: h̄.P/ = x̄T.β2,b −β2,a/ + γb − γa. Equation (13) makes use of the consistency

equations: the individual relative effects for b versus a are γab = γb − γa, with effect modifier

coefficients β2,ab =β2,b −β2,a. These consistency equations apply at the individual level and

imply consistency of the population-average relative effects within each population, dab.P/ =

db.P/ − da.P/, but not across populations. Standard NMA is a special case where there is no

effect modification (or effect modifiers are balanced between all studies), so the population-

average relative effects are identical between studies and the usual NMA consistency equations

dab =db −da are recovered.

To calculate the predicted proportion of individuals achieving PASI 75 response on treatment

k in population P , we define

h.x, µ.P/, β1, β2,k, γk/=Φ{µ.P/ +xT.β1 +β2,k/+γk} .14/

where µ.P/ is the individual level reference effect in population P , which may be equal to µj if

P is study j in the analysis, or may be estimated from external data on P .

3. Application to plaque psoriasis example

To implement the aggregate level model, we use the QMC integration approach that was de-

scribed above to integrate the individual level model (1b) over the covariate distribution in the

FIXTURE trial (Table 1). First, 10000 points are taken from a five-dimensional Sobol’ se-

quence, one dimension for each covariate: body surface area, duration of psoriasis, previous

systemic treatment, psoriatic arthritis and weight. Marginal distributions for each covariate in

the FIXTURE trial are chosen to match the summary statistics reported, with specific form

based on theoretical properties and the observed distributions in the UNCOVER trials: weight

and duration are given a gamma distribution to account for skewness, and body surface area
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Table 2. Estimated SMD contrasts and 95% credible intervals for each pair of treatments in each study
population (for ML-NMR) and from a random-effects NMA†

Contrast Results for ML-NMR study population Results for random-
effects NMA

FIXTURE UNCOVER-1 UNCOVER-2 UNCOVER-3

IXE Q2W versus 2.94 2.98 2.95 2.93 2.91
PBO (2.74, 3.14) (2.80, 3.17) (2.77, 3.13) (2.76, 3.11) (2.64, 3.19)

IXE Q4W versus 2.65 2.69 2.66 2.64 2.61
PBO (2.45, 2.84) (2.51, 2.89) (2.47, 2.84) (2.46, 2.82) (2.32, 2.88)

ETN versus PBO 1.74 1.65 1.64 1.65 1.61
(1.55, 1.93) (1.47, 1.83) (1.46, 1.81) (1.47, 1.81) (1.34, 1.91)

SEC 150 versus 2.29 2.33 2.30 2.28 2.16
PBO (2.07, 2.53) (2.10, 2.58) (2.07, 2.54) (2.05, 2.52) (1.71, 2.61)

SEC 300 versus 2.60 2.64 2.61 2.59 2.46
PBO (2.36, 2.83) (2.40, 2.90) (2.36, 2.86) (2.35, 2.83) (2.02, 2.89)

IXE Q4W versus −0:30 −0:30 −0:30 −0:30 −0:31
IXE Q2W (−0:42, −0:17) (−0:42, −0:17) (−0:42, −0:17) (−0:42, −0:17) (−0:57, −0:05)

ETN versus −1:20‡ −1:33 −1:31 −1:29 −1:30
IXE Q2W (−1:35, −1:06) (−1:47, −1:19) (−1:45, −1:18) (−1:42, −1:15) (−1:58, −1:01)

SEC 150 versus −0:65 −0:65 −0:65 −0:65 −0:75
IXE Q2W (−0:89, −0:42) (−0:89, −0:42) (−0:89, −0:42) (−0:89, −0:42) (−1:24, −0:25)

SEC 300 versus −0:34§ −0:34 −0:34 −0:34 −0:45
IXE Q2W (−0:58, −0:10) (−0:58, −0:10) (−0:58, −0:10) (−0:58, −0:10) (−0:92, 0:02)

ETN versus −0:91 −1:04 −1:02 −0:99 −0:99
IXE Q4W (−1:05, −0:75) (−1:17, −0:90) (−1:15, −0:89) (−1:12, −0:85) (−1:27, −0:68)

SEC 150 versus −0:36 −0:36 −0:36 −0:36 −0:45
IXE Q4W (−0:59, −0:12) (−0:59, −0:12) (−0:59, −0:12) (−0:59, −0:12) (−0:93, 0.03)

SEC 300 versus −0:05 −0:05 −0:05 −0:05 −0:14
IXE Q4W (−0:27, 0.19) (−0:27, 0.19) (−0:27, 0.19) (−0:27, 0.19) (−0:62, 0.31)

SEC 150 versus 0.55 0.68 0.66 0.63 0.54
ETN (0.36, 0.74) (0.48, 0.88) (0.46, 0.87) (0.43, 0.84) (0.11, 0.97)

SEC 300 versus 0.86 0.99 0.97 0.94 0.85
ETN (0.65, 1.06) (0.77, 1.20) (0.75, 1.18) (0.72, 1.14) (0.41, 1.26)

SEC 300 versus 0.31 0.31 0.31 0.31 0.31
SEC 150 (0.11, 0.53) (0.11, 0.53) (0.11, 0.53) (0.11, 0.53) (−0:16, 0.77)

†See the caption for Fig. 2 for definitions of the terms in the contrasts. The ML-NMR contrast estimates between
ixekizumab and secukinumab treatments are the same in every population because of the shared effect modifier
assumption for these treatments.
‡The MAIC estimate is −1:18 (−1:37, −0:99). A standard indirect comparison uses the pooled study estimate
−1:27 (−1:42, −1:12) from the UNCOVER-2 and UNCOVER-3 trials.
§The MAIC estimate is −0:28 (−0:56, −0:00). The standard indirect comparison estimate is −0:37 (−0:63, 0.12).

as a percentage is given a scaled logit–normal distribution. Previous systemic treatment and

psoriatic arthritis are binary covariates. Since no information on the correlations between co-

variates is available in the FIXTURE trial, these are assumed to match those observed in the

UNCOVER trials. To account for this, we compute a correlation matrix for the UNCOVER

trials and impose this on the Sobol’ points by using a Gaussian copula, before transforming

to the required marginal distributions by using the inverse cumulative distribution function

method (see the on-line appendix A.3). The resulting integration points capture the correlations

between the covariates (for example a longer duration of psoriasis is correlated with having
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Table 3. Estimated interactions for each treatment class and potential effect modifier, and
estimated individual level treatment effects†

Results for the following treatment classes:

Anti-TNFα IL-17A blocker

Effect modifier interaction
Previous systemic use −0:00 (−0:38, 0.35) 0.12 (−0:21, 0.46)
Duration of psoriasis, per 10 years 0.14 (−0:03, 0.30) 0.17 (0.02, 0.33)
Body surface area, per 10% 0.06 (−0:05, 0.17) 0.02 (−0:09, 0.13)
Weight, per 10 kg −0:10 (−0:18, −0:02) −0:04 (−0:11, 0.04)
Psoriatic arthritis 0.01 (−0:43, 0.48) 0.25 (−0:17, 0.71)

Reference individual treatment effect
IXE Q2W 2.82 (2.56, 3.10)
IXE Q4W 2.52 (2.25, 2.80)
ETN 1.67 (1.38, 1.96)
SEC 150 2.16 (1.86, 2.49)
SEC 300 2.47 (2.17, 2.79)

†All estimates are standardized mean differences versus placebo, with 95% credible intervals.

previous systemic treatment) while preserving the marginal distribution for each covariate. Figs

A.1 and A.2 in appendix A.5 demonstrate that empirical integration error rates of the order

Ñ
−1

are indeed achieved over the entire posterior distribution of the parameters, for both p̄ and

p̄2 in each arm of the FIXTURE study.

We then fit an ML-NMR model to the PASI 75 outcomes, including interaction terms for

the five potential effect modifiers in Table 1. We take a Bayesian approach implemented in

Stan (Carpenter et al., 2017), placing a non-informative N.0, 1002/ prior distribution on each

parameter. A probit link function is used, as the binary outcome is a dichotomization of the

continuous underlying PASI scale, which means that the model parameters and treatment effects

are interpreted as standardized mean differences (SMDs) on the PASI scale. With only two

aggregate data secukinumab treatment arms available, it is not possible to identify a model

with five distinct effect modifier interactions and a treatment effect for each secukinumab dose.

However, since secukinumab and ixekizumab share modes of action as interleukin-17A blockers,

we assume that the effect modifier interaction parameters are common between these treatments

across all doses (the shared effect modifier assumption) to identify the model. Four parallel

chains were run for 2000 iterations each (the first 1000 iterations were discarded as warm-up).

Convergence was assessed by using the potential scale reduction factor R̂ (Gelman et al. (2013),

pages 284–285), and effective sample sizes and Monte Carlo standard errors guided the choice

of the number of iterations. There were no divergent transitions.

Finally, we produce estimates of contrasts between each pair of treatments, and of the pro-

portion of individuals achieving PASI 75, in both the UNCOVER and the FIXTURE trial

populations. For the UNCOVER populations, these are produced by averaging the predicted

SMD contrast on each pair of treatments (13), or the predicted proportion achieving PASI 75

(14), over every individual by using equation (12). For the FIXTURE population, these are

produced by integrating the respective quantities over the joint covariate distribution by using

numerical integration as in equation (11).

The resulting contrast estimates are shown in Table 2 (see also Fig. A.3 in the on-line appendix

A.5). There are small differences in the estimated average treatment effects in each population;

for example, etanercept appears slightly more effective relative to placebo in the FIXTURE
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(a)

(b)

(c)

(d)

Fig. 3. Estimated proportion of individuals achieving PASI 75 on each treatment, in each study population
(the MAIC estimate is produced in the FIXTURE study population, and the corresponding interval is a 95%
confidence interval as MAIC is a frequentist method) ( , ML-NMR; , MAIC; , observed): (a) FIXTURE; (b)
UNCOVER-1; (c) UNCOVER-2; (d) UNCOVER-3



16 D. M. Phillippo et al.

study population than in the UNCOVER study populations. Examining the estimated effect

modifier interactions in Table 3 alongside the covariate summaries in Table 1, we see that this

is to be expected: the differences in mean covariate values between study populations are small

when combined with the size of the interaction terms. Furthermore, a random-effects NMA of

the studies estimates the between-study heterogeneity standard deviation to be 0.17 (0.02, 0.46),

which is moderate compared with the size of the average treatment effects. Using MAIC, the

comparison between ixekizumab Q2W and secukinumab 300 mg in the FIXTURE population

is estimated as an SMD of 0.28 (0.00, 0.56) in favour of ixekizumab Q2W; with ML-NMR,

we estimate 0.34 (0.10, 0.58). (A standard indirect comparison estimates 0.37 (0.12, 0.63).) The

point estimates are similar between the two population adjustment approaches, as we would

expect, but ML-NMR has reduced uncertainty compared with the MAIC method because of

incorporating all available information from the studies. The random-effects NMA estimate

for this contrast is 0.45 (−0:02, 0.92), which assumes that any imbalance in effect modifiers is

random. Since the differences in effect modifiers between trials are small, the possible bias in

the random-effects NMA estimate is likely to be small also; however, ML-NMR increases the

precision of the estimates by explaining the within-trial variation due to effect modification.

Fig. 3 shows the estimated proportion of individuals achieving PASI 75 in each population,

using MAIC and ML-NMR (see also Table A.1 in the on-line appendix A.5). Again, ML-NMR

has reduced uncertainty compared with the MAIC method, and we can produce estimates for

any target population—not just the FIXTURE trial population.

Every active treatment is effective compared with placebo, with the class of interleukin 17A

blockers more effective than anti-TNFα treatment. Ixekizumab Q2W displays the highest es-

timated proportion of individuals achieving PASI 75, with posterior mean estimates ranging

from 85.9% to 90.3% across the UNCOVER and FIXTURE studies. The 95% credible intervals

for comparisons of ixekizumab Q2W against every other treatment exclude zero (on the probit

SMD scale), in all the study populations that were assessed. In a decision-making context, esti-

mates could be produced for the decision target population with a defined covariate distribution,

which need not match any of the FIXTURE or UNCOVER studies.

The total residual deviance was 3146.26 on 3858 data points, of which the contribution from

3854 individual data points was 3141.81, and 4.45 from four aggregate data points, demon-

strating that the model is a good fit to both the IPD and aggregate data. Standard fixed and

random-effects NMA models have a total residual deviance of 3216.01 and 3210.44 respectively.

Comparing the deviance information criterion values (Spiegelhalter et al., 2002) between the

various approaches, ML-NMR has a lower value (3170) than either fixed (3225) or random-

effects (3223) NMA. The ML-NMR model achieves a better fit than the random-effects NMA

and is more interpretable and informative, as the heterogeneity is explained rather than averaged

over.

4. Discussion

In this paper, we have proposed a new method for population-adjusted indirect comparisons

and network meta-regression. ML-NMR derives from a method that was presented in the

ecological inference literature, where the aggregate level model is obtained by integrating the

individual level model over the covariate distribution (Jackson et al., 2006, 2008). The methods

in the ecological inference literature have been applied in the context of NMA previously but

were derived only for the simple case of a binary outcome and binary covariates (Jansen, 2012).

There are several key advantages to this approach, particularly in comparison with methods such

as the MAIC (Signorovitch et al., 2010; Ishak et al., 2015), STC (Caro and Ishak, 2010; Ishak
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et al., 2015) or network meta-regression based approaches (Sutton et al., 2008; Donegan et al.,

2013; Saramago et al., 2012; Thom et al., 2015). ML-NMR is applicable to treatment networks

of any size, enabling use of all available information, unlike the MAIC or STC methods. There

is no need to split the estimation of interaction effects as aggregation bias is inherently avoided

by design; the model therefore remains identifiable even in the two-study scenario, unlike other

meta-regression approaches. As is crucial for relevance in decision making, comparisons may

be provided in any target population given sufficient information on the covariate distribution,

without the need for additional assumptions that are required by methods such as the MAIC or

STC methods. The target population need not be a clinical trial and could be taken from other

sources of data such as registries. Furthermore, using the numerical approach we can easily

incorporate correlations between the covariates in the aggregate data imputed from the IPD,

with copulas.

Several researchers (Saramago et al., 2012; Donegan et al., 2013; Riley and Steyerberg, 2010;

Riley et al., 2008) have used a meta-regression model with effect modifier interactions split into

between-study terms (i.e. interaction with the mean covariate values in each study) and within-

study terms (i.e. interaction with individual differences from the mean), where the aggregate data

studies contribute to the between-study interaction only. The reason is to avoid ecological bias,

focusing interpretation on the within-study interactions. However, the ecological bias has two

potential sources in the context of randomized controlled trials (Greenland, 1992): unobserved

effect modifiers, and plugging in mean covariate values into a model with a non-linear link

function (that we refer to as aggregation bias). ML-NMR avoids the latter since the aggregate

level model is appropriately related to the individual level model through integration over the

covariate distribution in the aggregate data studies. However, unobserved effect modifiers are

still a concern—whether these are individual level covariates, or study level differences in treat-

ment regimens or outcome definitions for example. We have not split the interaction terms in the

ML-NMR model: we assume that there are no unobserved effect modifiers so the conditional

constancy of relative effects assumption holds, which is required to produce unbiased estimates

of population-adjusted relative effects (which are the focus of decision making in technology

appraisal, rather than estimates of interaction). The ML-NMR model could be modified to

include split interaction terms and to assess the conditional constancy of relative effects as-

sumption in this manner; however, this results in a non-identifiable model in the two-study

scenario, and probably requires substantial amounts of data to estimate well. Instead, we have

proposed assessing the conditional constancy of relative effects assumption by investigating

residual heterogeneity and inconsistency (Section 2.4), which is less data intensive.

A previous MAIC analysis based on the UNCOVER-2, UNCOVER-3 and FIXTURE trials

produced an indirect comparison between ixekizumab Q2W and secukinumab 300 mg, via

common etanercept arms (Strober et al., 2016). The results of this MAIC are not valid for

the FIXTURE population unless the shared effect modifier assumption is made, which leads

analysts to arguing that their competitor’s trial population is more relevant for the treatment

decision at hand (Phillippo et al., 2016, 2018). We have had to make the shared effect modifier

assumption (within each treatment class) in our analysis to identify the ML-NMR model,

which is probably reasonable, but with more data it would be possible to relax this assumption.

Comparisons between other pairs of treatments could also be formed by using MAIC, either via

etanercept or via placebo arms, and, in the latter case, data from the UNCOVER-1 trial could

also be included. However, repeated pairwise application of MAIC is unlikely to result in a set

of consistent treatment effect estimates—in the same way that multiple pairwise meta-analyses

are unlikely to provide a set of consistent estimates (Caldwell et al., 2005). Using ML-NMR we

obtain a full set of consistent relative effects between each pair of treatments, which are also
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more precise than those from MAIC or from a random-effects NMA. We have also produced

absolute response rates on each treatment, and other effect measures (such as odds ratios) are

straightforward to derive. For the psoriasis example, the effect modifier interaction estimates

are small compared with the size of the treatment effects, with only duration of psoriasis and

weight showing any evidence of moderate interaction. There is also little imbalance between

the study populations—the variation in potential effect modifiers within each study is much

greater. Consequently, the population-average relative effect estimates do not differ markedly

from the random-effects NMA. ML-NMR has, however, substantially reduced the uncertainty

by explaining within- and between-study variation.

We conceptualize ML-NMR as an extension of the standard NMA framework, which is an

established and accepted method with a broad literature. Standard IPD and aggregate data

NMA are special cases of ML-NMR, where either all studies or no studies have IPD available

respectively. When implemented in a Bayesian framework ML-NMR retains the flexibility and

extensibility of Bayesian NMA, so that, for example, prior information could be utilized, several

data types with differing likelihoods could be included or the analysis embedded in a probabilistic

cost-effectiveness framework as widely used by decision makers (Dias, Sutton, Welton and Ades,

2013).

Motivated by the application to plaque psoriasis, we have presented algebraic derivations

of the aggregate level model for the probit link function (on-line appendix A.1). It is possible

to derive results for other link functions including the logit (via approximation to the probit,

as outlined in appendix A.2) and log-link (via moment-generating functions, as in the ecolog-

ical inference literature (Salway and Wakefield, 2005)). However, these algebraic approaches

quickly become complex, are context specific and are not always tractable (e.g. with skew co-

variates). The general numerical approach that we propose here is straightforward and broadly

applicable, and the code that is provided in the supplementary material may be reused with min-

imal modification. In practical terms, the numerical approach is much quicker to implement

than an algebraic approach, and sampling is highly efficient because of optimizations such as

QR-decomposition.

All population adjustment methods rely on the availability of covariate information in all

the studies included. In a connected network, adjustment is only required for effect modifiers

(Phillippo et al., 2018) which, being of high clinical relevance, are more likely to be widely

reported in publications. Aside from unmeasured or unreported covariates, other forms of

missing information are also an issue.

Firstly, it is unlikely for publications to report the correlation structure between covariates,

although this may be available on request. Methods such as the MAIC method ignore the cor-

relations between covariates. However, as we have shown algebraically for multivariate normal

covariates (on-line appendix A.1), correlations involving effect modifiers are implicated in ag-

gregation bias along with within-study variation. Assuming that correlation structures are the

same within the aggregate data and IPD, which may be more reasonable than assuming that all

correlations are zero, we can impute the missing correlations when generating the aggregate data

integration points. Correlation structures could differ between the populations if, for example,

different characteristics coexist, or the sampling and randomization methods differ between

the trials. However, in our experience varying the assumed correlation structure of the aggre-

gate data trial has negligible effect on the results. We propose a very flexible approach based

on copulas, allowing any set of desired marginal distributions to be combined under a given

joint correlation structure. For the psoriasis example, we used a simple Gaussian copula. This

accounts for linear correlation in the underlying relationships between covariates, but no restric-

tions are placed on the form of the marginal distributions. For example, skew covariates may be
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given gamma or log-normal marginal distributions, and binary covariates are given Bernoulli

marginal distributions. Correlations with binary covariates can be incorporated by using Spear-

man’s rank correlation. In practice, we find that this is a very flexible approach and can account

for a wide range of observed relationships between covariates; however, other copulas could be

used to assert covariance structures under different assumptions (Nelsen, 2006).

Secondly, the true marginal distributions of the aggregate covariates are unknown. In our

analysis, we chose distributional forms for the aggregate covariates based on theoretical prop-

erties and to match approximately the observed distributional forms in the IPD. However, the

true marginal distributions could differ between the populations if, for example, the sampling

and randomization methods differ between the trials. In our experience, altering the assumed

marginal distributions for the aggregate data trial has little effect on the results.

Finally, missing values are likely to be encountered within the IPD and aggregate data studies.

Within the UNCOVER trials, only baseline weight had any missing values. Since the proportion

of missing values was so low (0.1%), we simply removed those individuals with missing weight

from the analysis. In general, this is not recommended, as complete-case analyses can incur

bias and loss of precision. Multiple imputation is a widely used method of dealing with missing

data (Little and Rubin, 2002). The Bayesian framework is well suited to implementing multiple

imputation as covariates can be imputed at every iteration of the MCMC sampler, incorporating

the uncertainty arising from the missing values in the posterior distribution (Mason et al., 2012;

Jackson et al., 2009). Such approaches have previously been described for IPD NMA (Quartagno

and Carpenter, 2016) and apply similarly to ML-NMR for the studies with IPD by extension.

When aggregate data studies have individuals with missing values there may be little that can be

done, other than assuming that the summary statistics would be unchanged if the missing values

had been observed. Methods for dealing with other issues arising in the analysis of IPD such

as non-compliance (Imbens and Rubin, 1997; DiazOrdaz et al., 2018) may also be extended to

ML-NMR for the studies with IPD. Again, there may be little that can be done for aggregate

data studies with such issues if a suitable analysis has not been reported in publications.

We have presented a novel approach to analysing treatment networks with mixtures of IPD

and aggregate data studies, and examined the properties of such analyses with algebraic deriva-

tions. A numerical implementation using QMC integration is both highly efficient and widely

applicable. The use of quasi-random sequences for numerical integration improves on the con-

vergence rates of standard pseudorandom Monte Carlo integration and retains this performance

in high dimensions.

Nevertheless, further development is needed. When producing estimates for a specific target

population, we have assumed that the joint covariate distribution in the target population is

known, and thus any estimation uncertainty for the covariate distribution is not accounted for.

We have focused on a binary outcome with a probit link function, and application to continuous

data and other link functions is natural. However, further research is required to extend ML-

NMR to other types of data such as multinomial or time-to-event data, where the correct form

of the aggregate level likelihood is less obvious. MAIC methodology has already proven popular

for survival analysis, and an extension of ML-NMR to survival data would further increase the

applicability of this new method. Simulation studies are necessary to assess the performance of

ML-NMR in a wide variety of scenarios and robustness to failure in assumptions, in comparison

with other methods. Simulation studies may also compare estimates that are obtained by using

ML-NMR with a mixture of aggregate data and IPD studies with those from an IPD NMA

with IPD for all studies. We have conducted a comprehensive simulation study, which shows

that ML-NMR does perform well under a wide range of scenarios, as long as there are no

unobserved effect modifiers and the shared effect modifier assumption holds (if used).
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Although motivated by a commonly occurring scenario in health technology appraisal, the

proposed method to fit models combining individual and aggregate level data by using numerical

integration is applicable beyond the context of NMA and indirect comparisons of randomized

controlled trials. Notably, this approach is equally applicable to the ecological inference litera-

ture, where algebraic solutions to integrating an individual level model over a population have

thus far been pursued (Jackson et al., 2006, 2008; Salway and Wakefield, 2005), and which in-

spired the first applications to NMA (Jansen, 2012). Moreover, the application of this approach

to incorporate data from observational or single-arm studies is a key area for further research,

albeit relying on much stronger assumptions (Phillippo et al., 2016, 2018). The problem of

synthesizing information that is reported at different levels of aggregation is common to many

areas, and the methods that are developed in this paper are likely to be applicable to this general

problem in a variety of contexts.
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