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Abstract

Network representations are powerful tools for the
analysis of time-varying financial complex system-
s consisting of multiple co-evolving financial time
series, e.g., stock prices, etc. In this work, we de-
velop a new kernel-based similarity measure be-
tween dynamic time-varying financial networks.
Our ideas is to transform each original financial
network into quantum-based entropy time series
and compute the similarity measure based on the
classical dynamic time warping framework associ-
ated with the entropy time series. The proposed
method bridges the gap between graph kernels and
the classical dynamic time warping framework for
multiple financial time series analysis. Experi-
ments on time-varying networks abstracted from fi-
nancial time series of New York Stock Exchange
(NYSE) database demonstrate that our approach
can effectively discriminate the abrupt structural
changes in terms of the extreme financial events.

1 Introduction

Network representations are powerful tools to analyze the
financial market that can be considered as a time-varying
complex system consisting of multiple co-evolving finan-
cial time series [Zhang and Small, 2006; Nicolis et al., 2005;
Shimada et al., 2008; Silva et al., 2015], e.g., the stock mar-
ket with the trade price. This is based on the idea that
the structure of the so-called time-varying financial network-
s [Bullmore and Sporns, 2009] inferred from the correspond-
ing time series of the system can represent richer physical in-
teractions between system entities than the original individual
time series. One main objective of existing approaches is to
detect the extreme financial events that can significantly in-
fluence the network structures [Bai et al., 2020].

In machine learning, graph kernels have been widely em-
ployed for analyzing structured data represented by graphs
or networks [Xu et al., 2018]. The main advantage of em-
ploying graph kernels is that they can offer us an effec-
tive way of mapping the network structures into a high di-
mensional space so that the standard kernel machinery for
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vectorial data is applicable to the network analysis. Most
existing graph kernels are based on the idea of decompos-
ing graphs or networks into substructures and then mea-
suring pairs of isomorphic substructures [Haussler, 1999],
e.g., graph kernels based on counting pairs of iso-
morphic a) paths [Borgwardt and Kriegel, 2005], b) walk-
s [Kashima et al., 2003], and c) subgraphs [Bai et al., 2015b]
or subtrees [Shervashidze et al., 2009]. Unfortunately, direct-
ly adopting these graph kernels to analyze the time-varying
financial networks inferred from original vectorial time se-
ries tends to be elusive. This is because these financial
network structures are by nature complete weighted graph-
s [Ye et al., 2015; Bai et al., 2020], where each vertex repre-
sents an individual time series of a stock and is adjacent to
all remainder vertices, and each edge represents the interac-
tion (e.g., the correlation or distance) between a pair of co-
evolving financial time series. It is difficult to decompose a
complete weighted graph into the required substructures, and
thus influences the effectiveness of most existing graph ker-
nels for financial network analysis.

One way to address the aforementioned problem is to con-
struct sparse structures of the original time-varying financial
networks. With this scenario, Cui et al. [Cui et al., 2018]

have used the well-known threshold-based approach to pre-
serve the weighted edges falling into the larger 10% of the
weights, and employed the classical graph kernels associat-
ed with the resulting sparse structures for financial network
analysis. Bai et al. [Bai et al., 2020] have abstracted the min-
imum or maximum spanning trees associated with the com-
mute time matrix of the original complete weighted financial
networks, and developed a novel quantum graph kernel over
the spanning trees of the financial networks. Although, both
the approaches overcome the restriction of employing graph
kernels for time-varying financial network analysis, their re-
quired sparse structures also lead to significant information
loss. Since many weighted edges of the original complete
weighted financial networks are discarded. In summary, ana-
lyzing time-varying financial networks associated with graph
kernels still remains challenges.

The aim of this paper is to overcome the aforementioned
problems by developing a new kernel measure between time-
varying networks for multiple co-evolving financial time se-
ries analysis. Overall, the main contributions are threefold.

First, for a family of time-varying financial network-



s, we commence by computing the average mixing ma-
trix [Godsil, 2013] to summarize the time-averaged be-
haviour of continuous-time quantum walks (CTQW) evolved
on the network structures. The reason of using the CTQW
is that it not only accommodates complete weighted graphs,
but also better reflects richer financial network characteris-
tics than the classical random walks [Bai et al., 2015a] (see
details in Section II-A). We show how the average mixing
matrix of the CTQW allows to compute a quantum-based en-
tropy for each vertex of the financial networks and represents
the original networks as quantum entropy time series.

Second, with each pair of time-varying financial networks
to hand, we define a Quantum-inspired Entropic Kernel be-
tween their quantum entropy time series through the classical
dynamic time warping framework. The proposed kernel not
only accommodates the complete weighted graphs through
the entropy time series, but also bridges the gap between
graph kernels and the classical dynamic time warping frame-
work for time series analysis (see details in Section III-B).

Third, we perform the proposed kernel on time-varying
financial networks abstracted from multiple co-evolving fi-
nancial time series of New York Stock Exchange (NYSE)
database. Experiments demonstrate that the proposed ap-
proach can effectively discriminate the abrupt structural
changes in terms of the extreme financial events.

2 Preliminary Concepts

In this section, we briefly review some preliminary concepts.

2.1 The Average Mixing Matrix of the CTQW

The continuous-time quantum walk (CTQW) is the quan-
tum analogue of the classical continuous-time random walk
(CTRW) [Farhi and Gutmann, 1998]. The CTQW models
a Markovian diffusion process over the vertices of a graph
through their transition information. Assume a sample graph
is G(V,E), where V is the vertex set and E is the edge
set. Similar to the classical CTRW, the state space of the
CTQW is the vertex set V and its state at time t is a com-
plex linear combination of the basis states |u⟩, i.e., |ψ(t)⟩ =
∑

u∈V αu(t) |u⟩, where αu(t) ∈ C and |ψ(t)⟩ ∈ C
|V | are the

amplitude and both complex. Furthermore, αu(t)α
∗
u(t) indi-

cates the probability of the CTQW visiting vertex u at time
t.

∑

u∈V αu(t)α
∗
u(t) = 1 and αu(t)α

∗
u(t) ∈ [0, 1], for al-

l u ∈ V , t ∈ R
+. Unlike the classical CTRW, the CTQW

evolves based on the Schrödinger equation

∂/∂t |ψt⟩ = −iH |ψt⟩ , (1)

where H denotes the system Hamiltonian. In this work, we
employ the adjacency matrix as the Hamiltonian. When a
CTQW evolves on the sample graph G(V,E), the behaviour
of the walk at time t can be summarized using the mixing
matrix [Godsil, 2013]

M(t) = U(t) ◦ U(−t) = eiHt ◦ e−iHt, (2)

where ◦ denotes the Schur-Hadamard product of two ma-
trices, i.e., [A ◦ B]uv = AuvBuv . Since U is unitary,
M(t) is a doubly stochastic matrix and each entry M(t)uv
indicates the probability of the CTQW visiting vertex v at

time t when the walk initially starts from vertex u. How-
ever, QM (t) cannot converge, because U(t) is also norm-
preserving. To overcome this problem, we can enforce con-
vergence by taking a time average. Specifically, we take
the Cesàro mean and define the average mixing matrix as

Q = limT→∞

∫ T

0
QM (t)dt, where each entry Quv of the av-

erage mixing matrix Q represents the average probability for
a CTQW to visit vertex v starting from vertex u, andQ is still
a doubly stochastic matrix. Godsil [Godsil, 2013] has indicat-
ed that the entries of Q are rational numbers. We can easily
compute Q from the spectrum of the Hamiltonian H that can
be the adjacency matrix A of G. Let λ1, . . . , λ|V | represent

the |V | distinct eigenvalues of H and Pj be the matrix repre-
sentation of the orthogonal projection on the eigenspace as-

sociated with the λj , i.e., H =
∑|V |

j=1 λjPj . Then, we rewrite

the average mixing matrix Q as

Q =

|V |
∑

j=1

Pj ◦ Pj . (3)

Remarks: The CTQW has been successfully employed to
develop novel approaches in machine learning and data min-
ing [Bai et al., 2014; Bai et al., 2016], because of the richer
structure than their classical counterparts. The reason of uti-
lizing the CTQW in this work is that the state vector of the
CTQW is complex-valued and its evolution is governed by
a time-varying unitary matrix. By contrast, the state vec-
tor of the classical CTRW is real-valued and its evolution
is governed by a doubly stochastic matrix. As a result, the
behaviour of the CTQW is significantly different from their
classical counterpart and possesses a number of important
properties. For instance, the CTQW allows interference to
take place, and thus reduces the tottering problem arising in
the classical CTRW. Furthermore, since the evolution of the
CTQW is not dominated by the low frequency components
of the Laplacian spectrum, it has better ability to distinguish
different graph structures. Finally, the CTQW can accommo-
date the complete weighted graph, since the Hamiltonian of
the CTQW can be the complete weighted adjacency matrix.

2.2 The Dynamic Time Warping Framework

We review the global alignment kernel based on the dynamic
time warping framework proposed in [Cuturi, 2011]. Let T
be a set of discrete time series that take values in a space X .
For a pair of discrete time series P = (p1, . . . , pm) ∈ T and
Q = (q1, . . . , qn) ∈ T with lengths m and n respectively,
the alignment π between P and Q is defined as a pair of in-
creasing integral vectors (πp, πq) of length l ≤ m + n − 1,
where 1 = πp(1) ≤ · · · ≤ πp(l) = m and 1 = πq(1) ≤
· · · ≤ πq(l) = n such that (πp, πq) is assumed to have uni-
tary increments and no simultaneous repetitions. Note that,
for P and Q, each of their elements can be an observation
vector with fixed dimensions at a time step. For any index
1 ≤ i ≤ l − 1, the increment vector of π = (πp, πq) satisfies
(

πp(i+ 1)− πp(i)
πq(i+ 1)− πq(i)

)

∈

{(

0
1

)

,

(

1
0

)

,

(

1
1

)}

.

(4)



Within the framework of the classical dynamic time warp-
ing [Cuturi, 2011], the coordinates πp and πq of the align-
ment π define the warping function. Assume A(m,n) cor-
responds to a set of all possible alignments between P and
Q, Cuturi [Cuturi, 2011] has proposed a dynamic time warp-
ing inspired kernel, namely the Global Alignment Kernel, by
considering all the possible alignments in A(m,n). The ker-
nel is defined as

kGA(P,Q) =
∑

π∈A(m,n)

e−DP,Q(π), (5)

where DP,Q(π) is the alignment cost given by

DP,Q(π) =

|π|
∑

i=1

ϕ(pπp(i), qπq(i)), (6)

and is defined through a local divergence ϕ that quantifies the
discrepancy between each pair of elements pi ∈ P and qi ∈
Q. In general, ϕ is defined as the squared Euclidean distance.
Note that, the kernel kGA measures the quality of both the
optimal alignment and all other alignments π ∈ A(m,n),
thus it is positive definite. Moreover, kGA provides richer
statistical measures of similarity by encapsulating the overall
spectrum of the alignment costs {DP,Q(π), π ∈ A(m,n)}.

Remarks: The dynamic time warping based Global Align-
ment Kernel kGA is a powerful tool for analyzing vectori-
al time series [Mikalsen et al., 2018; Jain, 2019]. To extend
kGA into graph kernel domains, Bai et al. [Bai et al., In Press]
have developed a nested graph kernel by measuring kGA

between the depth-based complexity traces of graph-
s [Bai and Hancock, 2014]. Specifically, the complexity trace
of each graph is computed by measuring the entropies on a
family of K-layer expansion subgraphs rooted at its centroid
vertex. Although, the nested graph kernel outperforms local
substructure based graph kernels [Johansson et al., 2014] on
graph classification tasks. Unfortunately, the financial net-
works are by nature complete weighted graphs and it is diffi-
cult to decompose such graphs into required expansion sub-
graphs rooted at the centroid vertex. Thus, directly preform-
ing the dynamic time warping inspired graph kernel for time-
varying financial networks still remains challenges.

3 Kernels for Time-varying Networks

In this section, we propose a Quantum-inspired Entropic Ker-
nel between time-varying networks for multiple co-evolving
financial time series analysis. We commence by character-
izing each financial network as a discrete quantum entropy
time series through the CTQW. Moreover, we define the new
kernel associated with the entropy time series, in terms of the
classical dynamic time warping framework [Cuturi, 2011].

3.1 The Quantum Entropy Time Series

We introduce how to characterize each financial network
structure as the quantum entropy time series through the C-
TQW. Assume G = {G1, . . . , Gp, . . . , Gq, . . . , GT} denotes
a family of time-varying financial networks extracted from
a complex financial system S with a specific set of N co-
evolving financial time series, i.e., the system has a fixed

number of components (e.g., stocks) co-evolving with time.
Gp(Vp, Ep, Ap) is the sample network extracted from the sys-
tem at time step p. ForGp, each individual vertex v ∈ Vp rep-
resents a corresponding time series of a different stock (e.g.,
the stock price), each edge e ∈ Ep represents the interaction
(e.g., distances or correlations) between a pair of time series,
and Ap is the interaction based weighted adjacency matrix.
This is a popular way of modelling the multiple co-evolving
financial time series as network structures [Silva et al., 2015;
Bai et al., 2020]. Note that, since the vertices of each finan-
cial network Gp ∈ G correspond to the same N components
of the system S, all the networks in G have the same vertex
set, whereas the edge sets Et are quite different with time t.

Specifically, for each financial network Gp(Vp, Ep, Ap)
from G at time p, we first compute the average matrix matrix
Qp associated with the CTQW evolved on Gp. For each i-th
vertex vi ∈ Vp, the i-th row of Qp gives the time-averaged
probability distribution Pi for the CTQW to visit vertices
v1, . . . , vN ∈ V (|Vp| = N ) starting from vi, i.e.,

Pi = {Pi(v1), . . . ,Pi(vj), . . . ,Pi(vN )}. (7)

where Pi(vj) = Qp
i,j is the time-averaged probability of the

CTQW visiting vj from vi. The quantum based Shannon en-
tropy [Bai et al., 2016] of vertex vi can be defined as

HS(vi) = −
∑

vj∈Vp

Pi(vj) logPi(vj). (8)

As a result, the entropy characteristic vector of Gp associated
with the entropies over all its vertices can be defined as

Ep = {HS(v1), . . . , HS(vi), . . . , HS(vN )}⊤, (9)

where HS(vi) is the quantum Shannon entropy of the i-th
vertex vi of Gp associated with the time-averaged probability
distribution residing on the i-th row of Qp.

We move a time interval of w time steps over all the time-
varying networks of the financial system S to construct a
time-varying quantum entropy time series for each network
Gp at time p. In this work, we set the value of w as 28.
Specifically, for each network Gp, we compute its quantum
entropy time series St associated with its time window as

Sp = {Ep−w+1|Et−p+2| . . . |Es| . . . |Ep}, (10)

where each columnEs of Sp is the entropy characteristic vec-
tor of each network Gs ∈ G at time s and is defined by
Eq.(9). s ∈ {p−w+1, p−w+2, . . . , p}. Obviously, the quan-
tum entropy time series Sp of Gp encapsulates a family of w
time-varying entropy characteristic vectors from Gp−w+1 at
time p− w + 1 to Gp at time t.

3.2 The Quantum-inspired Entropic Kernel

We develop a new kernel for analyzing time-varying finan-
cial networks based on the classical dynamic time warping
framework. For a pair of time-varying networks Gp ∈ G
and Gq ∈ G at time p and q respectively, we commence by
computing their associated quantum entropy time series as

Sp = {Ep−w+1|Ep−w+2| . . . |Ep}

and
Sq = {Eq−w+1|Eq−w+2| . . . |Eq},
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Figure 1: Color Path of Financial Networks Over All Trading Days.

based on the definition in Section 3.1. The proposed Quantum
Inspired Entropic Kernel kQEK between Gp and Gq is

kQEK(Gp, Gq) = kGA(Sp,Sq) =
∑

π∈A(w,w)

e−Dp,q(π),

(11)

where kGA is the dynamic time warping inspired Global
Alignment Kernel (GAK) defined in Eq.(5), π is the warp-
ing alignment between the entropy time series of Gp and Gq ,
A(w,w) is all possible alignments and Dp,q(π) refers to the
alignment cost obtained via Eq.(6). Note that, the proposed k-
ernel kQEK is positive definite. This is because kQEK is based
on the positive definite kernel kGA.

Remarks: Although the proposed kernel kQEK is related
to the general principles of the GAK kernel. The proposed k-
ernel kQEK still possesses two theoretical differences with the
GAK kernel. First, the original GAK kernel is only develope-
d for vectorial time series and thus cannot capture structural
relationships between time series. By contrast, the proposed
kernel kQEK is explicitly proposed for time-varying financial
networks that encapsulate physical interactions between pairs
of time series. Second, unlike the GAK kernel, the proposed
kernel kQEK is defined based on the quantum entropy time
series that is developed through the average mixing matrix of
the CTQW. As we have stated in Section 2.1, the CTQW can

accommodate the complete weighted graph and better distin-
guish different network structures in terms of the low frequen-
cy components of its Laplacian spectrum. Thus, the proposed
kernel kQEK can not only reflect the physical interactions be-
tween the original vectorial financial time series, but also cap-
ture richer structure information than the GAK kernel associ-
ated with the original time series. On the other hand, as we
have stated, the state-of-the-art graph kernels mentioned in
Section 1 and Section 2.2 cannot directly accommodate com-
plete weighted graphs. Thus, it is difficult to directly perform
these graph kernels on the complete weighted financial net-
works, unless one transforms these networks into sparse ver-
sions. By contrast, the proposed kernel kQEK can encapsu-
late the whole structural information residing on all weighted
edges. In summary, the proposed kernel kQEK bridges the
gap between state-of-the-art graph kernels and the clas-
sical dynamic time warping framework for time-varying
networks, providing an effective way to analyze multiple co-
evolving financial time series.

Time Complexity: For a pair of networks each having n
vertices, computing the kernel kQEK associated with a time

interval of w steps requires time complexityO(n3+w2). Be-
cause, computing the entropy time series relies on the spectral
decomposition of CTQWs, thus has time complexity O(n3).
Computing all possible alignments between the entropy time
series over w time steps has time complexity O(w2). Thus,
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Figure 2: The 3D kPCA Embeddings of Different Kernels for Dot-com Bubble Burst.

kQEK has a polynomial time complexity O(n3 + w2).

4 Experiments of Time Series Analysis

We establish a NYSE dataset that consists of a series of time-
varying financial networks based on the New York Stock Ex-
change (NYSE) database [Silva et al., 2015; Ye et al., 2015].
The NYSE database encapsulates 347 stocks and their as-
sociated daily prices over 6004 trading days from January
1986 to February 2011, i.e., the market system has 347
co-evolving time series in terms of the daily stock prices.
The prices are all corrected from the Yahoo financial dataset
(http://finance.yahoo.com). To extract the network represen-
tations, we use a time window of 28 days and move this win-
dow along time to obtain a sequence (from day 29 to day
6004) in which each temporal window contains a time se-
ries of the daily return stock prices over a period of 28 days.
To represent trades between different stocks as a network, for
each window we compute the Euclidean distance between the
time series of each pair of stocks as their connection (edge)
weight, following the same setting in [Bai et al., 2020]. It has
been empirically shown that the financial networks associated
with the Euclidean distance are more effective than those as-
sociated with the Pearson correlation. Clearly, this operation
yields a time-varying financial network with a fixed number
of 347 vertices and varying edge weights for each of the 5976
trading days. Each network is a complete weighted graph.

4.1 Kernel Embeddings from kPCA

We evaluate the performance of the proposed Quantum-
inspired Entropic Kernel (QEK) on time-varying networks
of the NYSE dataset. Specifically, we analyze whether the
proposed QEK kernel can distinguish the structural changes
of the network evolution with time. Furthermore, we also
compare the proposed QEK kernel with three state-of-the-
art kernel methods, that is, the dynamic time warping in-
spired Global Alignment Kernel (GAK) for original vectori-
al time series [Cuturi, 2011] and two graph kernels for time-
varying financial networks. The graph kernels for compar-
isons include the Weisfeiler-Lehman Subtree Kernel (WL-
SK) [Shervashidze et al., 2009], and the Discrete-time Quan-
tum Walk Kernel (DTQK) [Bai et al., 2020]. For the GAK
kernel, we also utilize a time window of 28 days for each trad-
ing day. For the WLSK kernel, since it can only accommo-
date undirected and unweighted graphs, we transform each o-
riginal network into a minimum spanning tree and ignore the
weights on the preserved edges, following the same setting in
the work [Bai et al., 2020]. Since the DTQK kernel can ac-
commodate edge weights, we straightforwardly perform this
kernel on the original financial networks. We perform kernel
Principle Component Analysis (kPCA) [Witten et al., 2011]
on the kernel matrices associated with different kernels, and
embed the financial networks or the original time series in-
to a vectorial pattern space. We visualize the embedding re-
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(c) Enron Incident for WLSK
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Figure 3: The 3D kPCA Embeddings of Different Kernels for Enron Incident.

sults using the first three principal components in Fig.1(a),
Fig.1(b), Fig.1(c), and Fig.1(d) respectively.

Fig.1 exhibits the paths of the time-varying financial net-
works (or the original vectorial time series) in different ker-
nel spaces, and the color bar of each subfigure indicates the
date in the time series. We observe that the embeddings from
the proposed QEK kernel exhibit a better manifold structure.
Moreover, only the proposed QEK kernel generates a clear
time-varying trajectory and the neighboring networks with
time are close together in the embedding principal space. By
contrast, the alternative methods hardly result in a trajectory
and their embeddings tend to distribute as clusters. To further
demonstrate the effectiveness of the QEK kernel, we compare
the distance stress (DS) of the network embeddings from d-
ifferent kernels. Specifically, the DS is defined as

DS =

∑

t ∥ xt − xt−1 ∥2
∑

t ∥ xt − xtn ∥2
, (12)

where t = 2, 3, . . . , n, xt is the network embedding vector at
time t, and xtn is the nearest network embedding vector of xt
in the pattern space. For each embedding vector xt at time
t, if the nearest embedding vector is always the embedding
vector at last time step (i.e., xt−1), the value of DS will be 1.
In other words, the DS value nearer to 1 indicates the better
performance of the embeddings to form a clear time-varying
trajectory. The DS value of each kernel is shown in Table 1.

Methods QEK GAK WLSK DTQK

Distance Stress 1.0992 2.9677 5.7053 4.7174

Table 1: The Distance Stress of the Network Embeddings

Clearly, only the DS value of the proposed QEK kernel is
nearer to 1, indicating the better performance of preserving
the ordinal arrangement of the time-varying networks.

To take our study one step further, we explore the embed-
dings during different periods of three well-known financial
events, i.e., the Black Monday period (from 15th Jun 1987
to 17th Feb 1988), the Dot-com Bubble period (from 3rd
Jan 1995 to 31st Dec 2001), and the Enron Incident period
(from 16th Oct 2001 to 11th Mar 2002). For differen ker-
nels, Fig.2 corresponds to the Dot-com Bubble period and
Fig.3 to the Enron Incident period. Due to the limit space,
we do not exhibit the embeddings for Black Monday. How-
ever, we will observe the similar phenomenon with Fig.2 and
Fig.3. These figures indicate that the Black Monday (17th
Oct, 1987), the Dot-com Bubble Burst (13rd Mar, 2000) and
the Enron Incident period are all crucial financial events, sig-
nificantly influencing the structural time-varying evolution of
the financial networks or the original vectorial financial time
series. Excluding the GAK kernel, the embedding points of
the remaining kernels before and after these events are well
separated into distinct clusters, and the points corresponding



10 20 30 40 50 60 70 80 90 100

Number of Views

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r 

o
f 

V
ie

w
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) For QEK on Dot-com

10 20 30 40 50 60 70 80 90 100

Number of Views

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r 

o
f 

V
ie

w
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) For DTQK on Dot-com

Figure 4: Kernel Matrices Visualizations.

Methods QEK GAK WLSK DTQK

Black Monday 0.9050 0.6673 0.5667 0.6506
Dotcom Bubble 0.6473 0.8882 0.5279 0.7903
Enron Incident 0.8504 0.4992 0.5001 0.7042
Average Rand 0.8009 0.6849 0.5315 0.7150

Table 2: The Rand Index for K-means Clustering on the Embedding
Points of 100 Trading Days around Each Financial Crisis.

to the crucial events are midway between the clusters.
To place our analysis of the kernel embedding clusters on

a more quantitative footing, for each kernel we select the k-
ernel embedding points of 100 trading days around each fi-
nancial crisis, i.e., we select embedding points of 50 trading
days before and after each crisis date respectively. We apply
the K-means method to the kernel embeddings of 100 trading
days for each kernel to explore whether the clusters can be
correctly separated in terms of the trading days before and af-
ter each financial crisis. We calculate the Rand Index for the
resulting clusters and the Rand indicating each kernel is listed
in Table 2. The results indicate that the embedding points as-
sociated with the proposed QEK kernel can produce the best
clusters, i.e., the embedding points before and after the finan-
cial crisis are separated better than other kernels.

4.2 Evaluations of the Kernel Matrix

Based on the earlier evaluation, we find that the DTQK kernel
is the most competitive kernel with the proposed QEK kernel.
To further reveal the effectiveness of the proposed QEK ker-
nel, we visualize the kernel matrices of both the kernels.

Due to the limited space, we only compute the kernel ma-
trices between the networks belonging to the Dot-com Bubble
period, and the period encapsulate 100 trading days. In fact,
we will observe similar phenomenons if we compute the ker-
nel matrices for other financial event periods. Specifically, the
kernel matrices are visualized in Fig.4, where both the x-axis
and y-axis represent the time steps. Note that, to compare the
two kernels in the same scaled Hilbert space, we consider the
normalized version of both the kernels as

kn(Gp, Gq) =
k(Gp, Gq)

√

k(Gp, Gp)k(Gq, Gq)
, (13)

where kn is the normalized kernel, and k is either the

EDTWK or the WLSK kernel. As a result, the kernel val-
ues are all bounded between 0 to 1, and the colour bar beside
each subfigure indicates the kernel value of the kernel matrix.
Fig.4 indicates that the kernel values tend to decrease when
the elements of the kernel matrix are far away from the matrix
trace. This is because such elements are computed between
time-varying networks having long time spans and there are
more structure changes when the network evolves with a long
time variation. Thus, both the QEK and DTQK kernels reflect
structural evolutions of financial networks with time. How-
ever, on the other hand, the kernel value of the DTQK kernel
tends to drop down more quickly when the element is a little
far from the trace. By contrast, the kernel value of the QEK
kernel tend to decrease more slowly when the element gets
farer away from the trace. This observation explains why on-
ly the proposed QEK kernel can form a clear trajectory with
time variation and generate better clusters before and after
financial crisis, i.e., the proposed QEK kernel can better dis-
tinguish and understand the structural changes of the network
structures evolving with a long time period.

5 Conclusion

In this paper, we have developed a new Quantum-inspired
Entropic Kernel for time-varying complex networks. The
proposed kernel bridges the gap between graph kernels and
the classical dynamic time warping framework for time se-
ries analysis. Experimental analysis of NYSE financial time
series demonstrates the effectiveness of the new kernel.
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