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Abstract

With a reduced aspect ratio, spherical tokamaks have a number of attractive features for a fusion power plant. This can
be studied using systems codes, which allow for the rapid conceptual study of power plants covering everything, from the
plasma through to electricity generation. In this paper, we describe models in the systems code PROCESS that have been
added specifically for spherical tokamaks. Within PROCESS an alternative relation for the plasma current is included
which accounts for the increased ratio of I;,/aB. We have tested this against a series of equilibria created with the free
boundary equilibrium code FIESTA, and additionally performed our own fit. We also outline the engineering changes
that can be made to the device and describe a water-cooled copper centrepost model. To test our models we recreate
the published designs for the Fusion Nuclear Science Facility (FNSF) and a High Temperature Superconducting Pilot
Plant (HTS-PP) and find good agreement. We conclude by highlighting the efficiencies needed to produce net electricity

from small fusion devices.
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1. Introduction

Spherical tokamaks offer a number of potential advan-
tages for a future fusion power plant. They have a high
ratio of thermal-to-magnetic field pressure (8) and strong
flows, either of which could result in reduced turbulence.
Fewer toroidal field coils and a different geometry offers
the potential for new methods of remote maintenance and
lower magnet costs. (For more information see review ar-
ticles e.g. [1, 2]).

Systems codes can be employed to scope out parameter
space quickly by using a set of simplified, yet comprehen-
sive, models to rapidly determine feasible tokamak designs.
Spherical tokamaks have a number of differences compared
with their conventional aspect ratio counterparts, and in
this paper we present the spherical tokamak specific mod-
els implemented in the systems code PROCESS. PROCESS
has previously been used extensively to study conventional
aspect ratio devices such as the EUROfusion-DEMO [3],
CFETR [4] and SST-2 [5].

To model spherical tokamaks an alternative relation
between the plasma current and the ratio of the toroidal
magnetic field to the safety factor is implemented, to ac-
count for an increased ratio of I,/aB that can be accom-
modated at low aspect ratio. This is driven by the strongly
enhanced toroidal rotation that gives a higher plasma cur-
rent for a given safety factor [6]. We also include the con-
tribution of the diamagnetic current to the overall plasma
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current, which is higher than in a conventional aspect ratio
device due to the higher 8 and the field line pitch. Vari-
ous options are available to alter the build of the device;
these include the ability to remove the central solenoid
and avoid inboard breeding blankets, to join the TF coils
into a single centerpost, to reposition the shaping poloidal
field coils within the TF coil, and to increase the divertor
space. These design modifications are aimed at overcom-
ing the challenges presented, such as the limited inboard
space and the increased divertor heat loads, however will
impact start-up and the tritium breeding ratio.

The rest of this paper is structured as follows. In Sec-
tion 2 we describe the spherical tokamak specific models
within PROCESS in detail and then in Section 3 we apply
them to two examples from the literature. We conclude
in Section 4. Throughout this work we are using PROCESS
version tag: 1.0.16-300-g470be046.

2. Spherical Tokamak Models in PROCESS

The physics and engineering models in PROCESS have
previously been described in [7, 8]. These papers cover the
models that are used for conventional aspect ratio toka-
maks. A number of spherical tokamak specific models have
also been developed, principally based on [6, 9, 10, 11].
Here we give an overview of these models with further de-
tails available in the references.

2.1. Inboard Radial Build
One of the challenges of spherical tokamaks is the lim-
ited space on the inboard side to fit all the components
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into. To alleviate this, an alternative inboard build can be
adopted. The primary difference is that the toroidal field
coils all join onto a single centrepost that runs through
the centre of the device. This carries all of the current and
takes less space than individual limbs. The centrepost
is hollow at the centre to accommodate a central solenoid
(see figure 5 of [12]), however further space can be saved by
dispensing with the central solenoid, as well as not having
an inboard breeding blanket. Both of these design choices
present their own challenges in terms of start-up and the
tritium breeding ratio, and PROCESS retains the capability
to have them if required.

2.2. Centrepost

The default spherical tokamak toroidal field coil mag-
net model in PROCESS is a water-cooled copper centrepost,
linked to copper return limbs. PROCESS retains the capa-
bility to use low and high temperature superconductors,
however these follow the conventional aspect ratio model
described in [8] and are individual coils instead joining
onto a single centrepost. No model for a superconduct-
ing centrepost, such as that proposed by [13], is currently
implemented. Joints are not accounted for in either the
resistive or superconducting models and shielding is con-
sidered separately in the radial build.

The water-cooled copper centrepost is tapered in shape.
It is straight from the ends to the height of the plasma,
before reducing in thickness to its thinnest point at the
midplane following an arc. The maximum radius is at a
height level with the plasma x-point and is given by:

rtop = R — (5(1 — 3ASOL — AFW (1)

where R and a are the major and minor radius of the
plasma, J is the plasma triangularity and Ag.r, is the
thicknesses of the scrape-off layer (with the factor three
accounting for flux expansion) and Apw is the thicknesses
of the first wall.

The resistivity of the centrepost is temperature depen-
dent and is parameterised in the range of interest by:

p=1078(1.72 + 0.00397,,)/0.92 (2)

where Ty is the average temperature of the centrepost and
the factor 0.92 corresponds to Glidcop [9]. The average
temperature of the centrepost is given by:

Tav = ﬂn + Aﬂo/2 + Ajjﬁlm + Ajjcon (3)

where Ti, is the inlet coolant temperature (typically 40°C),
AT, is the temperature rise in the coolant, ATg, is the
temperature rise across the coolant/tube film boundary
and AT,y is the temperature difference in the conductor.
These are given by:

Ptot
AT, = 4
szOvaVACOOICpHZO ( )

where pu,0 is the density of water, v,, the average coolant
flow speed, Acoo1 the coolant cross-sectional area and CpH20
the specific heat capacity of water.

The total power (Piot) is given by the sum of the resis-
tive and nuclear heating. The nuclear heating is approx-
imated by assuming a point source at the centre of the
plasma. The fraction of neutrons hitting the centrepost
is determined from the solid angle and an average path
length of the centrepost diameter at the midplane, with
an e-folding length of 0.08m, is assumed for absorption.

The temperature rise across the coolant /tube film bound-
ary is given by:

Ptot

hzﬂ—’rcoolncoollcool

AT, = (5)
where 101 i the radius of a coolant tube, ncyo1 i the num-
ber of coolant tubes and [ is the length of the coolant
channels. These are being used to determine the surface
area of all the tubes. h is given by:

— NukHZO

h
dcool

(6)
where dgoc) is the coolant channel diameter, kg,o is the
thermal conductivity of water and N, is the Nusselt num-
ber (given by 0.023R0-8P%-3 where R, is the Reynolds

rnd

number (= pH,0Vmaxdeool/1,0) and Pr,q the Prandlt
number (= Cpy, o ti1,0/kH,0))-

Finally, the temperature gradient in the conductor is
estimated using an average distance between the coolant
tubes [9]. The average temperature difference in the cop-
per is:

ATy, = ( Prot )) . (7)

2 2
2kCPVVCP (TO ~ Tcool

where k., is the centrepost thermal conductivity which

is taken as a constant, V¢, is the centrepost volume, g is
the average distance between coolant tubes and:

fr =12 re —0.25r% | — 0.7575 + 75In(rg/Teool) (8)

The peak temperature in the centrepost is also com-

puted in order that it is constrained to prevent weakening
of the structure. This is given by:

Trnax = /Tin + ACZ-‘io + A/I’ﬁlm + A/Tconfmaux (9)
where:
Pt [T201 =70 | .2
ATCOH*IH&X = Loo 1 Coo 10
eV 5 T roln(ro/reoor) | (10)

The pump power is calculated, to be added to the re-
circulating power, and is given by:

AP A .
Ppump _ cool Umax (11)
Tlpump
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Figure 1: The elongation (left), triangularity (middle) and safety factor (right) with aspect ratio as recommended by [11] for stability.

where vpax is the peak flow speed at the midplane (v,, =
Umax (Amid/Aayv) where Aniq is the cross-sectional area of
the centrepost midplane and A, is the average centrepost
cross-sectional area), 7pump is the pump efficiency and AP
is the pressure drop through the pipe given by:

02

o max (12)

lCOO
AP = ffricilpHQ 5

dcool

ftric 18 the friction factor and is taken from [14]:

r 5.02 r 14.5 -2
ffric—(2log{?f; R log L,f;+ i }}) (13)

where the roughness factor is estimated as rg, = 4.6 X
1075/dcool~

The required inlet pressure is also calculated to guar-
antee that the pressure in the tubes remains below the
saturation pressure. The saturation pressure is calculated
from a fit to [15] using the peak coolant temperature:

Tcool—max - T’in + AT‘lo + AT’film + Tmarg (14)
where Tiyarg is the temperature margin taken as 10°C.

2.8. Diwvertor

One of the largest challenges for spherical tokamaks
is handling the high exhaust heats generated in the di-
vertor. Detailed modelling of divertor configurations re-
mains highly uncertain and experimental campaigns with
the new MAST-U Super-X divertor [16] have yet to be
conducted. Therefore very simplified models are adopted
here and their results are treated with caution.

For spherical tokamaks we use a double-null configu-
ration to spread the heatload to the top and bottom and
to minimise the power on the inboard side. PROCESS has
previously considered double-null configurations geometri-
cally and recently a simple power sharing model has also

been added [17]. The default spherical tokamak diver-
tor model comes from [10] and is a closed divertor with a
gaseous target that uniformly radiates within the divertor
volume. The heat load on the wall is calculated, how-
ever based on the idealised assumption of uniform radia-
tion these values are low. Realistically this model is used
for space allocation in the build and a limit to Psep/R or
PiepBi/qAR is applied to define the allowable heat.

2.4. Plasma Shaping

For stability the following options are available for set-
ting the elongation (k), triangularity () and minimum
“edge” safety factor (g) based on [11]:

Fix = 2.05(1.0 + 0.44€*1) (15)
8 = 0.53(1.0 4 0.77€%) (16)
Gmin = 3.0(1.0 + 2.6¢%%) (17)

where € = a/R = 1/A is the inverse aspect ratio. These
equations are illustrated in Figure 1, however their use
does not have to be enforced. The lower limit on ¢ is
linked to the plasma current relation of [11] and the shape
parameters have been obtained for PF coils inside the TF
coil.

From the conventional aspect ratio tokamaks, PROCESS
already enforces a (-limit. This value is set by the user
and is significantly higher for spherical tokamaks; fn < 6
is indicated by [2].

2.5. Plasma Current

PROCESS calculates the plasma current based on a re-
lation with the plasma shape and edge safety factor. For
conventional aspect ratio tokamaks the ITER Physics De-
sign Guidelines: 1989 [18] are used, however at tight aspect
ratios this relation no longer holds. As described in [6], for
spherical tokamaks the poloidal field becomes comparable



with, or larger than, the toroidal field in the outboard re-
gion, and the toroidal and poloidal fields are comparable
in the inboard region. Meanwhile, the toroidal circum-
ference is comparable to the poloidal circumference in the
outboard region, but is shorter in the inboard region. This
leads to highly pitched field lines in the outboard region
resulting in only a small amount of toroidal rotation, but
moderately pitched field lines in the inboard region result-
ing in a large amount of toroidal rotation. The overall
result is a strongly enhanced total toroidal rotation for
a given plasma current, or stated another way, a higher
plasma current for a given safety factor. Hence the need
for alternative relation that captures the enhancement of
Ip/aBt.

Peng, Galambos and Shipe [11] proposed such a rela-
tion for double-null D-shaped plasmas with R/a < 3:

arcsin(Fyp) = arcsin(Es)
18
E + Eo (18)

I, — S5kaB;

Fi+F:
272G (F1+ 2)(
where F; and F, are functions of ky, dx and ¢, and F,
and F5 are functions of sy and 4 that have not been
reproduced here for brevity, but can be found in [11]. § is
the “edge” safety factor and is related to qgs through:

q95 = 13(1(10 — 6)0'6 (19)

To investigate the applicability of Equation 18 we cre-
ated a series of free boundary equilibria using the code
FIESTA. In Figure 2 we calculate the plasma current using
Equation 18 and compare it to the value obtained from
FIESTA. For the low elongation equilibria, the calculated
values for the plasma current are close to those from FI-
ESTA, however moving to higher elongations causes an un-
derestimate by up to 20 per cent.

Given the parameter dependencies illustrated in Figure
2 we chose to generate a new plasma current relation based
on fits to our FIESTA equilibria. From [19], the plasma cur-
rent for a large aspect ratio circular cross-section is given
by:

- 27Ta2Bt
" poRgq

(20)

The assumptions of large aspect ratio and circular cross-
section can be broken by adding functions of €, x and 9.
We apply simple power laws giving the following equation
to fit to the equilibria:

’B
I, = <a t) €1(1.0 + c2€®) KOS (21)

Rqos

Fitting Equation 21 to the equilibria using a non-linear
least squares method we find ¢; = 2.690, co = 2.440, c3 =
2.736, c4 = 2.154 and c5 = 0.060. This fit is illustrated
in Figure 3 which shows that there is no bias with any
parameter fitted and that the fit is accurate to 10 per cent.
Equations 18 and 21 are expressed in terms of the x-
point elongation and triangularity. The linear relation be-
tween these and the 95% values expressed in [7] does not

hold at high values of elongation and triangularity, and we
will investigate this further in future work.

By default spherical tokamaks modelled using PROCESS
are designed to operate in steady state. The plasma cur-
rent is composed of the driven component, the bootstrap
fraction and the diamagnetic fraction. For spherical toka-
maks we use the Wilson model [20] to calculate the boot-
stap fraction and take the diamagnetic fraction as:

B

fdla - 28 (22)
based on fitting. Given the higher values of 8 achieved
in a spherical tokamak, the diamagnetic fraction is more
significant than in a conventional aspect ratio where we use
the Sauter bootstrap model [21] by default and neglect the
diamagnetic current.

The ratio of the plasma current to the current in the
centrepost can be restricted to prevent disruptions using

the constraint:

I
I—p < 1.0+ 4.91(e — 0.62)

cp

(23)

however this leads to ratios above one at aspect ratios
below ~ 1.6, and therefore we usually restrict this ratio
further.

2.6. Poloidal Field

The average poloidal field at the plasma edge is given
by [11] as:

(24)

where F; and Fy are the same functions of x, § and € from
Section 2.5. This replaces using Ampere’s law with the
perimeter of the plasma.

2.7. Poloidal Field Coils

A simple resistive PF coil model was proposed in [6]
that takes advantage of the natural elongation of spher-
ical plasmas and the typical shapes associated with the
relations described in Section 2.4 and Figure 1. A pair of
coils are positioned top and bottom for shaping (SF), and
in the vertical build these are located inboard of the TF
coil. No assesment of nuclear heating is currently made
on these coils. A second pair of coils are located radially
outside the TF coil and are used to generate the vertical
field (VF). Their currents are set by:

Isp = 0.3A%°T, (25)

Iyp = —0.41, (26)

The conventional superconducting model can also be used
that positions all the coils outside of the TF coil.
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Parameter Ref PROCESS
Major Radius, R (m) 1.70 1.70
Aspect Ratio, A= R/a 1.75 1.75
Elongation, 2.75 2.75
Triangularity, d 0.5 0.5
Fusion Power, Pr,s (MW) 162 162

Auxiliary Power, Pyux (MW) 80 80

Toroidal Field, Bt (T) 3.0 3.0
Plasma Current, I, (MA) 8.9 9.4
Normalised Beta, Sy 5.5 4.5
H-factor, Hippog(y,2) 1.25 1.36
Greenwald Fraction, n/ngw  0.75 0.80

Table 1: Selected parameters for FNSF from PROCESS compared to
those given in reference [22].

3. Benchmarking

In order to benchmark our models to test their appli-
cability, we have chosen to compare with the proposed Fu-
sion Nuclear Science Facility (FNSF) and a High Temper-
ature Superconducting Pilot Plant (HTS-PP) described in
[22, 23, 24].

3.1. Fusion Nuclear Science Facility (FNSF)

FNSF is a proposed R = 1.7m, A = 1.75 and Py, =
162 MW device with resistive TF coils that will provide a
nuclear environment to develop fusion materials and com-
ponents [22]. In Table 1 we list some of the key parameters
and compare them to our PROCESS run. This was per-
formed using xenon seeding in PROCESS giving Puep/R =
17.5 MW m~1.

Overall PROCESS reproduces FNSF well, however the
most noticeable difference is the plasma current. PROCESS
finds a higher plasma current and lower safety factor and
this remains regardless of whether Equation 18 or 21 is
used to calculate it. Running PROCESS with Equation 18
instead of 21 yields the same plasma current, but a lower
safety factor to achieve it.

We have performed this run using the water-cooled cen-
trepost model described in Section 2.2. The model finds
an average temperature in the centrepost of 73°C with a
resistive loss of 92 MW, nuclear heating of 18 MW, and a
required pumping power of 0.7 MW.

3.2. High Temperature Superconducting Pilot Plant (HTS-
PP)

HTS-PP is a proposed R = 3.0m, A = 2 and Pr =
500 MW device, with HTS TF coils, that has a high neu-
tron fluence and will be tritium and electrically self-sufficient
[22]. In Table 2 we list some of the key parameters and
compare them to our PROCESS run. This was performed

Parameter Ref PROCESS
Major Radius, R (m) 3.0 3.0
Aspect Ratio, A = R/a 2.0 2.0
Elongation, 2.5 2.5
Triangularity, d 0.6 0.6
Fusion Power, Py, (MW) 500 500
Auxiliary Power, Pyux (MW) 50 50
Toroidal Field, Bt (T) 4.00 4.00
Plasma Current, I, (MA) 12 11
Normalised Beta, Ay 4.00 3.85

H-factor, Hippog(y,2) 1.8 1.5
Greenwald Fraction, n/ngw 0.8 0.9

Table 2: Selected parameters for HTS-PP from PROCESS compared
to those given in reference [24].

The main disagreement is again the plasma current, how-
ever this time PROCESS finds a lower value. The H-factor
is also lower for the PROCESS run.

HTS-PP highlights the need for efficiency gains for
low fusion power plants to be viable. Taking the energy
multiplication in the blanket as 1.269 and a thermal-to-
electric conversion efficiency of 0.375, which are typical
for EUROfusion-DEMO, then the gross electrical power is
only 238 MW. With a neutral beam wall plug efficiency
of 0.3, the auxiliary power system alone is using 168 MW;
leaving very little to power the rest of the device, let alone
produce the target 100 MW net electric output [24].

4. Conclusions

In this paper we have presented the spherical tokamak
specific models in PROCESS. These include alternative re-
lations for the plasma current, one of which is presented
here for the first time. Additionally we have detailed a
water-cooled copper centrepost model for the TF coil sys-
tem. We have applied PROCESS to two reference cases to
demonstrate their impact, illustrating the need to accu-
rately predict the plasma current required. This is impor-
tant, especially for small machines, as it will impact the
amount of auxiliary current drive required and in turn the
recirculating power, and hence the net electrical output of
any pilot power plant.

Efficiencies play a large role in dictating the required
fusion power of a power plant. The net electric output
can be defined based on a target market, whether that is
a pilot plant, something comparable to a small modular
reactor or a full scale power plant. However recirculat-
ing power does not scale linearly with fusion power and
hence for smaller devices it is essential this is minimised.
Identifying methods of operating at high confinement is
an option, however if this is not achieved then maximising

using xenon seeding in PROCESS giving Psep/R = 20.0 MW m~!the thermal cycle efficiency is the only solution. Once the

required fusion power for a given output is defined, only



then can the material and exhaust challenges be identified
that will set the size of the device.
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