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1 Experimentally assessing the effect of search effort on snare detectability

2

3 Abstract

4 Reducing threats to biodiversity is the key objective of ranger patrols in protected areas. However, 

5 efforts can be hampered by rangers’ inability to detect threats, and poor understanding of threat 

6 abundance and distribution in a landscape. Snares are particularly problematic due to their cryptic 

7 nature and limited selectivity with respect to captured animals’ species, sex, or age. Using an 

8 experimental approach, we investigated the effect of search effort, habitat, season, and team on 

9 rangers’ detection of snares in a tropical forest landscape. We provide an effort-detection curve, and 

10 use our findings to make preliminary predictions about snare detection under different scenarios of 

11 patrol effort. Results suggest that the overall probability of a searcher detecting any given snare in a 

12 0.25/km2 area, assuming 60 minutes (or approximately 2km) of search effort is 20% (95% CI ± 15-

13 25%), with no significant effect of season, habitat or team. Our models suggested this would 

14 increase by approximately 10% with an additional 30mins/1km of search effort. Our preliminary 

15 predictions of the effectiveness of different patrolling scenarios show that detection opportunities are 

16 maximised at low effort levels by deploying multiple teams to a single area, but at high effort levels 

17 deploying single teams becomes more efficient. Our results suggest that snare detectability in 

18 tropical forest landscapes is likely to be low, and may not improve dramatically with increased search 

19 effort. Given this, managers need to consider whether intensive snare-removal efforts are the best 

20 use of limited resources; the answer will depend on their underlying objectives. 

21

22

23 Keywords
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26 1. Introduction

27 Protected area (PA) networks are a cornerstone of global efforts to conserve biodiversity (Bruner, 

28 Bruner, Gullison, Rice, & Fonseca, 2001). Their success depends on effective management, 

29 including the reduction of threats to species and habitats (Watson, Dudley, Segan, & Hockings, 

30 2014). A primary tool available to PA managers to address threats is patrolling by ranger teams 

31 (Hilborn et al., 2006; Lynam, Porter, & Campos-Arceiz, 2016). Through regular patrolling, rangers 

32 monitor adherence to conservation rules, deter potential perpetrators, and punish infractions when 

33 detected (Keane, Jones, Edward-Jones, & Milner-Gulland, 2008). To design optimal patrol 

34 strategies, PA managers require robust information about the distribution and abundance of threats 

35 in a landscape (Critchlow et al., 2017) alongside a means of assessing which approach is most likely 

36 to yield the greatest conservation benefit at the lowest possible cost (Plumptre et al., 2014). 

37

38 Data collected by rangers are increasingly used to map spatio-temporal trends in threats and 

39 evaluate patrol performance. These are often collected by patrols for little additional cost (Brashares 

40 & Sam, 2005). Subsequently, the data can be used with open-access tools such as the Spatial 

41 Monitoring and Reporting Tool (SMART) to map threats and prioritize patrol effort within 

42 conservation landscapes (Hötte et al., 2016; Stokes, 2010). However, gathering data is not the 

43 primary objective of patrols and ranger-collected data may be subject to considerable bias (Keane et 

44 al. 2011). Patrol data must therefore be handled with caution to avoid misleading conclusions and 

45 ineffective targeting of patrol effort (Critchlow et al., 2015; Keane, Jones, & Milner-Gulland, 2011). 

46 While a growing suite of statistical methods exists to account for these biases (see Critchlow et al., 

47 2015; Marescot, Lyet, Singh, Carter, & Gimenez, 2019; J. F. Moore et al., 2017), there is also a 

48 broader need for independent tests of key aspects of patrol effectiveness, such as the amount of 

49 patrol effort required to successfully detect a certain proportion of threats present within expansive 

50 conservation landscapes (Dobson, Milner-Gulland, Beale, Ibbett, & Keane, 2018). Well-designed 

51 experiments can provide effective and affordable means to trial different approaches, and have been 

52 used to improve understanding of the effects of environmental covariates on the detectability of traps 

53 set by hunters in both tropical forest (O’Kelly et al. 2018a) and savannah (Rija, 2017) landscapes. 

54 However, no experimental study has yet explored the relationship between search effort and threat 
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55 detection, knowledge of which would enable PA managers to distribute patrol effort more efficiently, 

56 and thereby improve PA effectiveness. 

57

58 Hunting poses one of the greatest threats to wildlife in PAs globally (Ripple et al., 2016; Schulze et 

59 al., 2018) and snares are one of the most prevalent hunting technologies used worldwide (Gray, 

60 Hughes, et al., 2017; Harrison et al., 2016). Usually made from wire, cable, or nylon, snares are 

61 affordable, accessible, and can trap a wide range of arboreal and terrestrial species, whether diurnal 

62 or nocturnal (Borgerson, 2015; Ingram et al., 2017). Due to their limited selectivity with respect to 

63 species, sex, or age of captured animals, snares are a potent threat to biodiversity (Noss, 1998). 

64 Although animals sometimes escape snares, subsequent non-fatal injuries often jeopardize their 

65 long-term survival (Gray, Lynam, et al., 2017). For example, chimpanzees with snare injuries have 

66 been found to suffer significantly higher parasite loads than those without (Yersin, Asiimwe, 

67 Voordouw, & Zuberbühler, 2017). Unlike other forms of hunting, snares present a persistent threat to 

68 wildlife as they remain operational in the landscape after a hunter has departed, and are difficult for 

69 patrols to detect (Lindsey, Romanach, Tambling, Chartier, & Groom, 2011).

70

71 A key assumption is that the more patrol effort invested in searching, the more snares will be 

72 discovered. However, the improvement in detection with effort has not been quantified and is likely to 

73 be affected by factors such as habitat, season, atmospheric conditions (e.g. precipitation, 

74 temperature), terrain and topography and the type of snare set (Keane et al. 2011; Jachmann 2008). 

75 For example, snares which are physically connected and set in lines that stretch many hundreds of 

76 metres may be more detectable than individual snares (O’Kelly et al. 2018b). In addition, snare 

77 detection is influenced by rangers themselves. Studies of wildlife observation and plant detection 

78 have recorded considerable variability between observers depending on their experience and 

79 expertise (J. L. Moore, Hauser, Bear, Williams, & McCarthy, 2011; Sunde & Jessen, 2013). And, 

80 even if rangers are capable of finding snares, they may not always be motivated to search 

81 (Jachmann, 2008). Conservation law enforcement operations are typically under-resourced, with 

82 rangers often inadequately trained, poorly remunerated, and insufficiently equipped to work in 

83 challenging conditions (Belecky, Singh, & Moreto, 2018; Long, Grein, Boedicker, & Singh, 2016).

84
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85 Here, we adopt an experimental approach to test how a vital element of patrol effectiveness – snare 

86 detection – is affected by the amount of patrol effort invested. Our study provides an effort-detection 

87 curve for snare detectability in a tropical forest context, investigates the effects of habitat and season 

88 on detection probability, and assesses the extent to which performance varies between search 

89 teams and individual searchers. We use our findings to predict the snare detection levels that could 

90 be achieved in a Cambodian PA under different patrolling scenarios. 
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92 2. Materials and Methods

93

94 2.1 Study Site

95 The study was conducted in Keo Seima Wildlife Sanctuary (formerly Seima Protection Forest), a 

96 2,927km2 PA situated in Mondulkiri Province, eastern Cambodia (12°26’70”N, 106°E 94’90”). The 

97 PA is topographically diverse, ranging in altitude from 60-750m (Evans et al., 2013). The habitat is 

98 heterogeneous, and consists of a complex forest mosaic that includes deciduous dipterocarp and 

99 fully evergreen forest (Walston, Davidson, & Men, 2001). The PA supports populations of Asian 

100 elephant (Elephas maximus) and wild cattle (Bos spp.), alongside globally significant primate 

101 populations. In 2011, a systematic survey conducted over 2200km, detected 1300 snares in 140 

102 different locations in the PA, with an experimentally calculated detection rate of 28-36% (O’Kelly et 

103 al. 2018a). 

104

105 2.2 Experimental design

106 Setting snares

107 We adapted a methodology originally piloted by O’Kelly et al. (2018b), and established five 3.25km 

108 transects around a patrol station (Fig. 1, Appendix S1). Habitat here is highly heterogenous; 

109 comprised of a mosaic that reflect vegetation types found across the wider landscape. The area also 

110 supports a full complement of species, which occur in relatively high densities. Either side of each 

111 transect, we delineated 6 x 0.25km2 (500m x 500m) quadrats at 50m intervals (Appendix S1). This 

112 quadrat size was chosen so teams could conduct intensive searches in realistic time-frames. Within 

113 each quadrat we set between zero and 15 snares (the number randomly drawn from a Poisson 

114 distribution with mean = 7.5), based on estimates of typical snare densities identified by other 

115 studies (Dobson et al., 2019). Single foot snares made from black nylon string (5mm), an 

116 inexpensive material often used by hunters in this area, were set without a trigger mechanism to 

117 prevent harm to wildlife, and all snares were successfully removed at the end of each transect 

118 survey.

119

120 We recruited local guides from surrounding communities, who were instructed to set single snares 

121 as a local hunter might, in locations they deemed suitable to catch popular prey species such as wild 



6

122 pig (Sus scrofa), Northern red muntjac (Muntiacus vaginalis) and sambar (Rusa unicolor). Prior to 

123 setting snares, teams explored each quadrat for 30 minutes to identify suitable snare locations. Once 

124 set, teams recorded the GPS coordinates of each snare and the dominant habitat type of the 

125 quadrat. Teams were asked not to disclose the location or number of snares set in each quadrat to 

126 other teams or to leave obvious signs of their presence which future teams might use as cues. 

127

128 2.3 Data Collection

129 Searching for snares

130 The experiment required four separate teams, each led by a staff member from the Wildlife 

131 Monitoring Team of Wildlife Conservation Society (WCS) Cambodia. Team leaders had expertise in 

132 snare detection, and were accompanied by two other searchers – either a local guide or another 

133 WCS staff member. WCS staff remained the same in each team, but changes in availability meant 

134 that local guides varied between transects. All team members searched for snares, with team 

135 leaders also recording data, coordinating the search strategy and ensuring searchers stayed within 

136 quadrat boundaries. Each team was allocated quadrats to search for a designated time period. No 

137 quadrat was searched simultaneously by more than one team, and teams never searched quadrats 

138 in which they had set snares. To maximize statistical power and to account for the considerable 

139 challenge of implementing the survey at a larger scale, each quadrat was searched three times, for a 

140 fixed search duration varying between 15 and 90 minutes in 15-minute intervals (Appendix S1). 

141 Every effort was made to minimize the effect of previous searches on the detectability of snares by 

142 subsequent teams.  

143

144 Teams were encouraged to search purposefully by following cues in the landscape (e.g. human 

145 footprints, wildlife tracks, cut vegetation). The start and finish time, the vegetation type in the 

146 quadrat, the distance travelled, the GPS locations of the search routes and any artificial or real 

147 snares detected were recorded throughout. We also recorded search order, to account for the fact 

148 that the more a quadrat was searched, the more cues were left in the landscape. The later the 

149 search, the harder for searchers to differentiate between cues set by the snare setting team (clues) 

150 and those left by previous searchers (decoy cues). Teams were shadowed by first author HI to 

151 ensure that protocols were adhered to, and to observe and question teams on their choice of snare 
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152 placement and search strategies. We included the presence of HI as a variable within our models, to 

153 assess whether her observation of the search team had any effect on detection performance. The 

154 methodology was piloted in December 2016, and conducted during dry season in January-February 

155 2017 and wet season in October-November 2017. 

156

157 2.4 Ethical Considerations

158 Employing local community members with relevant hunting experience helped to ensure that artificial 

159 snares were realistic, but raised several ethical issues. Firstly, by participating, local guides risked 

160 implicating themselves in illegal activity (e.g. by affirming their hunting expertise or knowledge of 

161 suitable hunting grounds within the PA). To mitigate this risk, only former hunters recommended by 

162 WCS were recruited. Prior to participation, the experimental nature and purpose of the research was 

163 explained to local guides, and voluntary verbal consent to participate was sought. Individuals were 

164 assured that no information or inferences about their hunting knowledge would be passed onto 

165 authorities. An additional concern was that the experiments would introduce individuals to new 

166 hunting grounds. However, after consultation with WCS it was decided that the risk was negligible; 

167 most local guides were born in or around the PA, and were highly familiar with the study landscape. 

168 Protocols were reviewed and approved by the University of Oxford Central University Research 

169 Ethics Committee (Ref No. R43030/RE002), with permission to conduct research granted by the 

170 Royal Government of Cambodia. 

171

172 2.5 Analysis

173 Analyses were performed in R version 3.5.1 (R Core Team, 2017) using the package rstanarm 

174 (Goodrich, Gabry, Ali, & Brilleman, 2018). We fitted a series of hierarchical generalised linear models 

175 to the data, expressing different hypotheses about the factors influencing snare detection. These 

176 were compared using WAIC, a Bayesian information criterion akin to AIC (Watanabe, 2010). The 

177 response variable in every model was a binary indicator of whether or not each snare was detected 

178 during a given search period. The full set of predictor variables used in one or more of these models 

179 is shown in Table 1. Effort was represented by either time or distance. Based on a comparison of 

180 WAIC between models 1 and 2 (intercept and grouping parameters only, no covariates), time was 

181 chosen as the better-fitting effort measure for model explorations which included covariates, 
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182 although the two measures were highly correlated (Spearman's Rho = 0.79, 95% CI =77-81; Fig. 

183 S2a). Effort measured as time was experimentally manipulated rather than observed, so was centred 

184 around 45 minutes (50% of the maximum search time) and included in the model using hours as the 

185 unit of measurement. Effort measured as distance and distance to the nearest snare were observed 

186 quantities so were scaled by subtracting the mean and dividing by two standard deviations, either 

187 precisely (for effort) or using approximate values for the mean and standard deviation (for distance to 

188 the nearest snare) to improve the interpretability of the coefficients. All other models included 

189 variables for quadrat search order and previous snare detections. Two snare density-related 

190 variables were next added, and finally we explored three models which also included variables 

191 related to season, team, or placement within the environment.

192

193 Model parameters were given weakly informative Students-t priors with 7 degrees of freedom and 

194 scale 2.5, except for the intercept which was given a Normal prior with mean 0 and standard 

195 deviation 10. Weakly informative priors were chosen to stabilise computation and to express our 

196 weak prior beliefs that very large effects would be rare (Gelman, Jakulin, Pittau, & Su, 2008). The 

197 coefficients for transect ID, quadrat ID, date, setting team ID and searching team ID were each given 

198 independent hierarchical LKJ priors with regularization parameter 1 (Lewandowski, Kurowicka, & 

199 Joe, 2009). For each model, 2000 Markov Chain Monte Carlo (MCMC) samples were drawn from 

200 four independent chains. Convergence of MCMC chains was evaluated using trace-plots and the 

201 Gelman-Rubin diagnostic, with values <1.05 taken to indicate that convergence had been reached 

202 (Gelman et al. 2013). The fit of the model with the lowest WAIC value was examined using graphical 

203 posterior predictive checks.

204

205 Using the effort-detection relationship derived from our fitted model, and assuming replication of the 

206 search strategies employed during our experiment, we explored how sequentially dividing search 

207 effort within a quadrat across multiple teams might affect detection probability. We assumed that n 

208 teams searched the same quadrat independently and sequentially and that each team had the same 

209 constant probability, p, of detecting snares that were present. We therefore modelled the proportion 

210 of snares remaining after all searches were completed, r, as:

211 r = 1 - (1 - p) n
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212 Deploying more search teams is likely to incur transaction costs (e.g. more time is required to travel 

213 to sites, and additional salary is required to pay more team leaders). In the absence of empirical 

214 data, we incorporated these costs by expressing them in terms of effort lost from the total budget: 10 

215 minutes of search effort was removed from the initial total for each extra team added, and the 

216 remaining effort was then split equally between all teams (i.e. at 90 minutes, four teams would 

217 search for 20 15 minutes each). To examine the sensitivity of our findings to the steepness of the 

218 effort-detection relationship wWe also explored the difference in results when the slope of the effort-

219 detection curve was 50% higher or lower than the observed slope on the logit scale, in order to 

220 determine the sensitivity of our results to the specific shape of the effort-detection curve.  
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221 3. Results

222

223 3.1 Effect of search effort on detection probability

224 3.1.1 Snare locations

225 In total, 886 artificial snares were set, 442 in dry season and 444 in wet season. Local guides 

226 reported that they generally sought specific features when placing snares; for example, water 

227 sources (66% of snares set), animal trails (44%), animal signs (e.g. footprints or faeces; 44%), or 

228 fruiting trees (2%).

229

230 3.1.2 Detection probability

231 A total of 535 artificial snare detections was recorded out of a possible 2661 opportunities, with a 

232 detection rate of 0.20 averaged across the entire experiment, or 0.24 per hour of searching. In 

233 addition, 55 real snares were detected. These detections were not included in analyses, as once 

234 detected real snares were removed, meaning subsequent search teams had no opportunity to detect 

235 them. 42% of the total population of artificial snares were discovered; 26% were found by only a 

236 single team, 13% by two teams, and 3% by all three search teams (S2, Fig. 2).

237

238 3.1.3 Predictors of snare detectability

239 The magnitude and direction of the effect of all covariates were consistent across the set of 

240 candidate models considered (see Appendix S2). The best-fitting model (Model 8; Table 2) included 

241 time spent searching, quadrat search order, number of times a snare was previously detected, snare 

242 clustering and density (Fig. 3), and batches of variables describing the variability between transects, 

243 between quadrats within transects, over time and between the teams responsible for setting and 

244 searching for snares (Figs. S2d-f). The model did not include season, vegetation type within the 

245 quadrat, or the proximity of the snare to water, animal trails or animal signs. Model 9, which included 

246 variables relating to the team leader, and the presence of author HI as an observer of the search 

247 team, was only marginally less supported while other models were much less well supported (Table 

248 2). However, the effects of team leader and HI's presence in model 9 were inconclusive (Fig. S2b).

249
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250 The overall probability of searchers detecting any given snare on the first search of an area was 20% 

251 (95% CI ± 15-25%), assuming 60 minutes (or approximately 2km) of search effort. Detection 

252 probability increased by approximately 10% for every additional 30mins/1km of search effort from 

253 approximately 8% with 15 mins of search to approximately 30% with 90 mins (Fig. 4). Snares which 

254 were previously detected by a search team were more likely to be detected in subsequent searches 

255 (mean raw detection rates: Never previously detected = 0.17; Detected once previously = 0.33; 

256 Detected twice previously = 0.54; Fig. 3). Perhaps because previous searchers left cues, such as 

257 footprints or cut branches, which made it easier for subsequent searchers to follow their path. 

258 Accounting for this, there was an effect of whether the quadrat was being searched for the first, 

259 second or third time, with lower rates of detection in the second search than the first, but no clear 

260 difference between the first and third searches (mean raw detection rates: First search = 0.21; 

261 Second search = 0.16; Third search = 0.24). Snares were more easily detected when they were 

262 placed in closer proximity to other snares in a quadrat, but there was no effect of snare density on 

263 detection rates (Fig. 3).

264

265 3.1.4 Team variability

266 The identity of the setting and searching teams had little effect on the probability of detection (Fig. 

267 S2c). Differences in success were largely attributable to the performance of specific individuals; over 

268 40% of all snare detections were achieved by three searchers, and the best searchers were 

269 disproportionately from the professional WCS wildlife monitoring team rather than local guides (Fig. 

270 5). Although WCS staff were responsible for recording data, there was little opportunity for them to 

271 claim snares found by others for themselves, as each searcher’s detections were verifiable via 

272 timestamped GPS tracks of each individuals’ search route. We found no evidence that any false 

273 recording occurred. Field observations of searchers suggested that detection was mainly influenced 

274 by skill and experience. A peer- and self-evaluation exercise suggested that peers more accurately 

275 predicted others' detection abilities than individuals did themselves (Appendix S3). The best-

276 performing individual was a WCS employee born in a local village who hunted in childhood.

277
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278 3.2 Effective allocation of search effort

279 Simulations of search effort allocationOur fitted models show that as the amount of total search effort 

280 increases from 15 to 90 minutes, the proportion of snares detected by a single team detection can 

281 be expected to increase by approximately 20% (Fig. 6). Simulations of search effort allocation 

282 suggest that aAt low search efforts, a 10% increase in detection can be expected for each additional 

283 team searching (Fig. 6). For example, four teams searching the same quadrat at separate times for 5 

284 minutes each (in total 20 minutes) may find up to 25% of snares. However, as search effort 

285 increases, it can become more efficient to deploy just one team, rather than multiple teams - 

286 particularly when the relationship between effort and snare detection is steeper. 
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287 4. Discussion

288 PA managers increasingly require information about the best allocation of patrol effort (Lynam et al., 

289 2016). Our results suggest that overall, the ability of rangers to detect snares is low. Although 

290 detection increased with distance between snares and search effort, 60 minutes of searching 

291 (approximately 2 km) resulted in the detection of 20% (± 15-25%) of snares, comparable to the 15% 

292 detection reported by O’Kelly et al. (2018b) at similar levels of search effort. Higher detection rates 

293 might be achieved by deploying more teams to search within a specific area for shorter periods. 

294 However, this finding assumes teams independently search the same area, that they are not reliant 

295 on cues left by previous searchers, that detected snares are left in situ, and that each search team 

296 has equal detection probability. In reality, few of these assumptions are met. Regardless, However, 

297 ggiven the large size of most PAs, theese recommendation to deploy multiple teams within a specific 

298 area for shorter periodss may be financially and logistically unviable unless there is a particular 

299 reason to concentrate on a specific "hotspot". Ultimately, more effective and efficient use of 

300 resources will be achieved by deploying a single team to intensively search one area.

301

302 Surprisingly, we found no effect of snare density on detection probability. While setting more snares 

303 might result in more potential opportunities for snares to be found, searchers still need to target their 

304 efforts in the right places. The skill of individual searchers, along with search effort were stronger 

305 predictors of detection probability, highlighting the need for PA managers to carefully select 

306 personnel with demonstrated skill at detecting snares for patrols. Also unexpected, was that 

307 detection was higher during the first and third searches than the second. One reason may have 

308 been due to time of day. The second search was usually conducted in the afternoon, when 

309 temperatures often exceeded 33°c. By this point individuals had already exerted substantial effort in 

310 searching and were physically and mentally fatigued. Our results along with observations during the 

311 study, highlight the need for PA managers to carefully consider environmental factors such as 

312 temperature when designing patrolling strategies. Managers must demonstrate an awareness of the 

313 physical and psychological demands patrolling places on individuals and adapt patrols accordingly 

314 (Belecky et al., 2018; Moreto, 2015). 

315
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316 Many PA management regimes prioritise and invest heavily in patrol-based snare removal efforts. 

317 However, the low detectability of snares, despite high levels of search effort, raises questions about 

318 the efficiency of this approach. If the primary aim of snare removal is to reduce animal mortality to 

319 sustainable levels, snare detection and removal rates must be high enough to alleviate pressure on 

320 remaining wildlife populations. Knowing what is “high enough” requires robust estimates of snare 

321 detection, as well as a good understanding of snare-related mortality rates and their impact on 

322 species population trends. Currently, however, there is virtually no empirical information on any of 

323 these parameters. If the aim is to deter snaring, then detectability must be high enough to raise costs 

324 sufficiently to make it unprofitable (Gray, Hughes, et al., 2017). If the aim is to visibly advertise to 

325 potential offenders that snaring is an issue taken seriously by PA managers, then making snare 

326 removal efforts visible to communities could be beneficial, even if the actual percentage removed is 

327 low. PA managers must therefore consider their aims carefully. All these objectives may benefit from 

328 targeted snare removal in known hunting and/or wildlife hotspots, especially if accompanied by 

329 legislative reform, consistent enforcement that criminalises the possession of snares, and measures 

330 which ensure a high proportion of successful prosecutions occur (Gray, Hughes, et al., 2017). 

331 Currently, however, little is known about whether snare removal actually deter hunters, and if so, 

332 what the spatial and temporal extents of a deterrent effect are. Better understanding of the relative 

333 deterrent effect of different law enforcement strategies on snare hunters' behaviour is urgently 

334 required. PA managers should also look beyond snare removal efforts, to other interventions, such 

335 as community outreach and alternative livelihoods, which could help to alleviate hunting pressure. 

336 However, better understanding of the effect such interventions may have on hunter behaviour is still 

337 needed. Any intervention adopted will require careful design, and must be underpinned by a rigorous 

338 monitoring and evaluation programme, so that the impact can be empirically assessed (Veríssimo 

339 and Wan, 2019).

340

341 The finding that WCS staff members were better at locating snares than local guides was contrary to 

342 our expectations, but it makes sense. WCS staff had more experience searching for other peoples’ 

343 snares, and were also more motivated to do so. Local guides were paid on a daily basis, rather than 

344 per snare detection, and thus had no long-term incentive (nor contractual obligation) to perform well. 

345 The work was considered hard for little reward, and was potentially against their own interests. Often 
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346 the exercise was received with bemusement by local guides, who in some cases viewed the setting 

347 of ineffective snares as wasted effort. By contrast, WCS staff employed on permanent contracts, with 

348 personal and professional interests in protecting wildlife, expressed the desire to improve their 

349 snare-detection abilities and had a greater appreciation of the value of experimental work. Investing 

350 effort in developing incentive schemes that reward individual performance may increase detections. 

351 However, these require careful consideration to ensure they are equitable, affordable and 

352 impermeable to ‘cheating’. Few studies have assessed the impact incentives schemes have on 

353 snare removal; further experimental research would help to clarify their potential for impacting snare 

354 abundance and the prevalence of snare hunting. 

355

356 There is a debate about the costs and benefits associated with hiring rangers from local communities 

357 versus those from ‘outside’ (Paley, 2015). Whilst our study provides some evidence of the benefits of 

358 the former, realistically our sample size was too small to draw any credible conclusions. Additionally, 

359 we must consider that the artificial nature of our experiment meant that it was devoid of the usual 

360 conflicts of interest which can occur when employing local rangers to remove snares possibly set by 

361 relatives or neighbours (Paley 2015). Within conservation, the social factors that affect the behaviour 

362 and performance of rangers is relatively under-researched (although see Moreto et al. 2015; Spira et 

363 al. 2019), and greater empirical understanding of the factors that incentivise and disincentivise 

364 rangers during different patrolling activities is needed.

365

366 Prior to the study we hypothesised that both habitat and season would affect snare detection, 

367 however we found no evidence for either effect in our experiment. In the case of habitat, this might 

368 be due to the relatively high within-quadrat habitat variability. Working in the same PA, (O’Kelly et al. 

369 (2018b) found a 9% difference in the detectability of single snares in mixed forest (14%) compared to 

370 evergreen forest (23%). However, O’Kelly et al.’s comparisons were made between two spatially 

371 distinct areas with very different habitats, while the habitat measurements within this study recorded 

372 small differences between vegetation within a single area. The lack of an effect of season is perhaps 

373 more surprising. In tropical forests, hunters are usually more active during wet season, when soil 

374 conditions are more amenable to snare placement (Ibbett et al., n.d.; van Vliet and Nasi, 2008). We 

375 expected that the soft soil would also make the tracks of wildlife and snare setters more visible, 
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376 providing searchers with clues to follow. The lack of seasonal difference in our study may be due to 

377 logistical constraints, which forced us to conduct surveys towards the end of the wet season 

378 (October-November). Unfortunately, a shorter wet season in 2017 meant that rains had effectively 

379 stopped by the time we surveyed the last two transects, resulting in less contrast in physical and 

380 meteorological conditions than expected. 

381

382 Our study demonstrates the utility of a field experiment as an effective and affordable approach to 

383 hypothesis testing. Rarely used in conservation contexts, experiments have many advantages; they 

384 can be replicable, results can be independently verified, and importantly, they enable researchers to 

385 control for extraneous variables so conclusions about the effects of individual variables can more 

386 confidently be drawn (Karban, Huntzinger, & Pearse, 2014). However, as with any scientific 

387 research, they require careful design and there are limits to their ability to accurately mimic reality. 

388 For example, in our experiments, searches were carried out over small areas (0.25km2), and only 

389 teams of three were deployed. In reality, PA managers work at much larger spatial and temporal 

390 resolutions; patrols are planned over hundreds of km2, effort is measured in days rather than 

391 minutes, and patrols are usually comprised of 4-7 rangers (Bowman, 2013). The maximum number 

392 of snares set per quadrat was limited to 15, yet local guides reported that in reality they saturate 

393 suitable areas (e.g. around salt licks, or fruiting trees) with snares to maximise capture opportunities. 

394 During the experiment they felt unable to do so due to the limited number of snares, and because 

395 they didn’t want to increase snare detectability for other teams. Indeed, our results confirm that 

396 snares set in closer proximity to each other were more likely to be found than those set-in isolation. 

397 Guides sometimes felt required to set snares even in the absence of suitable habitat or wildlife signs, 

398 potentially resulting in unrealistic snare placement and/or densities too high for the habitat type. 

399 While we acknowledge this bias may have affected snare detectability, we mitigated its impact on 

400 our estimates by explicitly modelling the effect of the setting team on detection probability. This 

401 variation may also be reflective of reality. Hunters naturally vary in their hunting skill and experience, 

402 meaning some snares will always be set in suboptimal locations, and some will be harder to detect 

403 than others. 

404
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405 This study provides an effort-detection curve for snare removal for a tropical forest context, and 

406 highlights how a quantitative understanding of snare detectability can benefit PA managers. In 

407 addition, our parameter estimates can be incorporated into statistical analyses of ranger-collected 

408 data to draw more robust conclusions about snare abundance and distribution within this 

409 conservation landscape. Although the applicability of our findings is limited to sites characterised by 

410 similar habitat types and hunting behaviours, our experimental protocol provides a framework 

411 adaptable to different contexts, which can be used to explore efficient allocation of resources for 

412 other conservation threats. 

413

414
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567 Figure 1. Keo Seima Wildlife Sanctuary, Mondulkiri province, Cambodia. Study area highlighted in 

568 grey circle.

569



24

570

571 Figure 2. Detections in situ; colour coding represents the number of teams which detected a given 

572 snare. 

573
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574

575

576 Figure 3. Parameter estimates for the best-fitting model, Model 8. Points represent the mean 

577 estimate; thick lines represent 80% credible intervals and thinner lines represent 95% credible 

578 intervals. 

579
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580

581 Figure 4. Effort-detection curve. Black line indicates mean probability of snare detection at differing 

582 levels of effort, predicted from the best-fitting model (Model 8) under the assumption that the quadrat 

583 has not previously been searched. Light green shading indicates the 95% credible interval for 

584 detection probability, while the darker green shading indicates the 85% credible interval. Summaries 

585 of the proportion of snares detected in each transect in the raw data are plotted as filled circles for 

586 wet season and open circles for dry season.

587

588

589
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590

591 Figure 5. Proportion of snares detected by individual searchers.

592

593
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594

595

596 Figure 6. Modelled effect of dividing total search effort across multiple search teams on detection 

597 probability, when effects of effort on detection and transaction costs vary.    

598
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599 Tables

600 Table 1. Description of variables and interaction terms, and their inclusion in the candidate models fitted to the snare detection data. Grouping variables are 

601 shown below the dividing line. 

Model

Variable Description Type Levels 0 1 2 3 4 5 6 7 8 9 10

Effort (time) Time (minutes) spent searching each 

quadrat for snares

Continuous Centred on 45 minutes & 

scaled by dividing by 60
X X X X X X X X X

Effort (distance) Total distanced travelled (km) during 

each search

Continuous Centred on its mean value 

& scaled by two standard 

deviations

X

Quadrat search 

order

Search order Factor 1st, 2nd, 3rd

X X X X X X X X

Previous snare 

detections

Number of times the snare was 

previously detected by other teams 

Factor 0, 1, 2
X X X X X X X X

Distance to nearest 

snare

Mean distance (m) of a snare to other 

snares within the same quadrat

Continuous Centred on 150m & scaled 

by dividing by 100
X X X X X X X

No. of snares set in 

quadrat

Total number of snares set in the 

quadrat

Continuous 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15
X X X X X X X

Season Season in which quadrat was 

searched

Factor Wet, Dry
X X X

Season: Effort Interaction term X X

HI present during 

search

Whether HI accompanied the team 

during the quadrat search 

Factor Yes, No
X X

Team leader ID of the team leader Factor 1, 2, 3, 4 X X

Vegetation type Dominant vegetation type within the 

quadrat

Factor Bamboo, mixed-deciduous, 

semi-evergreen
X X

Presence of animal 

trail

Whether the snare was set on an 

animal trail

Factor Yes, No
X X

Presence of animal 

sign

Whether the snare was set near 

wildlife signs (e.g. foot prints, dung) 

Factor Yes, No
X X
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Presence of water Whether the snare was set near a 

stream, river, pond or salt lick

Factor Yes, No
X X

Transect Transect ID Factor 1, 2, 3, 4, 5 X X X X X X X X X X X

Quadrat within 

transect

Quadrat ID Factor 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12
X X X X X X X X X X X

Date Date each search was conducted Factor DD-MM-YY X X X X X X X X X X X

Team setting snares ID of the team that set snares in the 

quadrat

Factor W1, W2, W3, W4, D1, D2, 

D3, D4
X X X

Team searching for 

snares

ID of the team searching for snares in 

the quadrat

Factor 1, 2, 3, 4
X X X

602

603
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604 Table 2. WAIC values for the fitted models, the difference from the best-fitting model (δWAIC) and 

605 the standard error of that difference (SE(δWAIC)). See Table 1 for models.

Model WAIC δWAIC SE(δWAIC)

8 2412.7 0.0 --

9 2414.1 1.5 1.8

10 2424.2 11.5 3.4

4 2461.4 48.7 14.4

5 2462.9 50.2 14.4

7 2465.3 52.6 14.2

6 2465.5 52.9 14.4

3 2471.8 59.1 16.0

1 2515.5 102.8 21.6

0 2527.6 114.9 23.0

2 2532.9 120.2 22.4

606
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1 Experimentally assessing the effect of search effort on snare detectability

2

3 Abstract

4 Reducing threats to biodiversity is the key objective of ranger patrols in protected areas. However, 

5 efforts can be hampered by rangers’ inability to detect threats, and poor understanding of threat 

6 abundance and distribution in a landscape. Snares are particularly problematic due to their cryptic 

7 nature and limited selectivity with respect to captured animals’ species, sex, or age. Using an 

8 experimental approach, we investigated the effect of search effort, habitat, season, and team on 

9 rangers’ detection of snares in a tropical forest landscape. We provide an effort-detection curve, and 

10 use our findings to make preliminary predictions about snare detection under different scenarios of 

11 patrol effort. Results suggest that the overall probability of a searcher detecting any given snare in a 

12 0.25/km2 area, assuming 60 minutes (or approximately 2km) of search effort is 20% (95% CI ± 15-

13 25%), with no significant effect of season, habitat or team. Our models suggested this would 

14 increase by approximately 10% with an additional 30mins/1km of search effort. Our preliminary 

15 predictions of the effectiveness of different patrolling scenarios show that detection opportunities are 

16 maximised at low effort levels by deploying multiple teams to a single area, but at high effort levels 

17 deploying single teams becomes more efficient. Our results suggest that snare detectability in 

18 tropical forest landscapes is likely to be low, and may not improve dramatically with increased search 

19 effort. Given this, managers need to consider whether intensive snare-removal efforts are the best 

20 use of limited resources; the answer will depend on their underlying objectives. 

21

22

23 Keywords

24 Detection probability; hunting; law enforcement; protected areas; ranger patrols; Cambodia
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26 1. Introduction

27 Protected area (PA) networks are a cornerstone of global efforts to conserve biodiversity (Bruner, 

28 Bruner, Gullison, Rice, & Fonseca, 2001). Their success depends on effective management, 

29 including the reduction of threats to species and habitats (Watson, Dudley, Segan, & Hockings, 

30 2014). A primary tool available to PA managers to address threats is patrolling by ranger teams 

31 (Hilborn et al., 2006; Lynam, Porter, & Campos-Arceiz, 2016). Through regular patrolling, rangers 

32 monitor adherence to conservation rules, deter potential perpetrators, and punish infractions when 

33 detected (Keane, Jones, Edward-Jones, & Milner-Gulland, 2008). To design optimal patrol 

34 strategies, PA managers require robust information about the distribution and abundance of threats 

35 in a landscape (Critchlow et al., 2017) alongside a means of assessing which approach is most likely 

36 to yield the greatest conservation benefit at the lowest possible cost (Plumptre et al., 2014). 

37

38 Data collected by rangers are increasingly used to map spatio-temporal trends in threats and 

39 evaluate patrol performance. These are often collected by patrols for little additional cost (Brashares 

40 & Sam, 2005). Subsequently, the data can be used with open-access tools such as the Spatial 

41 Monitoring and Reporting Tool (SMART) to map threats and prioritize patrol effort within 

42 conservation landscapes (Hötte et al., 2016; Stokes, 2010). However, gathering data is not the 

43 primary objective of patrols and ranger-collected data may be subject to considerable bias (Keane et 

44 al. 2011). Patrol data must therefore be handled with caution to avoid misleading conclusions and 

45 ineffective targeting of patrol effort (Critchlow et al., 2015; Keane, Jones, & Milner-Gulland, 2011). 

46 While a growing suite of statistical methods exists to account for these biases (see Critchlow et al., 

47 2015; Marescot, Lyet, Singh, Carter, & Gimenez, 2019; J. F. Moore et al., 2017), there is also a 

48 broader need for independent tests of key aspects of patrol effectiveness, such as the amount of 

49 patrol effort required to successfully detect a certain proportion of threats present within expansive 

50 conservation landscapes (Dobson, Milner-Gulland, Beale, Ibbett, & Keane, 2018). Well-designed 

51 experiments can provide effective and affordable means to trial different approaches, and have been 

52 used to improve understanding of the effects of environmental covariates on the detectability of traps 

53 set by hunters in both tropical forest (O’Kelly et al. 2018a) and savannah (Rija, 2017) landscapes. 

54 However, no experimental study has yet explored the relationship between search effort and threat 
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55 detection, knowledge of which would enable PA managers to distribute patrol effort more efficiently, 

56 and thereby improve PA effectiveness. 

57

58 Hunting poses one of the greatest threats to wildlife in PAs globally (Ripple et al., 2016; Schulze et 

59 al., 2018) and snares are one of the most prevalent hunting technologies used worldwide (Gray, 

60 Hughes, et al., 2017; Harrison et al., 2016). Usually made from wire, cable, or nylon, snares are 

61 affordable, accessible, and can trap a wide range of arboreal and terrestrial species, whether diurnal 

62 or nocturnal (Borgerson, 2015; Ingram et al., 2017). Due to their limited selectivity with respect to 

63 species, sex, or age of captured animals, snares are a potent threat to biodiversity (Noss, 1998). 

64 Although animals sometimes escape snares, subsequent non-fatal injuries often jeopardize their 

65 long-term survival (Gray, Lynam, et al., 2017). For example, chimpanzees with snare injuries have 

66 been found to suffer significantly higher parasite loads than those without (Yersin, Asiimwe, 

67 Voordouw, & Zuberbühler, 2017). Unlike other forms of hunting, snares present a persistent threat to 

68 wildlife as they remain operational in the landscape after a hunter has departed, and are difficult for 

69 patrols to detect (Lindsey, Romanach, Tambling, Chartier, & Groom, 2011).

70

71 A key assumption is that the more patrol effort invested in searching, the more snares will be 

72 discovered. However, the improvement in detection with effort has not been quantified and is likely to 

73 be affected by factors such as habitat, season, atmospheric conditions (e.g. precipitation, 

74 temperature), terrain and topography and the type of snare set (Keane et al. 2011; Jachmann 2008). 

75 For example, snares which are physically connected and set in lines that stretch many hundreds of 

76 metres may be more detectable than individual snares (O’Kelly et al. 2018b). In addition, snare 

77 detection is influenced by rangers themselves. Studies of wildlife observation and plant detection 

78 have recorded considerable variability between observers depending on their experience and 

79 expertise (J. L. Moore, Hauser, Bear, Williams, & McCarthy, 2011; Sunde & Jessen, 2013). And, 

80 even if rangers are capable of finding snares, they may not always be motivated to search 

81 (Jachmann, 2008). Conservation law enforcement operations are typically under-resourced, with 

82 rangers often inadequately trained, poorly remunerated, and insufficiently equipped to work in 

83 challenging conditions (Belecky, Singh, & Moreto, 2018; Long, Grein, Boedicker, & Singh, 2016).

84
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85 Here, we adopt an experimental approach to test how a vital element of patrol effectiveness – snare 

86 detection – is affected by the amount of patrol effort invested. Our study provides an effort-detection 

87 curve for snare detectability in a tropical forest context, investigates the effects of habitat and season 

88 on detection probability, and assesses the extent to which performance varies between search 

89 teams and individual searchers. We use our findings to predict the snare detection levels that could 

90 be achieved in a Cambodian PA under different patrolling scenarios. 
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92 2. Materials and Methods

93

94 2.1 Study Site

95 The study was conducted in Keo Seima Wildlife Sanctuary (formerly Seima Protection Forest), a 

96 2,927km2 PA situated in Mondulkiri Province, eastern Cambodia (12°26’70”N, 106°E 94’90”). The 

97 PA is topographically diverse, ranging in altitude from 60-750m (Evans et al., 2013). The habitat is 

98 heterogeneous, and consists of a complex forest mosaic that includes deciduous dipterocarp and 

99 fully evergreen forest (Walston, Davidson, & Men, 2001). The PA supports populations of Asian 

100 elephant (Elephas maximus) and wild cattle (Bos spp.), alongside globally significant primate 

101 populations. In 2011, a systematic survey conducted over 2200km, detected 1300 snares in 140 

102 different locations in the PA, with an experimentally calculated detection rate of 28-36% (O’Kelly et 

103 al. 2018a). 

104

105 2.2 Experimental design

106 Setting snares

107 We adapted a methodology originally piloted by O’Kelly et al. (2018b), and established five 3.25km 

108 transects around a patrol station (Fig. 1, Appendix S1). Habitat here is highly heterogenous; 

109 comprised of a mosaic that reflect vegetation types found across the wider landscape. The area also 

110 supports a full complement of species, which occur in relatively high densities. Either side of each 

111 transect, we delineated 6 x 0.25km2 (500m x 500m) quadrats at 50m intervals (Appendix S1). This 

112 quadrat size was chosen so teams could conduct intensive searches in realistic time-frames. Within 

113 each quadrat we set between zero and 15 snares (the number randomly drawn from a Poisson 

114 distribution with mean = 7.5), based on estimates of typical snare densities identified by other 

115 studies (Dobson et al., 2019). Single foot snares made from black nylon string (5mm), an 

116 inexpensive material often used by hunters in this area, were set without a trigger mechanism to 

117 prevent harm to wildlife, and all snares were successfully removed at the end of each transect 

118 survey.

119

120 We recruited local guides from surrounding communities, who were instructed to set single snares 

121 as a local hunter might, in locations they deemed suitable to catch popular prey species such as wild 
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122 pig (Sus scrofa), Northern red muntjac (Muntiacus vaginalis) and sambar (Rusa unicolor). Prior to 

123 setting snares, teams explored each quadrat for 30 minutes to identify suitable snare locations. Once 

124 set, teams recorded the GPS coordinates of each snare and the dominant habitat type of the 

125 quadrat. Teams were asked not to disclose the location or number of snares set in each quadrat to 

126 other teams or to leave obvious signs of their presence which future teams might use as cues. 

127

128 2.3 Data Collection

129 Searching for snares

130 The experiment required four separate teams, each led by a staff member from the Wildlife 

131 Monitoring Team of Wildlife Conservation Society (WCS) Cambodia. Team leaders had expertise in 

132 snare detection, and were accompanied by two other searchers – either a local guide or another 

133 WCS staff member. WCS staff remained the same in each team, but changes in availability meant 

134 that local guides varied between transects. All team members searched for snares, with team 

135 leaders also recording data, coordinating the search strategy and ensuring searchers stayed within 

136 quadrat boundaries. Each team was allocated quadrats to search for a designated time period. No 

137 quadrat was searched simultaneously by more than one team, and teams never searched quadrats 

138 in which they had set snares. To maximize statistical power and to account for the considerable 

139 challenge of implementing the survey at a larger scale, each quadrat was searched three times, for a 

140 fixed search duration varying between 15 and 90 minutes in 15-minute intervals (Appendix S1). 

141 Every effort was made to minimize the effect of previous searches on the detectability of snares by 

142 subsequent teams.  

143

144 Teams were encouraged to search purposefully by following cues in the landscape (e.g. human 

145 footprints, wildlife tracks, cut vegetation). The start and finish time, the vegetation type in the 

146 quadrat, the distance travelled, the GPS locations of the search routes and any artificial or real 

147 snares detected were recorded throughout. We also recorded search order, to account for the fact 

148 that the more a quadrat was searched, the more cues were left in the landscape. The later the 

149 search, the harder for searchers to differentiate between cues set by the snare setting team (clues) 

150 and those left by previous searchers (decoy cues). Teams were shadowed by first author HI to 

151 ensure that protocols were adhered to, and to observe and question teams on their choice of snare 
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152 placement and search strategies. We included the presence of HI as a variable within our models, to 

153 assess whether her observation of the search team had any effect on detection performance. The 

154 methodology was piloted in December 2016, and conducted during dry season in January-February 

155 2017 and wet season in October-November 2017. 

156

157 2.4 Ethical Considerations

158 Employing local community members with relevant hunting experience helped to ensure that artificial 

159 snares were realistic, but raised several ethical issues. Firstly, by participating, local guides risked 

160 implicating themselves in illegal activity (e.g. by affirming their hunting expertise or knowledge of 

161 suitable hunting grounds within the PA). To mitigate this risk, only former hunters recommended by 

162 WCS were recruited. Prior to participation, the experimental nature and purpose of the research was 

163 explained to local guides, and voluntary verbal consent to participate was sought. Individuals were 

164 assured that no information or inferences about their hunting knowledge would be passed onto 

165 authorities. An additional concern was that the experiments would introduce individuals to new 

166 hunting grounds. However, after consultation with WCS it was decided that the risk was negligible; 

167 most local guides were born in or around the PA, and were highly familiar with the study landscape. 

168 Protocols were reviewed and approved by the University of Oxford Central University Research 

169 Ethics Committee (Ref No. R43030/RE002), with permission to conduct research granted by the 

170 Royal Government of Cambodia. 

171

172 2.5 Analysis

173 Analyses were performed in R version 3.5.1 (R Core Team, 2017) using the package rstanarm 

174 (Goodrich, Gabry, Ali, & Brilleman, 2018). We fitted a series of hierarchical generalised linear models 

175 to the data, expressing different hypotheses about the factors influencing snare detection. These 

176 were compared using WAIC, a Bayesian information criterion akin to AIC (Watanabe, 2010). The 

177 response variable in every model was a binary indicator of whether or not each snare was detected 

178 during a given search period. The full set of predictor variables used in one or more of these models 

179 is shown in Table 1. Effort was represented by either time or distance. Based on a comparison of 

180 WAIC between models 1 and 2 (intercept and grouping parameters only, no covariates), time was 

181 chosen as the better-fitting effort measure for model explorations which included covariates, 
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182 although the two measures were highly correlated (Spearman's Rho = 0.79, 95% CI =77-81; Fig. 

183 S2a). Effort measured as time was experimentally manipulated rather than observed, so was centred 

184 around 45 minutes (50% of the maximum search time) and included in the model using hours as the 

185 unit of measurement. Effort measured as distance and distance to the nearest snare were observed 

186 quantities so were scaled by subtracting the mean and dividing by two standard deviations, either 

187 precisely (for effort) or using approximate values for the mean and standard deviation (for distance to 

188 the nearest snare) to improve the interpretability of the coefficients. All other models included 

189 variables for quadrat search order and previous snare detections. Two snare density-related 

190 variables were next added, and finally we explored three models which also included variables 

191 related to season, team, or placement within the environment.

192

193 Model parameters were given weakly informative Students-t priors with 7 degrees of freedom and 

194 scale 2.5, except for the intercept which was given a Normal prior with mean 0 and standard 

195 deviation 10. Weakly informative priors were chosen to stabilise computation and to express our 

196 weak prior beliefs that very large effects would be rare (Gelman, Jakulin, Pittau, & Su, 2008). The 

197 coefficients for transect ID, quadrat ID, date, setting team ID and searching team ID were each given 

198 independent hierarchical LKJ priors with regularization parameter 1 (Lewandowski, Kurowicka, & 

199 Joe, 2009). For each model, 2000 Markov Chain Monte Carlo (MCMC) samples were drawn from 

200 four independent chains. Convergence of MCMC chains was evaluated using trace-plots and the 

201 Gelman-Rubin diagnostic, with values <1.05 taken to indicate that convergence had been reached 

202 (Gelman et al. 2013). The fit of the model with the lowest WAIC value was examined using graphical 

203 posterior predictive checks.

204

205 Using the effort-detection relationship derived from our fitted model, and assuming replication of the 

206 search strategies employed during our experiment, we explored how dividing search effort within a 

207 quadrat across multiple teams might affect detection probability. We assumed that n teams searched 

208 the same quadrat independently and sequentially and that each team had the same constant 

209 probability, p, of detecting snares that were present. We therefore modelled the proportion of snares 

210 remaining after all searches were completed, r, as:

211 r = 1 - (1 - p) n
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212 Deploying more search teams is likely to incur transaction costs (e.g. more time is required to travel 

213 to sites, and additional salary is required to pay more team leaders). In the absence of empirical 

214 data, we incorporated these costs by expressing them in terms of effort lost from the total budget: 10 

215 minutes of search effort was removed from the initial total for each extra team added, and the 

216 remaining effort was then split equally between all teams (i.e. at 90 minutes, four teams would 

217 search for 15 minutes each). To examine the sensitivity of our findings to the steepness of the effort-

218 detection relationship we also explored the difference in results when the slope of the effort-

219 detection curve was 50% higher or lower than the observed slope on the logit scale, in order to 

220 determine the sensitivity of our results to the specific shape of the effort-detection curve.  
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221 3. Results

222

223 3.1 Effect of search effort on detection probability

224 3.1.1 Snare locations

225 In total, 886 artificial snares were set, 442 in dry season and 444 in wet season. Local guides 

226 reported that they generally sought specific features when placing snares; for example, water 

227 sources (66% of snares set), animal trails (44%), animal signs (e.g. footprints or faeces; 44%), or 

228 fruiting trees (2%).

229

230 3.1.2 Detection probability

231 A total of 535 artificial snare detections was recorded out of a possible 2661 opportunities, with a 

232 detection rate of 0.20 averaged across the entire experiment, or 0.24 per hour of searching. In 

233 addition, 55 real snares were detected. These detections were not included in analyses, as once 

234 detected real snares were removed, meaning subsequent search teams had no opportunity to detect 

235 them. 42% of the total population of artificial snares were discovered; 26% were found by only a 

236 single team, 13% by two teams, and 3% by all three search teams (S2, Fig. 2).

237

238 3.1.3 Predictors of snare detectability

239 The magnitude and direction of the effect of all covariates were consistent across the set of 

240 candidate models considered (see Appendix S2). The best-fitting model (Model 8; Table 2) included 

241 time spent searching, quadrat search order, number of times a snare was previously detected, snare 

242 clustering and density (Fig. 3), and batches of variables describing the variability between transects, 

243 between quadrats within transects, over time and between the teams responsible for setting and 

244 searching for snares (Figs. S2d-f). The model did not include season, vegetation type within the 

245 quadrat, or the proximity of the snare to water, animal trails or animal signs. Model 9, which included 

246 variables relating to the team leader, and the presence of author HI as an observer of the search 

247 team, was only marginally less supported while other models were much less well supported (Table 

248 2). However, the effects of team leader and HI's presence in model 9 were inconclusive (Fig. S2b).

249
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250 The overall probability of searchers detecting any given snare on the first search of an area was 20% 

251 (95% CI ± 15-25%), assuming 60 minutes (or approximately 2km) of search effort. Detection 

252 probability increased by approximately 10% for every additional 30mins/1km of search effort from 

253 approximately 8% with 15 mins of search to approximately 30% with 90 mins (Fig. 4). Snares which 

254 were previously detected by a search team were more likely to be detected in subsequent searches 

255 (mean raw detection rates: Never previously detected = 0.17; Detected once previously = 0.33; 

256 Detected twice previously = 0.54; Fig. 3). Perhaps because previous searchers left cues, such as 

257 footprints or cut branches, which made it easier for subsequent searchers to follow their path. 

258 Accounting for this, there was an effect of whether the quadrat was being searched for the first, 

259 second or third time, with lower rates of detection in the second search than the first, but no clear 

260 difference between the first and third searches (mean raw detection rates: First search = 0.21; 

261 Second search = 0.16; Third search = 0.24). Snares were more easily detected when they were 

262 placed in closer proximity to other snares in a quadrat, but there was no effect of snare density on 

263 detection rates (Fig. 3).

264

265 3.1.4 Team variability

266 The identity of the setting and searching teams had little effect on the probability of detection (Fig. 

267 S2c). Differences in success were largely attributable to the performance of specific individuals; over 

268 40% of all snare detections were achieved by three searchers, and the best searchers were 

269 disproportionately from the professional WCS wildlife monitoring team rather than local guides (Fig. 

270 5). Although WCS staff were responsible for recording data, there was little opportunity for them to 

271 claim snares found by others for themselves, as each searcher’s detections were verifiable via 

272 timestamped GPS tracks of each individuals’ search route. We found no evidence that any false 

273 recording occurred. Field observations of searchers suggested that detection was mainly influenced 

274 by skill and experience. A peer- and self-evaluation exercise suggested that peers more accurately 

275 predicted others' detection abilities than individuals did themselves (Appendix S3). The best-

276 performing individual was a WCS employee born in a local village who hunted in childhood.

277
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278 3.2 Effective allocation of search effort

279 Our fitted models show that as the amount of total search effort increases from 15 to 90 minutes, the 

280 proportion of snares detected by a single team can be expected to increase by approximately 20%. 

281 Simulations of search effort allocation suggest that at low search efforts, a 10% increase in detection 

282 can be expected for each additional team searching (Fig. 6). For example, four teams searching the 

283 same quadrat at separate times for 5 minutes each (in total 20 minutes) may find up to 25% of 

284 snares. However, as search effort increases, it can become more efficient to deploy just one team, 

285 rather than multiple teams - particularly when the relationship between effort and snare detection is 

286 steeper. 
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287 4. Discussion

288 PA managers increasingly require information about the best allocation of patrol effort (Lynam et al., 

289 2016). Our results suggest that overall, the ability of rangers to detect snares is low. Although 

290 detection increased with distance between snares and search effort, 60 minutes of searching 

291 (approximately 2 km) resulted in the detection of 20% (± 15-25%) of snares, comparable to the 15% 

292 detection reported by O’Kelly et al. (2018b) at similar levels of search effort. Higher detection rates 

293 might be achieved by deploying more teams to search within a specific area for shorter periods. 

294 However, this finding assumes teams independently search the same area, that they are not reliant 

295 on cues left by previous searchers, that detected snares are left in situ, and that each search team 

296 has equal detection probability. In reality, few of these assumptions are met. Regardless, given the 

297 large size of most PAs, the recommendation to deploy multiple teams within a specific area for 

298 shorter periods may be financially and logistically unviable unless there is a particular reason to 

299 concentrate on a specific "hotspot". Ultimately, more effective and efficient use of resources will be 

300 achieved by deploying a single team to intensively search one area.

301

302 Surprisingly, we found no effect of snare density on detection probability. While setting more snares 

303 might result in more potential opportunities for snares to be found, searchers still need to target their 

304 efforts in the right places. The skill of individual searchers, along with search effort were stronger 

305 predictors of detection probability, highlighting the need for PA managers to carefully select 

306 personnel with demonstrated skill at detecting snares for patrols. Also unexpected, was that 

307 detection was higher during the first and third searches than the second. One reason may have 

308 been due to time of day. The second search was usually conducted in the afternoon, when 

309 temperatures often exceeded 33°c. By this point individuals had already exerted substantial effort in 

310 searching and were physically and mentally fatigued. Our results along with observations during the 

311 study, highlight the need for PA managers to carefully consider environmental factors such as 

312 temperature when designing patrolling strategies. Managers must demonstrate an awareness of the 

313 physical and psychological demands patrolling places on individuals and adapt patrols accordingly 

314 (Belecky et al., 2018; Moreto, 2015). 

315
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316 Many PA management regimes prioritise and invest heavily in patrol-based snare removal efforts. 

317 However, the low detectability of snares, despite high levels of search effort, raises questions about 

318 the efficiency of this approach. If the primary aim of snare removal is to reduce animal mortality to 

319 sustainable levels, snare detection and removal rates must be high enough to alleviate pressure on 

320 remaining wildlife populations. Knowing what is “high enough” requires robust estimates of snare 

321 detection, as well as a good understanding of snare-related mortality rates and their impact on 

322 species population trends. Currently, however, there is virtually no empirical information on any of 

323 these parameters. If the aim is to deter snaring, then detectability must be high enough to raise costs 

324 sufficiently to make it unprofitable (Gray, Hughes, et al., 2017). If the aim is to visibly advertise to 

325 potential offenders that snaring is an issue taken seriously by PA managers, then making snare 

326 removal efforts visible to communities could be beneficial, even if the actual percentage removed is 

327 low. PA managers must therefore consider their aims carefully. All these objectives may benefit from 

328 targeted snare removal in known hunting and/or wildlife hotspots, especially if accompanied by 

329 legislative reform, consistent enforcement that criminalises the possession of snares, and measures 

330 which ensure a high proportion of successful prosecutions occur (Gray, Hughes, et al., 2017). 

331 Currently, however, little is known about whether snare removal actually deter hunters, and if so, 

332 what the spatial and temporal extents of a deterrent effect are. Better understanding of the relative 

333 deterrent effect of different law enforcement strategies on snare hunters' behaviour is urgently 

334 required. PA managers should also look beyond snare removal efforts, to other interventions, such 

335 as community outreach and alternative livelihoods, which could help to alleviate hunting pressure. 

336 However, better understanding of the effect such interventions may have on hunter behaviour is still 

337 needed. Any intervention adopted will require careful design, and must be underpinned by a rigorous 

338 monitoring and evaluation programme, so that the impact can be empirically assessed (Veríssimo 

339 and Wan, 2019).

340

341 The finding that WCS staff members were better at locating snares than local guides was contrary to 

342 our expectations, but it makes sense. WCS staff had more experience searching for other peoples’ 

343 snares, and were also more motivated to do so. Local guides were paid on a daily basis, rather than 

344 per snare detection, and thus had no long-term incentive (nor contractual obligation) to perform well. 

345 The work was considered hard for little reward, and was potentially against their own interests. Often 
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346 the exercise was received with bemusement by local guides, who in some cases viewed the setting 

347 of ineffective snares as wasted effort. By contrast, WCS staff employed on permanent contracts, with 

348 personal and professional interests in protecting wildlife, expressed the desire to improve their 

349 snare-detection abilities and had a greater appreciation of the value of experimental work. Investing 

350 effort in developing incentive schemes that reward individual performance may increase detections. 

351 However, these require careful consideration to ensure they are equitable, affordable and 

352 impermeable to ‘cheating’. Few studies have assessed the impact incentives schemes have on 

353 snare removal; further experimental research would help to clarify their potential for impacting snare 

354 abundance and the prevalence of snare hunting. 

355

356 There is a debate about the costs and benefits associated with hiring rangers from local communities 

357 versus those from ‘outside’ (Paley, 2015). Whilst our study provides some evidence of the benefits of 

358 the former, realistically our sample size was too small to draw any credible conclusions. Additionally, 

359 we must consider that the artificial nature of our experiment meant that it was devoid of the usual 

360 conflicts of interest which can occur when employing local rangers to remove snares possibly set by 

361 relatives or neighbours (Paley 2015). Within conservation, the social factors that affect the behaviour 

362 and performance of rangers is relatively under-researched (although see Moreto et al. 2015; Spira et 

363 al. 2019), and greater empirical understanding of the factors that incentivise and disincentivise 

364 rangers during different patrolling activities is needed.

365

366 Prior to the study we hypothesised that both habitat and season would affect snare detection, 

367 however we found no evidence for either effect in our experiment. In the case of habitat, this might 

368 be due to the relatively high within-quadrat habitat variability. Working in the same PA, (O’Kelly et al. 

369 (2018b) found a 9% difference in the detectability of single snares in mixed forest (14%) compared to 

370 evergreen forest (23%). However, O’Kelly et al.’s comparisons were made between two spatially 

371 distinct areas with very different habitats, while the habitat measurements within this study recorded 

372 small differences between vegetation within a single area. The lack of an effect of season is perhaps 

373 more surprising. In tropical forests, hunters are usually more active during wet season, when soil 

374 conditions are more amenable to snare placement (Ibbett et al., n.d.; van Vliet and Nasi, 2008). We 

375 expected that the soft soil would also make the tracks of wildlife and snare setters more visible, 
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376 providing searchers with clues to follow. The lack of seasonal difference in our study may be due to 

377 logistical constraints, which forced us to conduct surveys towards the end of the wet season 

378 (October-November). Unfortunately, a shorter wet season in 2017 meant that rains had effectively 

379 stopped by the time we surveyed the last two transects, resulting in less contrast in physical and 

380 meteorological conditions than expected. 

381

382 Our study demonstrates the utility of a field experiment as an effective and affordable approach to 

383 hypothesis testing. Rarely used in conservation contexts, experiments have many advantages; they 

384 can be replicable, results can be independently verified, and importantly, they enable researchers to 

385 control for extraneous variables so conclusions about the effects of individual variables can more 

386 confidently be drawn (Karban, Huntzinger, & Pearse, 2014). However, as with any scientific 

387 research, they require careful design and there are limits to their ability to accurately mimic reality. 

388 For example, in our experiments, searches were carried out over small areas (0.25km2), and only 

389 teams of three were deployed. In reality, PA managers work at much larger spatial and temporal 

390 resolutions; patrols are planned over hundreds of km2, effort is measured in days rather than 

391 minutes, and patrols are usually comprised of 4-7 rangers (Bowman, 2013). The maximum number 

392 of snares set per quadrat was limited to 15, yet local guides reported that in reality they saturate 

393 suitable areas (e.g. around salt licks, or fruiting trees) with snares to maximise capture opportunities. 

394 During the experiment they felt unable to do so due to the limited number of snares, and because 

395 they didn’t want to increase snare detectability for other teams. Indeed, our results confirm that 

396 snares set in closer proximity to each other were more likely to be found than those set-in isolation. 

397 Guides sometimes felt required to set snares even in the absence of suitable habitat or wildlife signs, 

398 potentially resulting in unrealistic snare placement and/or densities too high for the habitat type. 

399 While we acknowledge this bias may have affected snare detectability, we mitigated its impact on 

400 our estimates by explicitly modelling the effect of the setting team on detection probability. This 

401 variation may also be reflective of reality. Hunters naturally vary in their hunting skill and experience, 

402 meaning some snares will always be set in suboptimal locations, and some will be harder to detect 

403 than others. 

404
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405 This study provides an effort-detection curve for snare removal for a tropical forest context, and 

406 highlights how a quantitative understanding of snare detectability can benefit PA managers. In 

407 addition, our parameter estimates can be incorporated into statistical analyses of ranger-collected 

408 data to draw more robust conclusions about snare abundance and distribution within this 

409 conservation landscape. Although the applicability of our findings is limited to sites characterised by 

410 similar habitat types and hunting behaviours, our experimental protocol provides a framework 

411 adaptable to different contexts, which can be used to explore efficient allocation of resources for 

412 other conservation threats. 

413

414
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567 Figure 1. Keo Seima Wildlife Sanctuary, Mondulkiri province, Cambodia. Study area highlighted in 

568 grey circle.

569
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570

571 Figure 2. Detections in situ; colour coding represents the number of teams which detected a given 

572 snare. 

573



25

574

575

576 Figure 3. Parameter estimates for the best-fitting model, Model 8. Points represent the mean 

577 estimate; thick lines represent 80% credible intervals and thinner lines represent 95% credible 

578 intervals. 

579
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580

581 Figure 4. Effort-detection curve. Black line indicates mean probability of snare detection at differing 

582 levels of effort, predicted from the best-fitting model (Model 8) under the assumption that the quadrat 

583 has not previously been searched. Light green shading indicates the 95% credible interval for 

584 detection probability, while the darker green shading indicates the 85% credible interval. Summaries 

585 of the proportion of snares detected in each transect in the raw data are plotted as filled circles for 

586 wet season and open circles for dry season.

587

588

589
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590

591 Figure 5. Proportion of snares detected by individual searchers.

592

593
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594

595

596 Figure 6. Modelled effect of dividing total search effort across multiple search teams on detection 

597 probability, when effects of effort on detection and transaction costs vary.    

598
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599 Tables

600 Table 1. Description of variables and interaction terms, and their inclusion in the candidate models fitted to the snare detection data. Grouping variables are 

601 shown below the dividing line. 

Model

Variable Description Type Levels 0 1 2 3 4 5 6 7 8 9 10

Effort (time) Time (minutes) spent searching each 

quadrat for snares

Continuous Centred on 45 minutes & 

scaled by dividing by 60
X X X X X X X X X

Effort (distance) Total distanced travelled (km) during 

each search

Continuous Centred on its mean value 

& scaled by two standard 

deviations

X

Quadrat search 

order

Search order Factor 1st, 2nd, 3rd

X X X X X X X X

Previous snare 

detections

Number of times the snare was 

previously detected by other teams 

Factor 0, 1, 2
X X X X X X X X

Distance to nearest 

snare

Mean distance (m) of a snare to other 

snares within the same quadrat

Continuous Centred on 150m & scaled 

by dividing by 100
X X X X X X X

No. of snares set in 

quadrat

Total number of snares set in the 

quadrat

Continuous 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15
X X X X X X X

Season Season in which quadrat was 

searched

Factor Wet, Dry
X X X

Season: Effort Interaction term X X

HI present during 

search

Whether HI accompanied the team 

during the quadrat search 

Factor Yes, No
X X

Team leader ID of the team leader Factor 1, 2, 3, 4 X X

Vegetation type Dominant vegetation type within the 

quadrat

Factor Bamboo, mixed-deciduous, 

semi-evergreen
X X

Presence of animal 

trail

Whether the snare was set on an 

animal trail

Factor Yes, No
X X

Presence of animal 

sign

Whether the snare was set near 

wildlife signs (e.g. foot prints, dung) 

Factor Yes, No
X X
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Presence of water Whether the snare was set near a 

stream, river, pond or salt lick

Factor Yes, No
X X

Transect Transect ID Factor 1, 2, 3, 4, 5 X X X X X X X X X X X

Quadrat within 

transect

Quadrat ID Factor 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12
X X X X X X X X X X X

Date Date each search was conducted Factor DD-MM-YY X X X X X X X X X X X

Team setting snares ID of the team that set snares in the 

quadrat

Factor W1, W2, W3, W4, D1, D2, 

D3, D4
X X X

Team searching for 

snares

ID of the team searching for snares in 

the quadrat

Factor 1, 2, 3, 4
X X X

602

603
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604 Table 2. WAIC values for the fitted models, the difference from the best-fitting model (δWAIC) and 

605 the standard error of that difference (SE(δWAIC)). See Table 1 for models.

Model WAIC δWAIC SE(δWAIC)

8 2412.7 0.0 --

9 2414.1 1.5 1.8

10 2424.2 11.5 3.4

4 2461.4 48.7 14.4

5 2462.9 50.2 14.4

7 2465.3 52.6 14.2

6 2465.5 52.9 14.4

3 2471.8 59.1 16.0

1 2515.5 102.8 21.6

0 2527.6 114.9 23.0

2 2532.9 120.2 22.4

606
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Experimentally assessing the effect of search effort on snare detectability

Electronic Supplementary Materials

Appendix S1. Experimental Design

Figure S1a. Location of transects within Keo Seima Wildlife Sanctuary. Five 3.25km long transects 

were established radiating out from Sre Pleng patrol station. The bottom right quadrat on Transect 5 

was relocated to directly below the patrol station due to insufficient forest cover in the original 

location. Along each transect, 12x 0.25km2 (500m x 500m) quadrats were demarcated in QGIS. 

Each quadrat was numbered, with quadrats 1 & 2 always nearest the patrol station, and quadrats 11 

& 12 always furthest from the patrol station.  

Table S1a. Example of allocation of a team’s quadrat searches. Numbers in the table represent 

quadrat ID numbers. 

Quadrat search order 

Team

Quadrats in 

which team set 

snares 
1st 2nd 3rd 4th 5th 6th 7th 8th 9th

1 6, 10, 12 1 3 5 7 9 11 2 4 8

2 2, 4, 8 11 9 7 5 3 1 6 10 12

3 5, 9, 11 2 4 6 8 10 12 1 3 7

4 1, 3, 7 12 10 8 6 4 2 5 9 11

Day 1 Day 2 Day 3
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Figure S1b. Levels of search effort allocated per quadrat in a given transect. Search times were 

fixed across transects. Quadrat ID is shown in the centre of each quadrat. 
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Appendix S2. Further analyses

Table S2a. Repeated snare detections

Season

Dry

N          %

Wet

N          %

Total

N          %

Snares detected by 0 teams 265 60% 249 56% 514 58%

Snares detected by 1 team 104 23% 130 30% 234 26%

Snares detected by 2 teams 61 14% 52 12% 113 13%

Snares detected by 3 teams 12 3% 13 3% 25 3%

Total detections 177 40% 195 44% 372 42%

Figure S2a. Relationship between two different measures of effort - distance searched (km) and time 

spent searching (minutes) 
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Figure S2b. Parameter estimates for the full candidate set of 10 models. Points represent the mean estimate; thick lines represent 80% credible intervals and 

thin lines represent 95% credible intervals. Estimates for the standard deviations of hyperpriors for grouping variables are coloured pink while other 

parameters are coloured turquoise. 
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Figure S2c. Comparison of parameter estimates for the effects of the snare setting team (top) 

and the team searching for snares (bottom) on snare detectability. Results show variability 

between seasons, but broadly teams that set snares that were less detectable, were more likely 

find snares set by other teams (e.g. Team 2 in wet season).
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Figure S2d. Comparison of parameter estimates for the effects of Quadrat ID on snare detectability. Results show variability between quadrats, but 

broadly this was non-significant.
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Figure S2e. Comparison of parameter estimates for the effects of season on snare detectability. 

Figure S2f. Comparison of parameter estimates for the effects of transect on snare detectability. 
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Figure S2g. Variations in modelled effect of dividing total search effort across multiple search 

teams on detection probability, when effects of effort on detection and transaction costs vary.    
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Appendix S3. Assessing the performance of individual searchers

Typically, the assignment of rangers to patrolling tasks is undertaken by supervisors, who 

allocate roles based on their assessment of individual’s ability to perform them. Those in 

possession of certain characteristics (e.g. years on the job, rank, age) may be perceived to be 

experts, and are therefore assumed to perform better. However, this assumption does not 

always hold true. The relationship between perceived expertise and actual performance has not 

been explored in PA management, including the relationship between perceived ability to find 

snares and actual snare-finding ability.

Predicting performance

Prior to the start of the dry season survey, we asked searchers basic questions about their 

expertise with regards to setting and searching for snares, how long they had lived or worked in 

the study area, and whether they thought snares would be easier to find in the wet or dry season. 

In order to gauge expectations of self-performance we asked individuals “How well do you think 

you will perform? where 0 = means you will find no snares, and 10 = means you will find all the 

snares”. We then asked each individual to judge how well they thought each of their peers would 

perform by asking the question “How well do you think XXXX will perform? If 0 = means they will 

find no snares, and 10 = means they will find all the snares”. This exercise was conducted on the 

first day of the snare experiment fieldwork. Only eight of the 29 local guides were present for this 

exercise, meaning that consistent predictions of performance and actual performance rankings 

were only available for the five WCS staff.

We averaged the predictions of performance given to each individual by their peers, and ranked 

the scores to identify who peers expected to perform best and worst. During analysis, we 

compared both self and peer predictions against actual performance. 

Results

Searcher experience

In total, 35 searchers participated in the study; six individuals from WCS, and 29 local guides. 

Only one WCS member grew up in KSWS and had experience setting snares as a child, all 

others originated from different parts of the country. WCS staff had spent on average 11.5 years 

(37% of their lives) working in KSWS. In contrast, most local guides had lived in KSWS their 

whole life, and all but one guide set snares as a child. Based on the length of time spent living in 

KSWS we predicted that local guides would be more familiar with the forest habitat, distribution 

of wildlife and hunting techniques and thus would be better at detecting snares than WCS staff. 

However, we found this to be untrue. The mean number of snares detected per transect by each 
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WCS employee was 6 (min: 2; max: 22) compared to 3 snares per local guides (min: 0, max: 9). 

The six WCS staff were responsible for detecting 59% of the total snares found. 

Self-prediction vs peer-prediction

Of WCS staff, two individuals thought they would find more snares than their peers expected 

them to (Table 3). These two individuals were both older and in more senior positions. The other 

three WCS staff members expected to find fewer snares than their peers predicted. No group 

estimates were available for Searcher F. Results showed that once averaged and ranked, peer-

predictions accurately predicted actual performance. Only one individual (the worst performing 

individual) correctly predicted their own performance. Overall, aggregated and ranked peer-

predictions provided a better estimate of performance than self-prediction.

Table 3: Self and peer predictions of performance versus actual performance, measured by the 

number of successful detections per individual divided by the number of detection opportunities. 

Self Peer

Participant Prediction Rank Prediction Rank

Actual performance

(Detections / 
Opportunities)

Rank

Searcher C 7 4.5 8.7 1 91 / 597 15% 1

Searcher F 7 4.5 NA NA 70 / 670 10% 2

Searcher E 8 2.5 8.1 2 57 / 670 8% 3

Searcher D 9 1 7.5 3 47 / 668 7% 4

Searcher A 8 2.5 7.3 4 35 / 658 5% 5

Searcher B 4 6 6.6 5 14 / 483 3% 6

314 / 2661 12%

*Predictions based on a scale where 0 = Will find no snares, 10 = Will find all snares.


