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Abstract 16 

We have identified a robust grassy-ELM operation regime for future tokamak reactors. The 17 

regime exists within a pedestal top electron collisionality (*) window at high global poloidal 18 

beta (βp). The existence of an upper * limit for grassy-ELMs is consistent with results 19 

previously reported in experiments [N. Oyama et al 2010 Effects of edge collisionality on ELM 20 

characteristics in the grassy ELM regime Nucl. Fusion 50 064014], while the existence of a 21 

lower * limit has not been reported previously. Using EPED and BOUT++, a theoretical model 22 

that quantitatively explains the physics of the grassy-ELMs within the window, which 23 

distinguishes them from the small mixed-ELMs at lower *, is presented for the first time. A 24 

peeling-ballooning stability boundary is obtained by scanning the operating density space. The 25 

change in density corresponds to a change in * that affects the pedestal bootstrap current. 26 

High βp leads to a strong Shafranov shift, which affects the flux surface averaged pressure drive. 27 

The two effects combine to create a peeling-dominated window in intermediate * buffered by 28 

ballooning-dominated regimes. Only the peeling-dominated regime shows a cyclic behavior in 29 

the perturbed pressure during the nonlinear simulation of an ELM crash, reminiscent of grassy-30 

ELM dynamics. Similarly, the energy released across the separatrix is demonstrated to be 31 

significantly smaller. The quick recovery of the ELM crash is explainable by the rapid rise of 32 

a low n kink-peeling instability when the pedestal current Iped exceeds a threshold at high βp. It 33 

minimizes the excursion beyond marginal stability and is absent in the ballooning-dominated 34 



 

regime. Comparison with recent experiments over a range of βp and * strongly supports the 1 

physical picture proposed by the modeling. 2 

Key words: Grassy-ELMs, collisionality, high βp, peeling-ballooning mode, CFETR, 3 

experimental comparison. 4 

 5 

1. Introduction 6 

Identifying stable operation regimes with high performance and acceptable heat and particle 7 

control is a key challenge for tokamak fusion reactors. China Fusion Engineering Test Reactor 8 

(CFETR) is being proposed as the next-generation fusion facility in China[1], which aims to 9 

bridge the technological gaps between ITER[2] and a fusion demonstration reactor (DEMO). 10 

The main mission of CFETR includes: demonstrating high fusion energy production; 11 

demonstrating tritium self-sufficiency with target tritium breeding ratio (TBR) > 1; exploring 12 

options for DEMO blankets and divertor solutions; and developing solutions for easy remote 13 

maintenance of in-vessel components and material integrity[ 3 ]. With the initiation of the 14 

engineering design phase of CFETR, a method to control Edge Localized Modes (ELM), 15 

compatible with the desired operating scenarios and engineering constraints, is a major 16 

challenge. ELMs are repetitive MHD instabilities at the plasma edge and could lead to a rapid 17 

loss of energy and particles from the plasma edge that potentially shortens the lifetime of first 18 

wall materials and decreases the confinement time of a tokamak[ 4 ]. Resonant Magnetic 19 

Perturbation (RMP) using 3D coils to reduce ELM amplitude has demonstrated success in some 20 

ITER relevant conditions within a low edge safety factor (q95) window[5]. However, CFETR is 21 

designed to operate at high q95 to enhance the bootstrap current for steady-state operation. 22 

Although recent results suggest that RMPs could be extended to higher q95
[6], they are still 23 

preliminary and we have to wait for further experimental confirmation. Another issue is 24 

that neutron shielding demands that the RMP coils be placed behind the tritium breeding 25 

blankets, which results in high coil current requirement. Other ELM control methods, such as 26 

injection of small pellets[7], are still in early stages of development. This study explores the 27 



 

possibility of operating with benign ELMs that are compatible with high core performance and 1 

effective edge plasma exhaust solutions.   2 

The accessibility of high-performance H-mode with small or no ELMs is an essential 3 

requirement for the design of viable operation scenarios for CFETR. Type-I ELMs[8] with large 4 

periodic bursts are of serious concern, because they can eject over 10% of the pedestal stored 5 

energy to the first wall in a very short time. They are believed to be triggered by peeling-6 

ballooning (PB) instabilities[9] driven by high edge pressure and current, and must be avoided 7 

in CFETR operation. Type-II ELMs observed in AUG, TCV[10] and JET in highly shaped 8 

plasmas[11] have smaller amplitudes compared with Type-I ELMs and show no detectable stored 9 

energy drop or heat flux increase at the divertor target[12][13]. However, Type-II ELMs occur 10 

only at high edge *, which is incompatible with CFETR steady-state scenarios. Type-III ELMs 11 

also have small amplitudes. They are transient oscillations that typically occur at the initial 12 

phase of an L-H transition as the heating power is being ramped up[4]. They exist over a range 13 

of collisionalities[14] and occur below the ballooning stability limit. For other edge conditions, 14 

data for access to quiescent H-mode (QH) [15] is still preliminary, while I-mode [16] has an L-15 

mode particle edge and may not be compatible with high H98, high bootstrap fraction operation. 16 

A good candidate for CFETR is the grassy-ELM regime at moderate * first observed in the 17 

JT60-U tokamak[ 17 ], which is characterized by a high frequency and localized, periodic 18 

collapses of the pedestal. The transient heat load on the first wall from the grassy ELMs is 19 

manageable and they also favorably cleanse the plasma of edge impurities.  20 

According to experiments[17], grassy ELMs exist within an intermediate * window in the 21 

pedestal at high βp . Whether grassy-ELM operation is a viable solution for CFETR critically 22 

depends on identifying a robust * window and determining if it is compatible with both a high-23 

performance core and a divertor solution. Since the core parameters affect the profile of the 24 

pedestal, any quantitative approach to answer this question has to begin with a core-pedestal 25 

consistent equilibrium. This equilibrium is employed in a linear stability analysis to search for 26 

and relate the most unstable modes to the pedestal characteristics along the marginal PB 27 

stability boundary. We use this information to identify the dominant instability drive 28 

mechanism. A nonlinear simulation links the ELM dynamics, i.e. the crash behavior, to the 29 

nature of the unstable mode, which depends on * and βp.  A combination of linear and 30 



 

nonlinear analyses elucidates the physics involved in triggering a repetitive ELM cycle, and 1 

quantifies a * window with robust grassy-ELMs for CFETR operation. Finally, the predicted 2 

features of the ELM behavior are compared with more recent experimental data. Specifically, 3 

we check the change in ELM characteristics, the most unstable mode in the linear phase, and 4 

the fraction of ejected energy during an ELM burst over a range of βp and *. 5 

The organization of this paper is as follows. In Section 2, we construct a series of self-6 

consistent equilibria by applying a core-pedestal coupling simulation workflow to obtain the 7 

CFETR plasma profiles. In Section 3, linear stability analysis using EPED is used to 8 

characterize in details the most unstable modes along the PB stability boundary at the pedestal 9 

of CFETR. In Section 4, nonlinear simulations of the unstable mode evolution and the perturbed 10 

pedestal pressure for different values of * using BOUT++ are presented. A link between the 11 

instability mechanisms and the ELM dynamics is developed. Parameter spaces of predicted 12 

Type-I ELMs and grassy-ELMs, as well as their distinguishing features, are benchmarked with 13 

experiments from DIII-D in Section 5. In Section 6, the results are summarized and extension 14 

to future studies is discussed. 15 

 16 

2. Self-consistent equilibrium construction 17 

  The first step of performing a reliable edge stability analysis is to construct a self-consistent 18 

equilibrium. Previously, starting with a baseline case for CFETR[18], we used the EFIT code 19 

alone to construct a series of equilibria with different pedestal parameters[19] to model the 20 

changing pedestal boundary conditions. This fitting method unphysically decouples the 21 

pedestal pressure gradient ped and current Iped as they are varied. In reality, 22 

ped− 𝜇02𝜋2 𝜕𝑝𝜕𝜓 𝜕𝑉𝜕𝜓 ( 𝑉2𝜋2𝑅0)1/2 and Iped(the integrated pedestal current) are strongly coupled 23 

through the pedestal bootstrap current, which has to be accounted for. In addition, it is now 24 

well-accepted that the pedestal sits approximately at marginal stability to PB modes[20] for Type 25 

I ELMs discussed in this paper and the marginal stability condition is strongly influenced by 26 

the core equilibrium parameters. To account for these two factors, a self-consistent workflow 27 

shown in Fig. 1 for CFETR is employed to generate equilibria that represent the entire plasma, 28 

following a method previously developed by O. Meneghini [21]. Key steps of the workflow are 29 



 

described below. 1 

 2 

Figure 1. Workflow of constructing self-consistent CFETR equilibrium 3 

 4 

2.1 The EPED pedestal model 5 

  The EPED model was developed for predicting the pedestal height and width in H-mode, 6 

and has been extensively validated with many experiments [22][23][24]. Combining the physics of 7 

peeling-ballooning mode (PBM) constraint and the kinetic-ballooning mode(KBM) constraint, 8 

EPED proceeds through a series of code modules, including the equilibrium construction code 9 

TOQ[ 25 ], the eigenvalue stability analysis code ELITE[20], and the ‘ballooning critical 10 

pedestal’(BCP) technique[23]. In EPED, TOQ starts with a given set of core and pedestal plasma 11 

0D parameters to generate a series of equilibria with different pedestal structures. ELITE is a 12 

code based on peeling-ballooning theory, and can calculate both growth rates and mode 13 

structures of the ideal linear instabilities[26]. With highly efficient calculation of a chosen set of 14 

modes, within a large range of toroidal mode numbers, ELITE can scan through the equilibria 15 

produced by TOQ, to yield a PB marginal stability constraint in pedestal width and height space.  16 

Similarly, the BCP technique is used to calculate the KBM constraint,  17 △𝜓𝑁= 𝛽𝑝,𝑝𝑒𝑑1/2 𝐺(𝜈∗, 𝜀, . . . )                                            (1), 18 

in the same parameter space. The intersection of the PB and KBM constraints thus calculated 19 

yields a unique, predictive pedestal height and width for a given set of core/pedestal 0D 20 

parameters. As illustrated in Fig. 7 of Ref. [24], EPED expresses the intersection of the 21 

calculated PB and KBM constraints as the maximum values of pedestal height and width at 22 

marginal stability for a fixed set of pedestal density and Zeff. The intersecting pedestal height 23 



 

and width will change as the pedestal density is varied (keeping Zeff fixed for this study). Thus, 1 

by varying the pedestal density from low to high, a complete marginal stability boundary to PB 2 

and KBM mode in pedestal height and width space can be mapped out, with which the pedestal 3 

profile can be constructed for any chosen density or *. 4 

2.2 Core-pedestal coupling: OMFIT 5 

  A platform called One Modeling Framework for Integrated Tasks (OMFIT) is developed to 6 

enable physics codes to interact in complicated workflows through efficient data-passing[27]. 7 

By coupling EPED, TGYRO[28], ONETWO[29] and EFIT[30] with OMFIT, we could model the 8 

iterative interaction between the core and the pedestal, i.e. changing the pedestal profile can 9 

affect the core equilibrium, and vice versa. EPED mainly focuses on providing a reliable profile 10 

that reflects the physics at the boundary region, while TGYRO is used in our workflow to 11 

realize a compatible, fully-evolved kinetic profiles in the core region. TGYRO is a transport 12 

solver which computes the transport fluxes of energy, particle, and toroidal angular momentum 13 

induced by turbulent and neoclassical transport. Only electrostatic ITG, TEM and ETG 14 

turbulence are considered in our simulation. Fast particles are included in the kinetic 15 

reconstruction and both helium and trace argon impurities are accounted for. By matching the 16 

transport fluxes with the integrated sources and sinks from ONETWO, one can obtain the 17 

steady-state profiles of temperature, density and toroidal rotation from the center out to a point 18 

typically around =0.8. A transition region which connects the pedestal top and core is 19 

introduced to speed up the TGYRO convergence process. The region is constructed by a linear 20 

extrapolation of the gradients between the top of the pedestal and the starting point of the 21 

TGYRO core simulation. This ensures a smooth transition up to the first derivatives of the 22 

kinetic profiles. The combined profile is shown in Fig. 2.  23 



 

 1 

Figure 2. Illustration of radial connectivity of core, transition and pedestal region in CFETR 2 

self-consistent workflow, plotted as a function of the normalized poloidal flux . EPED provides 3 

the pedestal profile, linear fitting equation extends the pedestal parameters to the core pivot 4 

point, with which TGYRO calculates the core profiles(ne(1020m-3), Te(keV)). 5 

  The transition region allows the gradient scale lengths that are consistent with the transport 6 

calculation in the core to smoothly connect to the values that are consistent with the PB and 7 

KBM dynamics of the pedestal. We note that with the change of the core kinetic profiles, the 8 

plasma current profile as well as the core equilibrium will also change. The last piece of work 9 

to ensure self-consistency is to update the steady-state plasma current profile with the given 10 

kinetic profiles and generate a new equilibrium. This is carried out using 11 

ONETWO/TGYRO/EFIT. Specifically, the total current is fixed by the physics design. When 12 

the core kinetic profiles are changed, we have to go through an iterative loop of 13 

ONEWTO/TGYRO/EFIT including the adjustment of auxiliary current drive power to maintain 14 

the same current. The core current profile is determined by a combination of bootstrap current 15 

and auxiliary current drive, which depend on the kinetic profile and equilibrium. The loop has 16 

to be iterated until convergence. 17 

 18 

2.3 ONETWO-EFIT convergence loop 19 



 

  The ONETWO transport code is used for two essential functions in our workflow. The first 1 

is, using an input equilibrium and kinetic profiles, ONETWO calculates all the sources and 2 

sinks required to maintain the particle, temperature and current profiles. The sources and sinks 3 

are used as input to TGYRO for calculating any changes in the kinetic profiles. The second 4 

function of ONETWO is to take the updated kinetic profiles and evolve the current profile to a 5 

new steady-state. The result is then used by EFIT to compute a new equilibrium. Both function 6 

1 & 2 are iteratively repeated with TGYRO until convergence is achieved, and a fully self-7 

consistent equilibrium, including the pedestal predicted by EPED, is obtained as shown in Fig. 8 

3. The self-consistency is crucial for our nonlinear BOUT++ study since low-n PB modes have 9 

finite width and can extend inward of the top of the pedestal. The pressure gradient near the top 10 

of the pedestal can sensitively affect the ballooning drive. In particular, as we shall discuss later, 11 

it is the flux surface averaged pressure that drives the ballooning instability, hence the global 12 

equilibrium including an accurate Shafranov shift is critical. Although BOUT++ cannot use 13 

this equilibrium directly, pressure and current profiles from the gfile generated by EFIT can be 14 

easily converted to BOUT++ grid files, and similarly density and temperature profiles used by 15 

BOUT++ are extracted from the pfile in ONETWO output. 16 

 17 



 

Figure 3. Equilibrium of CFETR R=6.6m phase II baseline scenario, following convergence to 1 

a self-consistent state. Equilibrium profiles of pressure and safety factor are shown along with 2 

the sources calculated using ONETWO[31]. 3 

 4 

3. Linear stability analysis of marginally stable operation scenarios  5 

3.1 Pedestal parameters scan and peeling ballooning boundary of CFETR  6 

Based on the CFETR R=6.6m phase II baseline case shown in Table 1 and starting at a 7 

low ne_ped, EPED is used to compute the pedestal width and height at marginal PB stability 8 

subject to KBM constraint as described in Section 2. This is continued as the density is 9 

increased until the entire density range is mapped out. The resultant PB boundary of CFETR 10 

in any combination of the set (Iped, ped , pedestal height, pedestal width) can be displayed. 11 

As an example, the pressure gradient ped and edge current Iped (≡ 𝐽. 𝐵/𝐵0)parameter space 12 

is shown in Fig. 4(a). Following convention, the upper boundary is usually called the peeling 13 

boundary and the lower boundary is called the ballooning boundary. However, as we shall 14 

see, the dominance of peeling and ballooning drive can vary along the upper boundary, and 15 

that can affect the physics in an important way. We note the familiar feature that with 16 

increasing density, the maximum edge current and pedestal pressure gradient increase in 17 

locked steps on the upper branch, but when the pedestal top density ne_ped is beyond a 18 

threshold value of about 2.2x1020m-3 they start to decrease, again in locked steps, along the 19 

lower branch. This trend is consistent with the direct proportionality of the bootstrap current 20 

with rising pressure gradient. However, increasing density does not necessarily correspond 21 

to increasing pressure gradient along the marginal stability boundary, which is dictated by 22 

the instability drive that sets the limit. In general, peeling modes (with lower toroidal mode 23 

numbers n) are the limiting instability at high edge current and ballooning modes (with higher 24 

n numbers) are most unstable at high pressure gradient. Intermediate n (~10), coupled 25 

peeling-ballooning modes are the limiting instability when current and pressure gradient 26 

drives are comparable.  27 

Table 1. EPED input parameters of CFETR R=6.6m phase II scenario 28 

Parameters CFETR Phase II 



 

Ip(MA) 10.0 

B(T) 6.0 

R(m) 6.6 

a(m) 1.8 

Elongation 2.0 

Triangularity 0.50 

ne_ped(1019 m-3) 3-30 

Global N 3.14-3.4 

Zeff_ped 1.8 

A_ion 2.5 

 1 

Figure 4. Peeling-ballooning boundary of CFETR R=6.6m phase II in (a) J.B/B0 versus ped 2 

space obtained from density scan in EPED , and (b) J.B/B0 versus pedestal height space. The 3 

density is scaled by 1019 m-3. 4 

Fig. 4(b) shows the same case as in Fig. 4(a) for CFETR R=6.6m but with the pressure 5 

gradient in the horizontal axis replaced by the pedestal height. For a fixed density, the pedestal 6 



 

current J.B/B0 is approximately linearly proportional to the pedestal height using a simple 1 

fitting from EPED[see Fig. 5(b) in Ref.33]: 2 𝐽. 𝐵𝐵0 = (0.8328 − 0.0229𝑛𝑒)𝑃𝑝𝑒𝑑             (2) 3 

Hence the intersection of each dashed line with the PB boundary represents a different density, 4 

going from low density in the peeling branch to high density in the ballooning branch. 5 

Furthermore, we can relate the density with the collisionality * using the formula[32] 6 𝜈∗ = 6.921 × 10−18 𝑅𝑞95𝑛𝑒𝑍𝑒𝑓𝑓 𝑙𝑛 𝛬𝑒𝜀3/2𝑇𝑒2               (3) 7 

Combining the information provided by Fig. 4(a) & (b) and Eqs.(2) and (3) , we can derive 8 

three relations: pedestal height versus collisionality/density, J.B/B0 versus collisionality, and 9 

pedestal gradient versus collisionality, as shown in Fig. 5 (a)-(c), that are crucial for our search 10 

for the grassy ELM window and understanding of the physics leading to grassy-ELMs. 11 

 12 

 13 

Figure 5. Plot of (a) pedestal height versus density; (b) J.B/B0 versus electron collisionality; 14 

and (c) pressure gradient versus electron collisionality. 15 

 16 

3.2 Identifying Peeling and Ballooning Dominant Regions 17 



 

Fig. 5(a) clearly shows a trend of rising pedestal height with density, reaching a peak at some 1 

intermediate density, after which it starts to decline. This trend is consistent with published 2 

experimental observations[33]. Note that the density at the peak sometimes corresponds to a 3 

transition to the so-called super H-mode[33] at higher density, which we are not considering in 4 

this study. Fig. 5(b) shows a similar trend of rising pedestal current J.B/B0 with increasing 5 

collisionality, reaching a peak that approximately corresponds to the maximum pedestal height 6 

in Fig. 5(a). Beyond this point, J.B/B0 drops rapidly with collisionality. Clearly, the kink-peeling 7 

drive coming from the pedestal current is largest at this point. To determine whether it is the 8 

dominant mechanism, we need to compare it with the ballooning drive due to the pressure 9 

gradient, which also shows a peak in the same proximity [Fig. 5(c)]. The resolution comes from 10 

recognizing that in ballooning mode theory, it is the flux-surfaced averaged pressure gradient 11 

< 𝜅 ∙ 𝛻𝑃 > that enters in the calculation of the growth rate[34]. In other words, the effective 12 

pressure gradient comes from the average of the good-curvature and bad-curvature regions. 13 

This is particularly important at high βp
[32], such as for CFETR with βp~2. The strong Shafranov 14 

shift at high βp enhances the good-curvature weighting leading to a reduced flux-surface 15 

averaged pressure gradient drive. Indeed, the <  𝜅 ∙ 𝛻𝑃 >curve in Fig. 6 looks very different 16 

from the local 𝛻𝑃 curve. Instead of a peak, the <  𝜅 ∙ 𝛻𝑃 > curve shows a minimum at the 17 

same * location. Note that Fig. 6 only illustrates the beneficial effect of averaging over 18 

good/bad curvature for high βp plasma. The actual ballooning drive is proportional to <  𝜅 ∙19 𝛻𝑃 |X| > where |X| is the perturbed mode radial width along the flux surface. If |X| is weighted 20 

heavily on the bad curvature side, the ballooning drive is positive, i.e. destabilizing. That is why 21 

lower n modes benefit more from the flux surface averaged good curvature effect. We also 22 

examine the most unstable mode spectrum at *=0.39 (Fig.7(b)) using BOUT++ 3-field ELM-23 

PB model, which shows a peak at lower n, compared with that at *=0.14 (Fig.7(a)) and *=1.31 24 

(Fig.7(c)). The low-n modes make the stabilizing effect of the good-curvature more effective, 25 

resulting in a strong suppression of <  𝜅 ∙ 𝛻𝑃 > compared with the Iped drive. All these 26 

evidence support the conclusion that kink-peeling drive rather than ballooning drive dominates 27 

near the peak of the pedestal height. At high *, pressure gradient drive clearly dominates and 28 

intermediate-n ballooning modes occupy the most unstable spectrum as shown in Fig. 7(c). At 29 

low *, both current and pressure gradient drives are weak, so it is harder to ascertain without 30 



 

quantitative evaluation which one is more dominant. Since ballooning mode width is narrower, 1 

it might be more likely for a high-n ballooning mode at the pedestal top, where diamagnetic 2 

stabilization is weakest, to become unstable first. This has been reported in a previous study[19] 3 

and the most unstable mode spectrum in our case (Fig.7(a)) also supports that. 4 

 5 

Figure 6. The flux-surfaced averaged pressure gradient drive for different collisionalities. 6 



 

 1 

 2 

Figure 7. Unstable mode spectrum computed by BOUT++ at (a) low collisionality (*=0.14), 3 

(b )intermediate collisionality (*=0.39) and (c) high collisionality (*=1.31). The black curves 4 

are from BOUT++ and the red curves are from ELITE.  5 

From linear analysis using EPED and BOUT++ with self-consistent equilibria, we have 6 

demonstrated that the three important quantities (pedestal height, J.B/B0 and pressure gradient), 7 

which characterize a stable pedestal, are sensitive functions of the pedestal *. There is an 8 

intermediate * window where the instability is dominated by kink-peeling drive. Outside of 9 

this window, ballooning drive is significant and possibly dominant. How this characteristic 10 

impacts the nonlinear behavior of the modes and the ELM dynamics is the focus of our study 11 

in Section 4. Before leaving this Section, we should point out from the KBM constraint that the 12 

pedestal width is proportional to βp_ped
1/2, hence the width is broadest at maximum pedestal 13 

height. This combines with the unstable low-n peeling modes has some important consequences 14 

on the ELM dynamics as we shall discuss.  15 

 16 

4. Nonlinear simulation of ELM behavior using BOUT++ 3-fields model 17 

   In Section 3, we have identified three different * regimes along the PB stability boundary 18 

of CFETR with different pedestal properties, which lead to different unstable mode 19 



 

characteristics. For detail understanding of ELM behavior, nonlinear simulation is needed to 1 

analyze the evolution of plasma profiles including the consideration of coupling effects from 2 

multiple unstable modes. Since PB modes are believed to be responsible for ELMy behavior in 3 

H-mode[35], the next step is to explore how the ELM dynamics might change as * increases 4 

from low to high values. We pick one representative point in each regime to study, and they are 5 

indicated by red stars in Fig. 4(b). The properties of each case are given in Table 2. The 6 

calculation is carried out in the BOUT++ two-fluid three-fields framework[36], which allows us 7 

to simulate the nonlinear dynamics of ELMs beyond linear MHD physics. Only the short time 8 

scale (~ a few hundred A time) ELM crash phase is studied. The long transport time-scale 9 

recovery phase is excluded because of the absence of a realistic pedestal heat source in this 10 

BOUT++ model. A minimum set of nonlinear equations describing the temporal evolution of 11 

the perturbed magnetic vector potential �̃�∥, vorticity 𝜛 and pressure �̃� can be extracted from 12 

a more complete set of the BOUT two-fluid three-fields equation, with an added effect of hyper-13 

resistivity incorporated[36]. These equations are written as: 14 𝜕�̃�𝜕𝑡 + 𝑣𝐸 ⋅ 𝛻�̃� = 𝐵0𝛻∥𝐽∥ + 2𝑏0 × 𝜅0 ⋅ 𝛻�̃� + 𝜇𝑖,∥𝜕∥02 �̃� + 𝜇𝑖,⊥𝛻⊥2�̃�                (4) 15 

𝜕𝑃𝜕𝑡 + 𝑣𝐸 ⋅ 𝛻𝑃 = 𝜒∥𝜕∥02 𝑃                                                   (5) 16 

𝜕�̃�∥𝜕𝑡 = −𝛻∥𝛷 + 𝜂𝜇0 𝛻⊥2�̃�∥ − 𝜂𝐻𝜇0 𝛻⊥4�̃�∥                                       (6) 17 

�̃� = 𝑛0𝑀𝑖𝐵0 (𝛻⊥2�̃� + 1𝑛0𝑍𝑖𝑒 𝛻⊥2�̃�𝑖), 𝛷 = �̃� + 𝛷0, 19 

with 𝑃 = �̃� + 𝑃0 in the above equations                          (7) 18 𝐽∥ = 𝐽∥0 − 1𝜇0 𝛻⊥2�̃�∥, 𝑣𝐸 = 1𝐵0 (𝑏0 × 𝛻⊥𝛷)                                 (8) 20 

  Here 𝛻∥𝐹 = 𝐵𝜕∥(𝐹/𝐵)  for any F, 𝜕∥ = 𝜕∥0 + �̃� ⋅ 𝛻 , �̃� = 𝛻�̃�∥ × 𝑏0/𝐵 , 𝜕∥0 = 𝑏0 ⋅ 𝛻 , 21 𝜅0 = 𝑏0 ⋅ 𝛻𝑏0, ion pressure Pi and total pressure 𝑃 = 𝑃𝑖 + 𝑃𝑒. In Eq. (7), the second term in 22 

perturbed vorticity equation includes the diamagnetic effect. Despite the simplification, this set 23 

of reduced three-field modules has been successfully used in simulating ELM dynamics and 24 

for gaining physics insight into both the ELM trigger and crash regime[37][38][39][40]. In our 25 

nonlinear simulation, the equilibria used for calculation in BOUT++ are constructed as 26 

described in Section 2 and are marginally unstable near the peeling ballooning boundary. The 27 

simulation domain in the normalized poloidal flux is 0.8 < 𝜓𝑁 < 1.1 (𝜌 = √𝜓𝑁), and the 28 



 

grid resolution is 𝑛𝜓 = 132, 𝑛𝑦 = 128, 𝑛𝑧 = 33, where y is the parallel coordinate and z is the 1 

toroidal angle. Similar to Ref.19, the radial boundary condition is set as �̃� = 0, ∇⊥2 𝐴∥̃ = 0, 2 𝜕�̃� 𝜕𝜓 = 0⁄  and 𝜕�̃� 𝜕𝜓 = 0⁄  on the outer boundary; �̃� = 0, ∇⊥2 𝐴∥̃ = 0, 𝜕�̃� 𝜕𝜓 = −0.005⁄  3 

and 𝜕�̃� 𝜕𝜓 = 0⁄  on the inner boundary. Note that we have to adjust the inner boundary 4 

condition by increasing the perturbed pressure gradient to balance the convective term 〈�̃�𝐸〉 ∙5 ∇𝑃0 in Eq. (5), in order to maintain the pressure at the inner boundary approximately constant 6 

i.e. 
∂〈�̃�〉∂𝑡  ~0. We choose 1/5 and 1/3 of the torus to do the simulation for efficiency. As a result, 7 

only modes with multiples of n=5 or 3, respectively, will contribute to the simulation. Once we 8 

identify a dominant n mode number, the neighboring modes are likely to be unstable as well. 9 

They could be resolved by more careful study if needed. Density and temperature profiles of 10 

ion and electron along with the current and pressure profiles are all transformed to the BOUT++ 11 

grid file from the ONETWO gfile. Moreover, the local diamagnetic effect, which is not modeled 12 

in ELITE, is accounted for in BOUT++. This is especially important for high n ballooning 13 

modes. 14 

Table 2. Three different collisionality cases around the CFETR pedestal peeling and ballooning 15 

boundary. 16 

Case 

name 

Pedestal 

top density 

(1019m-3) 

Pedestal 

Height(kPa) 

J.B/B0 

(104 A/m2) 

 

Alpha 

 

υe
* 

 

Te(keV) 

Case(a) 10 87.9 46.1 5.6 0.14 2.7 

Case(b) 19 139.9 50.6 6.4 0.39 2.3 

Case(c) 25 110.1 31.0 5.2 1.31 1.4 

 17 

4.1 Exploring ELM dynamics along the peeling-ballooning boundary of CFETR 18 

  A schematic plot of plasma βp versus normalized collisionality * for defining the ELM types, 19 

constructed from an experimental database, is illustrated in Fig. 8. We note that for low p, such 20 

as in ITER, Type-I ELMs are expected for all collisionality. At high collisionality, both Type-II 21 

and Type-III ELMs can occur according to this dataset (As noted earlier, Type-III ELMs could 22 

occur over a broad range of collisionalities according to other experiments. Because they occur 23 



 

below the ballooning stability limit, they typically have lower pedestal height ). At higher p, a 1 

grassy-ELM window appears with intermediate * from 0.3 to 0.7. Even though experimental 2 

data is absent for low and high * at p~2 or higher, we surmise that they would be in the Type-3 

I ELM or mixed-ELM regime based on extrapolation from around p ~1.7. More discussion of 4 

the mixed-ELM regime will be presented in the next Section and also in Section 5. Using design 5 

parameters, the βp and * of CFETR R=6.6m phase II baseline case are qualitatively in the 6 

grassy-ELM region. An important task at hand is to quantitatively reproduce the grassy-ELM 7 

window and to understand the physics to support the robustness of this window. 8 

 9 

Figure 8. A schematic plot of βp versus normalized collisionality * for defining the ELM type 10 

based on experimental results [32][41]. The values of βp and * in the CFETR R=6.6m phase II 11 

baseline case are around 2 and 0.5, respectively. 12 

  Case (A) Nonlinear ELM dynamics at low * 13 

This is the regime where both the kink-peeling drive and the ballooning drive are comparable, 14 

and one cannot determine a priori which one is more dominant if at all. Fig. 9 shows the 15 

nonlinear results of CFETR R=6.6m phase II with pedestal top density equals to 1x1020m-3, 16 

corresponding to collisionality *=0.14, and electron temperature Te=2.74 KeV. Initial pressure 17 



 

and current profiles are shown in Fig. 9(a). As noted, the pedestal width is not particularly broad 1 

because of the lower pedestal height, which could have an effect on the unstable mode width 2 

and the nonlinear evolution as we shall see. Fig. 9(b) shows that after about 100 Alfvén times 3 

A(A=2*10-7 s), the linear phase ends and the RMS pressure at the steepest gradient location 4 

reaches saturation. Details of the collapse are depicted in Fig. 9(c). The pressure profile firstly 5 

collapses at the place where the pressure gradient and the current are largest. Then the collapse 6 

spread to the inner boundary and the outer boundary. From 100 A to 300 A, energy is 7 

transported from the inner pedestal to the scrape-off-layer (SOL), after which the decrease in 8 

pedestal pressure starts to affect the core. All these features are common to Type-I ELM crash 9 

observed in many tokamaks[42][43]. However, because of the high p (Shafranov shift) stabilizing 10 

effect, the fraction of energy ejected relative to the pedestal energy Wped (1.8% in Fig. 9(c)) 11 

might be at the lower end for Type-I ELM crash. Sometimes, this is referred to as the mixed-12 

ELM regime. Note that the pedestal collapse time of ~500 A is significantly shorter than that 13 

of experiments. Improvement in BOUT++ is needed in the future to quantify the temporal 14 

dynamics of pedestal collapse. 15 

 16 
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Figure 9. BOUT++ nonlinear simulation of * = 0.14 CFETR R=6.6m phase II case: (a) Initial 3 

pressure and current profiles. The horizontal axis is 𝜓𝑁  and 𝜌 = √𝜓𝑁 ; (b) Root mean 4 

squared (RMS) perturbed pressure at peak equilibrium gradient and outer midplane averaged 5 

along the z direction; (c) Pressure profile evolution at different time slices. 6 

To understand what causes the irreversible collapse, we examine the temporal evolution of 7 

the unstable modes and their nonlinear interaction. Fig. 10(a) shows that the most unstable 8 

mode during the linear phase of Type-I ELM activity is n=20. The higher n number is suggestive 9 

that the linear drive is from the pressure gradient at the steepest location, which is corroborated 10 

by its mode structure [Fig. 10(c)]. In the nonlinear phase, many unstable modes are excited [Fig. 11 

10(b)]. Two features are noteworthy. First, the peak of the n=20 mode is at 𝜓𝑁=0.98 in its 12 

linear phase, whereas, the peaks of all the unstable modes have shifted inward to 𝜓𝑁~0.96. 13 

The flattening of the pressure gradient at 𝜓𝑁=0.98 by a narrow mode results in the steepening 14 

of the pressure gradient further inside [see Fig. 9(c)], which further destabilizes other 15 

neighboring modes. Second, the down cascade from high n to lower n modes is a common 16 

feature observed in other simulations[19]. The dominant n=5 mode in the nonlinear phase could 17 



 

be driven by a combination of the pedestal pressure and current. The lower n modes are mainly 1 

responsible for carrying the energy from the pedestal to the SOL[Fig. 10(d)-(f)]. As a check, 2 

simulation using 1/3 of the torus shows that the n=3 mode is also unstable, indicating n=5 is 3 

not a lower limit. 4 

 5 

 6 

 7 

Figure 10. Mode structures evolution and contour plot of perturbed pressure at the outer 8 

midplane of * = 0.14 CFETR R=6.6m phase II case: (a)-(b) Mode structure before and after 9 

nonlinear phase of toroidal number=5-50; (c)-(f) Contour plot of perturbed pressure at 10 

different time. 11 



 

 1 

Case (B) Nonlinear ELM dynamics at intermediate * 2 

This is the regime where we have established that kink-peeling is the dominant driving 3 

mechanism from the linear analysis in Section 3. Fig. 11 describes the nonlinear results of 4 

CFETR R=6.6m phase II with pedestal top density equals to 1.9x1020m-3, corresponding to 5 

collisionality * = 0.39, and electron temperature Te=2.3 KeV. Initial pressure and current 6 

profiles are shown in Fig. 11(a), and as expected the high pedestal height leads to a broader 7 

pedestal width. The pedestal current is similarly wider suggesting that the pedestal current 8 

rather than the current density gradient is the main driver of the instability[34]. Fig. 11 (b) and 9 

(c) show that the RMS pressure reaches saturation and the perturbed pressure at the inner region 10 

starts to decay at around 200 A. This also supports the conjecture that the instability occurs 11 

simultaneously across the entire pedestal, which can only happen for low-n mode with broad 12 

mode width, i.e. kink-peeling mode. Little energy escapes from the pedestal to the SOL up to 13 

450 A, beyond which the pedestal energy fluctuations  14 

 15 

 16 

Figure 11. BOUT++ nonlinear simulation of * = 0.39 case: (a) Initial pressure and current 17 



 

profiles; (b) RMS perturbed pressure at peak equilibrium gradient and outer midplane 1 

averaged along the z direction; (c) Pressure profile evolution at different time slices; (d) 2 

Perturbed pressure profile evolution at n = 0.95 3 

Notice that near n = 0.95 in Fig. 11, the pressure drops to its lowest value around 325 A 4 

then starts to recover [Fig. 11 (d)]. To explain this apparent cyclic behavior, first, we note that 5 

only a couple of lower n modes, namely n=10 and 5, are dominating the action throughout the 6 

time span of the simulation [Fig. 12 (a) and (b)], and the mode widths are wider [Fig. 12 (c) 7 

and (d)]. The intermediate and high n modes remain only mildly unstable. This is consistent 8 

with modes being driven mainly by the pedestal current. Since our simulation is using only 1/5 9 

sector, we cannot eliminate the possibility that modes with n between 5 and 10 are also 10 

destabilized by mode-coupling. However, the large pedestal current results in a flat qped profile 11 

(shown in Fig. 13), which increases the mode separation ∆n (∝ m/q’) and makes it harder for 12 

mode-mode coupling with decreasing n. Case (B) result suggests that the initially unstable n=10 13 

mode triggers a dominantly unstable mode spectrum peaked around a lower n (e.g. n=5 in our 14 

1/5 torus simulation), which is mainly responsible for ejecting the energy into the SOL [Fig. 15 

12(e) and (f)]. It is thus reasonable to consider the behavior of a single dominant mode to 16 

understand the cyclic behavior in the nonlinear evolution.  17 
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Figure 12. Mode structures evolution and contour plot of perturbed pressure at the outer 3 

midplane of * = 0.39 CFETR R=6.6m phase II case: (a)-(b) Mode structure before and after 4 

nonlinear phase of toroidal number=5-40; (c)-(f) Contour plot of perturbed pressure at 5 

different time. 6 



 

 1 

Figure 13. Flattening of the qped profile due to large Iped. 2 

The physics basis of the cyclic behavior for case (B) starts with the way the characteristic of 3 

the low n mode growth rate evolves as a function of the pedestal current with increasing p. 4 

Specifically, the growth rate acquires a sudden turn-on character at high p, i.e. it remains stable 5 

until a pedestal current threshold is reached, after which the instability grows explosively [see 6 

Fig.12 in Saarelma, et al Ref. 34]. The suppression of the growth rate below the threshold is 7 

due to the weakening of the < 𝜅 ∙ 𝛻𝑃 > drive from the increasing Shafranov shift at high p as 8 

discussed earlier. A similar plot of the growth rate versus pedestal current for the CFETR case 9 

is constructed in Fig.14. Let us start at a time when the pressure gradient is marginally stable. 10 

Since the pressure gradient is related to the current (in BOUT++, the two quantities are related 11 

by force balance, i.e. ∇p=JxB), the current is sitting at the critical threshold. Any small 12 

perturbed pressure increase would lead to the pedestal current exceeding the threshold and the 13 

onset of an explosive instability. The latter would limit the current excursion from being too 14 

large before the pressure gradient is flattened, once again dropping the current below the 15 

threshold. The process would repeat itself, but the oscillation would never be large enough to 16 

lead to a complete collapse of the pedestal. Accordingly, the cyclic behavior would only occur 17 



 

when kink-peeling drive dominates, i.e. in the intermediate * window, which is the case when 1 

comparing the results of case (A), (B) and (C) . Lastly, it is important to note that the oscillation 2 

frequency of the simulation is significantly higher than the experimentally observed grassy-3 

ELM frequency. We think this is because the Ohm’s law used in this 3-field model does not 4 

properly include the Hall term, or (usually) finite electron mass terms. The former would 5 

introduce an ion skin depth effect, and finite electron mass would also tend to reduce oscillation 6 

frequencies.  7 

A second and perhaps more convincing identifying feature of grassy-ELMs is the amount 8 

of energy ejected into the open field line region. We compute the ratios of the ejected energy 9 ∆𝑊 = ∫ 𝑑𝑅 ∮ 𝑑𝜃(𝑃0 − 〈𝑃〉𝜁)𝑅𝑜𝑢𝑡𝑅𝑖𝑛  across the separatrix (𝑅𝑖𝑛 is chosen as the inner boundary 10 Ψ𝑁 = 0.8 and 𝑅𝑜𝑢𝑡 is at the separatrix Ψ𝑁 = 1.0) to the initial pedestal energy 𝑊𝑝𝑒𝑑 =11 32 𝑃𝑝𝑒𝑑𝑉𝑝𝑙𝑎𝑠𝑚𝑎 for case (A) and (B). Note that the total plasma volume is used in the 12 

definition of 𝑊𝑝𝑒𝑑 following convention. The peak values of W/ Wped for both cases are 13 

indicated in fig. 9(c) and fig. 11(c), respectively. These plots clearly confirm that the ejected 14 

energy in case (B) ~0.3% is much smaller than that in case (A) ~1.8%, with the former within 15 

range of observations in experiments with grassy-ELMs. It also supports our argument that 16 

the explosive rise of the growth rate in case (B) acts to prevent a large excursion of the ELM 17 

amplitude. For case (B), we have further performed a sensitivity check on two critical 18 

parameters. First is the choice of inner boundary location. We moved the inner boundary to 19 Ψ𝑁 = 0.75 and confirmed that the value of ∆𝑊/𝑊𝑝𝑒𝑑 does not change. The second is the 20 

use of 1/5 torus to speed up the computation. In a much more time-consuming effort, 21 ∆𝑊/𝑊𝑝𝑒𝑑  for full torus, 1/3 torus and 1/5 torus are obtained as 0.29%, 0.33% and 0.30%, 22 

respectively. This supports our argument that even though the low n mode spectra are 23 

different, as long as their growth rates possess the critical threshold characteristic (see Fig. 24 

14), ∆𝑊/𝑊𝑝𝑒𝑑 will remain small.25 



 

 1 

Figure 14. Sudden turn-on character of the growth rate at high 𝛽𝑝 for kink-peeling driven 2 

low-n mode (n=8)in CFETR. 3 

 4 

Case (C) Nonlinear ELM dynamics at high * 5 

This is the regime which is dominated by ballooning drive. Fig. 15 describes the nonlinear 6 

results of CFETR R=6.6m phase II with pedestal top density equals to 2.5x1020m-3, with 7 

corresponding collisionality * = 1.31. Because at higher density there is a transition from the 8 

peeling branch to the ballooning branch, the marginal stable point at this density has a much 9 

low temperature, which makes the collisionality of case (C) much larger than case (B). Fig. 10 

15(a)-(d) display the same characteristics that fit with Type-I ELMs. The maximum value of 11 

W/ Wped for case (C) is 6.2% as indicated in Fig. 15(d). Again, the ratio is much larger than 12 

that for case (B) and is also several times larger than the value for case (A). Although both 13 

case(A) and case(C) share similar features of Type-I ELMs, there remains some detailed 14 

differences between case(A) and case(C), which warrant further studies in the future. For 15 

example, the peeling drive contribution could be more significant in case(A) than in case(C) 16 

because of the strong suppression of the bootstrap current at high collisionality. 17 
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Figure 15. Nonlinear calculation of * = 1.31 case: (a)-(b) Mode structure before and after 3 

nonlinear phase of toroidal number=5-50; (c) RMS perturbed pressure at peak equilibrium 4 

gradient and outer midplane averaged along the z direction; (d) Pressure profile evolution at 5 

different time slices. 6 

 7 

4.2 Summary of ELM operation regimes on CFETR and dependence of ELM activities on 8 

triangularity 9 

Having demonstrated that there are at least three possibly different ELM behaviors that 10 

depend on collisionality along the CFETR pedestal stability boundary, we proceed to quantify 11 

the transition between regimes by carrying out simulations along the boundary in finer * grids. 12 

We confirmed that at βp ≈2.0, there is a robust grassy ELM window with * between 0.3-0.7, 13 

which is closely tied to high pedestal current and wide pedestal width [Fig. 16]. The grassy-14 

ELM is driven by unstable kink-peeling modes with lower n numbers and characterized by a 15 

rapid oscillation/recovery that is roughly triangular in shape [Fig. 11(c)]. The ejected energy in 16 

a single crash W/ Wped is very small (<<1%) [Fig. 17]. At * above and below the grassy-ELM 17 



 

window, we also confirmed that the ELM behavior falls into the Type-I category. It is 1 

predominantly driven by ballooning modes with high n numbers and characterized by a sharp 2 

singular crash with a slow recovery. The ejected energy W/ Wped is an order of magnitude 3 

higher than the grassy-ELM regime [Fig. 17]. Our results are similar to the JT60-U 4 

experimental results (reported in fig. 2 of ref. 41) where grassy-ELMs highlighted in solid red 5 

dots appeared within a * window. However, the existence of such a window was not mentioned 6 

in related JT60-U papers. They only stated that an upper * limit existed for grassy-ELMs. It 7 

could be that their definition of a grassy-ELM was any ELM with W/ Wped < 1-2%. There is 8 

a big difference between ELMs with W/ Wped ~ 1% and W/ Wped ~ 0.1%, regarding 9 

compatibility with wall erosion. We hope our paper would stimulate more new experiments to 10 

explore the existence and robustness of this window. It should be noted that Oyama, et al.[44] 11 

reported that plasma rotation profile was very different from the Type I ELMy plasmas and it 12 

was indeed possible to get both Type I and grassy ELMs with identical plasma pressure profiles, 13 

but different rotation profiles. Indeed, rotation has the effect of stabilizing high n (ballooning) 14 

modes and destabilizing low n (peeling) modes [45], which could make the latter more dominant 15 

leading to a grassy-ELM behavior. This aspect is not studied here. Our theory offers a different 16 

mechanism at high p with non-circular cross-section which results in the dominance of kink-17 

peeling modes and a grassy ELM behavior. In large devices where beam-induced rotation is 18 

small, the high p mechanism might be more relevant. A systematic comparison with more 19 

recent experiments is described in Section 5. 20 
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Figure 16. Summary of ELM operation regimes and their distinguishing features along the 2 

marginal stability boundary of CFETR. 3 

 4 



 

Figure 17. Plot of energy loss of single ELM activity versus pedestal electron collisionality in 1 

CFETR. 2 

Previously many papers have demonstrated the important role triangularity plays in 3 

experimental steady state operation. With a higher triangularity, tokamak devices in general 4 

achieve better pedestal performance[46]. Also Fig. 2(a) in Ref. 17 indicates that the access to 5 

grassy-ELM needs either high triangularity or high q95. They both reduce the growth rate but 6 

the physics is different. High q95 produces high Shafranov shift that reduces the < 𝜅 ∙ 𝛻𝑃 > 7 

drive, which has been discussed extensively in our study. High triangularity results in reduced 8 

bootstrap current, which diminishes the kink-peeling drive. This could be a reason why the 9 

grassy-ELM window varies in different experiments[47] although it remains consistently in the 10 

peeling branch. It is worthwhile to study it further in future. 11 

 12 

5. Comparison of predicted ELM characteristics with experimental data 13 

Dependences of edge stability and ELM characteristics on various plasma parameters have 14 

been studied extensively in experiments. Effects of plasma shape and pressure gradient on 15 

ELMs are analyzed in Ref. 48. Stable ELM operation for ITER and other future fusion reactors 16 

is still under study[15][ 49 ]. E. Viezzer has published a review of ELMs observed in many 17 

tokamaks and categorized the characteristics of different ELMs[50]. Here we focus on a series 18 

of experiments on the DIII-D tokamak[6][15][49][51]. In particular, five DIII-D discharges that cover 19 

a broad range of βp (0.6-2.2) and * (0.06-6.0) have been surveyed to select specific time slices 20 

where representative ELM behaviors are clearly identifiable [Fig. 18]. Equilibrium 21 

reconstruction of these time slices are used to plot the marginally unstable PB mode boundary 22 

using the code Varyped[52]; edge experimental data is used to locate the actual location of the 23 

pedestal on the PB boundary; the energy loss for a single ELM crash W/ Wped is extracted for 24 

each case; and finally, the most linearly unstable mode is calculated using ELITE. These results 25 

are summarily displayed in Fig. 19.  26 

As illustrated in Fig. 18, a grassy ELM case is clearly identifiable at intermediate * and high 27 

βp by its rapid oscillations and a triangular shape in Dα signal, which are consistent with the 28 

simulation results of CFETR case (B). A Type-I ELM identified by a very sharp burst of Dα 29 

followed by a rapid decay is located at high βp and high *, consistent with the simulation results 30 



 

of CFETR case (C). Moreover, only Type-I ELM discharges are found at low βp, which supports 1 

our theory that high βp is responsible for suppressing the ballooning drive to create a grassy-2 

ELM window . Finally, at high βp and low *, the ELMs show a fast burst similar to Type-I 3 

ELM. However, it exhibits a higher frequency and the amplitude could be small at times. We 4 

associate this with the mixed-ELM regime, similar to what we found in CFETR case (A). This 5 

regime is clearly influenced by ballooning modes but peeling modes might also play a role. 6 

 7 

 8 

Figure 18. Change of ELM character with βp and *. Triangle indicates a small amplitude 9 

grassy ELM discharge, squares indicate discharges of giant Type-I ELMs and circle indicates 10 



 

a mixed-ELM regime. 1 

  Furthermore, we plot the peeling-ballooning boundaries and the locations of the pedestal for 2 

the three high βp ELM cases as well as one low βp, low * ELM case for comparison. As Fig. 3 

19 shows, shot #161434 operate with Type-I ELMs, the dominant unstable toroidal mode is 4 

n=20, and every single ELM activity causes large energy loss in the pedestal region (~25%). 5 

Shots #161414, #165042 and #176441 are with high βp, but they show very different ELM 6 

activities. Shot #161414, with the pedestal located on the lower density side of the peeling 7 

branch, shows mixed ELMs. The most unstable mode is a n=25 mode, and the energy loss due 8 

to a single ELM activity is ~1.3%. Shot #165042 shows grassy ELMs, which cause very small 9 

energy loss (~0.3%). The pedestal is located on the ‘nose’ part of the PB boundary, and the most 10 

unstable mode is a low n mode (=10). Even though Shot #176441 shows giant Type-I ELMs, 11 

with the pedestal on the ballooning branch and most unstable n=25, its energy loss from an 12 

ELM crash is ~3.8%, which is much smaller than its low βp cousins. The values of ΔWELM/Wped 13 

computed by nonlinear BOUT++ simulations are displayed next to the experimental 14 

measurements. Close agreement is obtained for the three high βp cases . For the low p case, we 15 

found that the giant Type I ELM crash affects the plasma much deeper into the core region, i.e. 16 

the perturbation spreads further inward to the inner boundary (𝜓𝑁=0.8) while ΔWELM/Wped 17 

keeps on rising. Moving the inner boundary deeper increases ΔWELM/Wped. Since BOUT++ has 18 

not been well-tested in modeling the core plasma, we can only draw a qualitative trend of 19 ΔWELM/Wped rising to a much larger value (>12%) when compared with the high p cases, 20 

consistent with the experimental numbers. It is obvious that βp has a large stabilizing effect on 21 

high n ballooning modes, so the discharges with high βp always have a lower energy loss. This 22 

could have led to some confusion that high βp and low * regime also supports grassy ELMs. 23 

However, only the high βp and intermediate * window has the triangular shape of grassy ELMs 24 

and very low energy loss due to the dominance of the kink-peeling mode. These experiments 25 

correspond well to our CFETR simulation results, and comparison with JT-60U data[44] would 26 

be worthwhile in the future. 27 
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Figure 19. Pedestal locations on the peeling-ballooning boundary as indicated by red stars for 3 

various ELMy discharges with different βp and *. ∆𝑊/𝑊𝑝𝑒𝑑  values (experimental /BOUT++ 4 

nonlinear simulation) are displayed side by side for comparison.  5 

 6 

Conclusion 7 

  Using a combination of linear and nonlinear analyses of self-consistently constructed 8 

equilibria, we have identified a robust grassy-ELM operation regime for future tokamak 9 

reactors, in particular the China Fusion Engineering Test Reactor (CFETR). The regime exists 10 

within a * window at high βp (e.g. *=0.39, βp=2.0), similar to results previously reported in 11 

experiments. A theoretical model that quantitatively explains the experimental features is 12 

presented for the first time. From a systematic scan of the pedestal density, EPED produces a 13 

marginal stability boundary to peeling-ballooning modes in Iped versus ped space. The nonlinear 14 

simulation using BOUT++ along the stability boundary shows the instability varying from 15 

ballooning-dominated to peeling-dominated, then back to ballooning-dominated with 16 

increasing density. The change in density corresponds to a change in * that affects the pedestal 17 

bootstrap current. High βp leads to a strong Shafranov shift, which affects the flux surface 18 

averaged pressure drive. The two effects combine to create a peeling-dominated window in *. 19 

Only the peeling-dominated regime shows a cyclic behavior during ELM crash, reminiscent of 20 

grassy-ELM dynamics. The ejected energy across the separatrix normalized to the initial 21 

pedestal energy is demonstrably smaller in the simulated grassy-ELM regime. The quick 22 



 

recovery of the ELM crash is explainable by the rapid onset of low n kink-peeling instability 1 

when Iped exceeds a threshold at high βp, which is absent in the ballooning-dominated regime. 2 

The ELM characteristics of five DIII-D discharges that cover a range of βp and * are used to 3 

compare with our simulation predictions of the ELM shape and frequency, the most unstable 4 

toroidal n mode that identifies a peeling or ballooning dominated regime, and the relative 5 

energy loss in an ELM crash. The comparison fully supports our conclusion of the existence of 6 

a robust grassy-ELM regime at high βp and an intermediate * window. As a footnote, we should 7 

clarify that the Type-I ELM discussed in this paper follows the classification in Ref 44. 8 

However, this classification might not be universal in the literature. Some papers might define 9 

Type-I ELMs exclusively as giant ELMs with Δ WELM/Wped much greater than 10%. 10 

Irrespective of the definition, our paper shows that Type-I ELMs are driven by ballooning 11 

modes. It is distinguished from the grassy-ELMs discussed, which are driven by peeling modes. 12 

 13 

  Grassy-ELM operation is desirable for future tokamak reactors such as CFETR, because of 14 

a lower transient heat flux to the first wall and a beneficial impurity cleansing effect. Operation 15 

in the grassy-ELM window also constrains the density in the core and the SOL, which has to 16 

be accounted for self-consistently in the physics design of future reactors.  Much more study of 17 

small ELMs or ELM-free operation is needed. Quiescent H-mode is another possible candidate 18 

for CFETR steady-state operation and its physics is still not well-understood. Super H-mode 19 

and the second stable region are also promising topics for research. New experiments and 20 

further development of the BOUT++ framework and EPED model should facilitate these 21 

investigations. 22 
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