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Abstract

The volatile contents of protoplanetary disks both set the potential for planetary chemistry and provide valuable
probes of defining disk system characteristics such as stellar mass, gas mass, ionization, and temperature structure.
Current disk molecular inventories are fragmented, however, giving an incomplete picture: unbiased spectral line
surveys are needed to assess the volatile content. We present here an overview of such a survey of the
protoplanetary disks around the Herbig Ae star MWC480 and the T Tauri star LkCa15 in ALMA Band 7,
spanning ∼36 GHz from 275 to 317 GHz and representing an order of magnitude increase in sensitivity over
previous single-dish surveys. We detect 14 molecular species (including isotopologues), with five species (C34S,
13CS, H2CS, DNC, and C2D) detected for the first time in protoplanetary disks. Significant differences are observed
in the molecular inventories of MWC480 and LkCa15, and we discuss how these results may be interpreted in
light of the different physical conditions of these two disk systems.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Astrochemistry (75)

1. Introduction

Protoplanetary disks are the formation sites of planets, and
their molecular inventories regulate the composition of nascent
comets and planetesimals (e.g., Helling et al. 2014). These
molecules also serve as valuable probes of disk properties such
as stellar mass, temperature, and density gradients, ionization,
and turbulence (e.g., Dutrey et al. 2007; Öberg et al. 2011;
Rosenfeld et al. 2012, 2013; Cleeves et al. 2015; Czekala et al.
2015; Teague et al. 2016; Flaherty et al. 2018; Pinte et al.
2018). Disks are sufficiently cold, however, such that the a
large fraction of the molecular content is locked up in ices in
the disk midplane and unobservable with rotational spectrosc-
opy. The resulting intrinsically low column densities have
therefore limited the majority of disk observations thus far to
targeted observations of specific molecules (e.g., Kastner et al.
2018), providing valuable insight for certain species, but still
leaving incomplete inventories and a fragmented view of disk
chemistry.

To date, 23 molecules (35 total species including isotopo-
logues) have been discovered in disks, with the majority
detected via rotational transitions (McGuire 2018). Expanding
this molecular inventory is necessary to fully assess disk
chemical compositions and develop new probes of chemistry
and physics. First, many of the known species in disks have
isotopologues which should be present but have not yet been
detected, limiting our knowledge of processes such as nitrogen

fractionation (e.g., Guzmán et al. 2017) and deuterium
fractionation (e.g., Huang et al. 2017). Second, although small
volatiles containing C/N/O have been well studied, S-bearing
species have not yet been investigated in great detail, with
studies of sulfur chemistry in disks limited mainly to CS and
SO (e.g., Thi et al. 2004; Dutrey et al. 2007; Booth et al. 2018;
Le Gal et al. 2019), and a recent detection of H2S (Phuong et al.
2018). Thus, there are a number of potentially abundant
S-bearing species that simply have not been searched for with
deep integration times. Third, the recent detections of the
complex organic molecules (COMs) CH3CN, CH3OH, and
HCOOH in disks (Öberg et al. 2015; Walsh et al. 2016;
Bergner et al. 2018; Favre et al. 2018; Loomis et al. 2018b)
suggest that more complex species may be present. Indeed,
disk chemistry models predict that a significant fraction of
volatiles may be in the form of COMs as they form readily in
irradiated ices (e.g., Bennett & Kaiser 2007; Garrod et al. 2008;
Öberg et al. 2009), and the ramifications of the resultant
chemical CO depletion are extremely important to characterize
when considering disk masses (e.g., Miotello et al. 2016, 2017;
Yu et al. 2017) and C/O ratios (e.g., Schwarz et al. 2018).
Unbiased spectral line surveys offer the potential to fill

these gaps. Historically used as a powerful tool to probe
the molecular inventories of cold clouds and star-forming
regions (e.g., Johansson et al. 1984; Blake et al. 1986, 1994;
van Dishoeck et al. 1995; Kaifu et al. 2004; Belloche et al.
2008a; Remijan et al. 2009), single-dish surveys have
also expanded our understanding of molecular complexity
through a large number of serendipitous molecular detections
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(e.g., Belloche et al. 2008b, 2009; Ossenkopf et al. 2010; McGuire
et al. 2012, 2016; Pety et al. 2012; Loomis et al. 2013; Zaleski
et al. 2013). Recent advances in sensitivity have additionally
allowed similar single-dish survey exploration of disks (e.g.,
Kastner et al. 2014; Punzi et al. 2015). With the construction of
the Atacama Large Millimeter/submillimeter Array (ALMA),
these sensitive line surveys can now be conducted efficiently
(∼20minutes on-source integration per source per setting) with
simultaneous high resolution imaging (e.g., Jørgensen et al. 2016;
Belloche et al. 2017), providing a clear opportunity for unbiased
interferometric line surveys of disks.

We have undertaken a spectral line survey of the proto-
planetary disks around MWC480 and LkCa15 in ALMA Band
7, spanning ∼36GHz from 275 to 317 GHz and representing an
order of magnitude improvement in sensitivity compared with
previous single-dish surveys of disks (e.g., Kastner et al. 2014;
Punzi et al. 2015). Both MWC480, a Herbig Ae star, and
LkCa15, a T Tauri star, reside in the nearby Taurus star-forming
region (∼160 pc Gaia Collaboration et al. 2018). They are both
relatively young (∼3–7 Myr) and host large (>200 au) well-
studied gas-rich disks (e.g., Chiang et al. 2001; Piétu et al. 2007;
Öberg et al. 2011; Isella et al. 2012; Huang et al. 2017).
Differences in the luminosity, disk mass, and temperature
between these two sources (see Table 1) allow for a preliminary
investigation of the effect these parameters play in setting the
disk molecular inventory.

In this paper, we present an overview of the line survey
and summarize the molecular content of both disks. We
find evidence for 14 molecular species in total (including
isotopologues), with five species detected in a protoplanetary
disk for the first time. We present the details of the observations

and the data calibration in Section 2. In Section 3, we describe
our data analysis methods, in which the survey is imaged in an
unbiased manner and a matched filtering technique is used to
efficiently identify lines. Section 4 then presents an overview of
the imaged data, as well as images and spectra for each
molecular detection. In Section 5, we compare the molecular
inventory of the two sources and discuss how their physical
characteristics may relate to the observed chemical differences.
We additionally briefly discuss the low degree of chemical
complexity observed in the context of predictions from
chemical models. A summary is given in Section 6.

2. Observations

LkCa15 and MWC480 were observed in Band 7 during
ALMA Cycles 3 and 4 (project code 2015.1.00657.S). Six
correlator setups were designed to provide nearly complete
frequency coverage between 275 and 322GHz. Each spectral
setup consisted of 4 Frequency Division Mode spectral
windows, each with 1920 channels. The channel width was
975kHz, resulting in a velocity resolution of ∼1 km s−1. Only
the first five of these setups had observations taken, resulting in
coverage gaps between 306–310GHz and 318–322GHz.
Observational details including number of antennas, uv-cover-
age, on-source integration time, and calibrator information are
listed in Table 2. Details of the spectral setups are listed in
Table 3.
Data was initially calibrated by the ALMA/NAASC staff.

Subsequent self-calibration and imaging of the data were
completed using CASA 4.3.1. For each execution and disk,
the dust continuum was imaged by CLEANing the line-free

Table 1

Disk Properties

Source Stellar Type R.A.a Decl.a Dist.a L
å

M
å

Disk Mass Incl. P.A. Age VLSRK

(J2000) (J2000) (pc) (L☉) (M☉) (M☉) (deg) (deg) (Myr) (km s−1
)

MWC480 A1–A3/4
(1, 2)

04:58:46.3 29:50:37.0 162 19–24
(3, 4)

1.7–2.3 (3,
4, 5)

0.11 (6) 37 (7) 148 (7) 6–7.1 (3,
4, 5)

5.1 (7)

LkCa15 K3–K5 (2, 8) 04:39:17.8 22:21:03.4 159 0.8 (3) 1.0 (3,5) 0.05–0.1 (9) 52 (7) 60 (7) 3–5 (3,
5, 10)

6.3 (7)

Note.
a R.A., decl., and distance of each source are from the Gaia DR2 catalog (Gaia Collaboration et al. 2018).
References. [1] The et al. (1994), [2] Luhman et al. (2010), [3] Andrews et al. (2013), [4] Mannings & Sargent (1997), [5] Simon et al. (2000), [6] Chiang et al.
(2001), [7] Huang et al. (2017), [8] Herbig & Bell (1988), [9] Isella et al. (2012), [10] Guilloteau et al. (2014).

Table 2

Observation Details

Settinga Date Antennasb Baselines (m) On-source int. (minutes)c Bandpass Cal. Phase Cal. Flux Cal.

A 2016 Jan 17 36 15–331 19.2 J0510+1800 J0438+3004 J0510+1800
B 2016 Jan 17 31 15–331 17.6 J0510+1800 J0438+3004 J0510+1800

2016 Apr 23 36 15–463 12.6 J0238+1636 J0433+2905 J0510+1800
2016 Dec 12 36 15–650 20.7 J0510+1800 J0438+3004 J0510+1800

C 2016 Dec 13 39 15–650 20.2 J0510+1800 J0438+3004 J0510+1800
D 2016 Dec 13 36 15–650 12.6 J0510+1800 J0438+3004 J0510+1800

2016 Dec 14 39 15–460 12.6 J0510+1800 J0438+3004 J0510+1800
E 2016 Dec 17 40 15–460 13.1 J0510+1800 J0438+3004 J0510+1800

2016 Dec 18 42 15–492 13.1 J0510+1800 J0438+3004 J0510+1800

Notes.
a See Table 3 for details on each spectral setting.
b Number of antennas remaining after flagging.
c Single source integration time. MWC480 and LkCa15 had equal integration times for all observations.
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portions of the data with a Briggs robust parameter of −0.5.
Three rounds of phase-only self-calibration on the disk
continuum emission were then completed with solution
intervals of 100 s, 30 s, and 10 s, followed by one iteration of
amplitude self-calibration. These calibration tables were
applied to the full data for each execution, and the individual
spectral windows were then split and continuum subtracted
using the CASA task uvcontsub (fit-order= 1).

3. Data Analysis

3.1. Initial Full-band Imaging and Spectral Extraction

Each of the spectral windows for both sources was imaged
with CLEAN in CASA 4.3.1, using natural weighting for
optimal sensitivity. Resultant synthesized beam sizes and
position angles for each spectral window are listed in
Table 3. When a spectral setting had multiple executions
taken, the respective measurement sets for each spectral
window were concatenated prior to imaging. Each window
was initially dirty imaged to determine a characteristic per-
channel rms, listed in Table 3. They were then CLEANed down
to a threshold of 4σ, with elliptical CLEAN masks defined for
each source to contain the full extent of the gas disk. For
MWC480, the mask had a major axis length of 3 5,
inclination of 37°, and PA of 148° (Chiang et al. 2001; Piétu
et al. 2007; Öberg et al. 2011). For LkCa15, the mask had a
major axis length of 4 5, inclination of 52°, and PA of 60°
(Piétu et al. 2007; Isella et al. 2012). These elliptical masks
were applied uniformly across all channels to preserve the
unbiased nature of the survey. After imaging, disk-integrated
spectra were extracted from the image cubes using the elliptical
CLEAN masks. The spectra were averaged where spectral
window 3 from setting C and spectral window 0 from setting D
overlap.

The full extracted spectra of MWC480 and LkCa15 are
shown in Figure 1 in blue and mirrored in red, respectively.
Lines visible in the spectra are labeled in the figure, with the
location of the label above/below the baseline denoting in

which disk the line is stronger. Sections of the spectrum where
atmospheric absorption lines are present are plotted with
transparency, and the somewhat different sensitivity of each
spectral window is visible in the figure.

3.2. Matched Filtering

The data were further analyzed by applying a bank of
matched filters to attempt to locate any additional weak lines.
When the shape of a signal is known (or can be well-
approximated), application of a matched filter allows for
maximal signal extraction (North 1963). In Loomis et al.
(2018c), we developed a method to efficiently apply matched
filters to interferometric observations, allowing the quick
analysis of high bandwidth interferometric spectral surveys
and an improved signal-to-noise ratio (S/N). Previous
observations of both MWC480 and LkCa15 (e.g., Öberg
et al. 2010, 2011; Huang et al. 2017) have determined the
Keplerian rotation pattern of both disks, as well as a variety of
radial emission profiles for different molecular species. We use
prior observations of 12CO, 13CO, C18O, DCO+, and H13CO+

(Huang et al. 2017) to generate a bank of data-driven template
filters to apply to the line survey data. Filters were also created
using strong lines of H2CO, N2H

+, and CS imaged from the
presently described observations. All of these filters describe
identical Keplerian rotation patterns, and thus will likely yield
similar results for a given target line, but small differences
between the filter responses may provide useful clues about the
target line emission morphology, especially if the target line is
too weak to image at high resolution. Moment-0 integrated
emission maps of each of the filter template molecules are
shown in Figure 2, demonstrating the broad range of emission
patterns.
Each of the template transitions were imaged with CLEAN,

and relatively noise-free approximations of the emission were
created by convolving the CLEAN components with their
respective restoring beams. These image cubes were then used
as data-driven filters and applied to each continuum-subtracted

Table 3

Details of Spectral Settings

Setting SPW Frequencies Beam (PA) Per chan. rms (mJy bm−1
)

(GHz) MWC480 LkCa15 MWC480 LkCa15

A 0 275.20–277.08 1 30×1 05 (12°. 7) 1 18×1 04 (−42°. 9) 2.7 2.8
1 277.08–278.95 1 27×1 03 (12°. 6) 1 15×1 02 (−43°. 3) 3.0 3.1
2 287.20–289.08 1 22×1 00 (−9°. 7) 1 11×0 99 (−44°. 6) 3.3 3.4
3 289.08–290.95 1 22×1 01 (168°. 9) 1 10×0 97 (−45°. 7) 3.3 3.4

B 0 278.95–280.83 1 13×0 60 (−30°. 6) 1 03×0 60 (−38°. 4) 1.8 1.7
1 280.82–282.70 1 12×0 59 (−30°. 4) 1 02×0 60 (−38°. 0) 1.9 1.8
2 290.95–292.83 1 10×0 60 (−32°. 5) 0 98×0 58 (−38°. 2) 2.2 2.2
3 292.82–294.70 1 07×0 57 (149°. 5) 0 98×0 58 (−38°. 3) 2.0 2.0

C 0 283.45–285.33 0 99×0 53 (−177°. 5) 0 85×0 53 (177°. 3) 2.3 2.3
1 285.33–287.20 0 99×0 53 (175°. 8) 0 85×0 53 (−2°. 9) 2.5 2.6
2 295.45–297.33 0 95×0 52 (−4°. 4) 0 83×0 52 (170°. 5) 2.6 2.6
3 297.33–299.20 0 94×0 51 (−3°. 9) 0 83×0 52 (171°. 3) 2.5 2.5

D 0 298.30–300.18 1 00×0 56 (−25°. 4) 0 91×0 55 (−33°. 8) 3.0 3.1
1 300.18–302.06 1 04×0 58 (−30°. 0) 0 96×0 56 (141°. 0) 3.4 3.6
2 310.30–312.18 1 00×0 56 (−29°. 7) 0 92×0 55 (141°. 2) 3.5 3.7
3 312.18–314.06 0 95×0 53 (155°. 2) 0 86×0 53 (−33°. 2) 3.7 3.9

E 0 302.05–303.93 0 94×0 62 (179°. 2) 0 82×0 63 (−8°. 2) 2.0 2.0
1 303.93–305.81 0 94×0 62 (179°. 0) 0 82×0 63 (−8°. 4) 2.1 2.1
2 314.05–315.93 0 91×0 60 (179°. 2) 0 79×0 61 (171°. 9) 2.5 2.4
3 315.93–317.81 0 90×0 60 (178°. 8) 0 79×0 61 (171°. 2) 2.9 2.9

3

The Astrophysical Journal, 893:101 (15pp), 2020 April 20 Loomis et al.



spectral window using the VISIBLE package (Loomis et al.
2018a).12 As the image cubes do not all match the native
velocity resolution of our observations, VISIBLE interpolates
the filters to match the local velocity resolution of the data
being filtered. The interpolated filter is then convolved with the
data, producing a normalized filter impulse response spectrum.
The technical details of this method can be found in Loomis
et al. (2018c). Spectra from spectral windows that contained
multiple executions were first combined via a weighted
average, with weights calculated from the rms in each response
spectrum, and then normalized after averaging.

The full survey filter impulse response spectrum for the
H13CO+ template is shown in Figure 3 as an illustrative
example. Response spectra for the other filter templates
produced similar results and are available online as a figure
set. The spectrum of MWC480 is shown in blue and that of
LkCa15 is mirrored in red. As in Figure 1, regions

contaminated by atmospheric features are plotted with
transparency. A comparison with Figure 1 demonstrates that
application of a matched filter results in a higher S/N spectrum.
and many weak lines that were previously not seen in Figure 1
are now visible. Observed lines of the detected species are
labeled in the figure, with the location of the label above/below
the baseline denoting within which disk the species is more
strongly detected. At any given frequency, the sensitivity of
both the MWC480 and LkCa15 spectra are nearly identical
(given the identical integration times, similar uv-coverage,
similar angular sizes of the disks, and similar linewidths), so a
comparison of filter responses between the two disks likely
reflects emission strength differences between them. Due to the
varied execution time and weather conditions of each setting,
however, the individual spectral windows do not have uniform
sensitivity and thus we stress that the full normalized spectrum
does not portray individual line emission intensity (i.e., the
ratio of filter responses of lines in different spectral windows
does not reflect the ratio of their total integrated emission). This
is especially clear in the relative filter responses of the three

Figure 1. Spectra extracted with the elliptical CLEAN masks for each disk. The spectrum of MWC480 is shown in blue and that of LkCa15 is mirrored in red, with
spectral regions contaminated by atmospheric absorption lines plotted with transparency. Molecular species with transitions detected at a 4σ level are labeled, with the
label location denoting within which disk the species is more strongly detected.

Figure 2. Moment-0 integrated emission maps of observations used as matched filter templates, demonstrating varied emission morphology. Emission for all species
has been normalized by dividing by the peak emission. Contours for MWC480 CO isotopologues (panels a–c) are [10, 20, 30, 40, 50, 75, 100, 125, 150]×σ and
contours for LkCa CO isotopologues (panels i–k) are [5, 10, 15, 20, 30, 40,K]×σ. Contours for all other panels are [3, 5, 7, 10, 15, 20,K]×σ. Synthesized beams
are shown in the lower left of each panel.

12
VISIBLE is publicly available under the MIT license at https://github.

com/AstroChem/VISIBLE or in the Anaconda Cloud at https://anaconda.
org/rloomis/VISIBLE.
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strong H2CO lines in LkCa15: the 414–313 transition at
281.5GHz and the 413–312 transition at 300.8GHz have very
similar integrated emission, but different filter responses, as the
413–312 transition is in a noisier spectral window. This note
aside, the filter response spectra allow for quick identification
of all lines detected in the survey.

3.3. Individual Line Imaging and Flux Measurement

All spectral lines that were detected by matched filtering in
either disk at greater than 4σ significance were then
individually imaged with CLEAN using natural weighting.
Lines that were strongly detected (>20σ) were imaged at
higher spatial resolution. An identical imaging process was
used, but with Briggs weighting and a robust value of 0.5.
Lower values of robustness produced images with substantially
higher noise and thus were not used. The resultant synthesized
beam parameters are listed in the respective figure captions in
Section 4. Velocity mode in CLEAN was used with a channel
width of 1.5 km s−1, so that all lines would be on a regular
velocity grid. The previously described elliptical CLEAN masks
were used for each disk, and the image cubes were CLEANed
down to a threshold of 4σ, using the rms values listed in
Table 3. Disk-integrated spectra were then extracted from the
image cubes using the CLEAN masks. Fluxes for each transition
were determined by integrating these spectra from 2.0 to
9.5 km s−1 and 3.5 to 11 km s−1 in MWC480 and LkCa15,
respectively, and are listed in Table 4. Uncertainties on each
flux measurement were determined through bootstrapping,
repeating this process 10,000 times on randomly selected
nearby emission-free channels, sampled with replacement (see,
e.g., Bergner et al. 2018, for a description of this technique).
The standard deviations of these values are reported as the
uncertainty on the flux measurements.

4. Results

4.1. Overview

As shown in Figures 1 and 3, we detect 14 molecular species
(including isotopologue s) at a >4σ significance toward

MWC480 and LkCa15, with five of these species (C34S,
13CS, H2CS, DNC, and C2D) detected for the first time in a
protoplanetary disk (as also presented in Le Gal et al. (2019)
for the S-bearing species). Eleven species were detected toward
MWC480, with DNC, C34S, and 13CS not detected, and nine
species detected toward LkCa15, with 13C18O, H2CS, C2D,
HC3N, and CH3CN not detected. Observed transitions of the 14
detected species are tabulated in Table 4. Integrated fluxes (or
2σ upper limits for lines not detected at >4σ with any filter) are
listed for each transition, extracted as described in Section 3.1.
The filters that yielded the strongest impulse response for each
transition are listed, along with the respective significance of
the response (self-filtered responses for the strong lines of
H2CO, N2H

+, and CS were excluded). From both the above
figures and Table 4, it is clear that the molecular inventories of
MWC480 and LkCa15 differ dramatically, which might be
expected given their different stellar masses, disk masses,
radiation environments, and average temperatures. Emission
morphologies and their differences are explored on a per
molecule basis in the following sub-sections, and then
discussed further in Section 5.

4.2. CO Isotopologues: 13C18O

Figure 4 shows that 13C18O 3–2 emission is strongly
detected (>20σ) in MWC480 but not observed in LkCa15.
The emission in MWC480 is compact and centrally peaked,
similar to the C18O emission shown in Figure 2. If 13C18O is
optically thin, its radial extent may directly trace the CO
snowline (e.g., Zhang et al. 2017). By deprojecting and
azimuthally averaging the emission and then deconvolving the
beam, we find that the emission extends out to ∼120au. This is
roughly in agreement with predictions from the temperature
profile used in Öberg et al. (2015), where a 20K snowline
would be at ∼135au. A more detailed investigation of the
midplane temperature profile of MWC480 is beyond the scope
of this paper, but the high S/N of the 13C18O detection suggest
that an analysis of the CO isotopologues similar to that
presented in Zhang et al. (2017) is feasible for MWC480.

Figure 3. Impulse response spectra for the entire observed bandwidth, produced by filtering the observations with the H13CO+ template kernel. The spectrum of
MWC480 is shown in blue and that of LkCa15 is mirrored in red, with spectral regions contaminated by atmospheric absorption lines plotted with transparency.
Molecular species with transitions detected at a 4σ level are labeled, with the label location denoting in which disk the species is more strongly detected.
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Table 4

Observed Spectral Lines

MWC480 LkCa15

Species Transition Frequency Eu mSij 2 Integrated Filter Filter Integrated Filter Filter
Flux Density Response Flux Density Response

(MHz) (K) (D2
) (mJy km s−1

) (σ) (mJy km s−1
) (σ)

13C18O 3–2 314199.7a 30.2 0.073b 422±34 25.5 CS 79±31 L

c
L

c

N2H
+ 3–2 279511.7 26.8 335.2 228±13 17.7 C18O 1750±20 89.8 C18O

H2CO 404–303 290623.4 34.9 21.7 153±18 12.8 N2H
+ 581±25 34.4 C18O

414–313 281526.9 45.6 61.1 324±19 23.6 N2H
+ 1152±19 71.5 13CO

413–312 300836.6 47.9 47.9 342±22 16.4 C18O 1334±34 39.4 C18O
422–321 291948.1 82.1 16.3 <60d L

c
L

c 80±30 4.0 C18O
DCO+ 4–3 288143.9a 34.6 189.3b 784±16 46.4 H2CO 502±17 26.7 13CO
DCN 4–3 289645.2a 34.8 114.7b 104±19 10.3 CS 410±22 23.6 N2H

+

DNC 4–3 305206.2a 36.6 37.2b <32d 3.6 H13CO+ 228±22 15.9 13CO
CS 6–5 293912.1 49.4 22.9 811±19 41.0 DCO+ 1497±19 62.9 H2CO
C34S 6–5 289209.1 38.2 22.2 <32d L

c
L

c 90±19 6.2 H2CO
13CS 6–5 277455.4 46.6 23.0 <28d L

c
L

c 61±17 4.4 H2CO
H2CS 817–716 278886.4 73.4 64.1 83±19 6.4 CS <40d 3.5 CS

919–818 304306.0 86.2 72.3 51±18 5.4 CS <38d L

c
L

c

918–817 313714.9 88.5 72.3 80±41 4.2 H13CO+ 52±45 4.2 H13CO+

c-C3H2 818–707 284805.2e 64.3 239.2 166±23 15.1 CS 104±32 8.1 CS
716–625 284998.0f 61.2 174.0 143±21 11.7 CS 101±28 7.0 CS
634–523 285795.7 54.7 110.8 118±24 7.3 H13CO+ <68d L

c
L

c

C2D 4–3 J=
9

2
–
7

2

288499.0a 34.6 7.6b 63±22 4.5 DCO+ <44d L

c
L

c

4–3 J=
7

2
–
5

2

288554.6a 34.6 5.7b 84±16 4.9 DCO+ <40d L

c
L

c

HC3N 31–30 281976.8a 216.5 431.7b 107±16 8.9 CS 44±18 L

c
L

c

32-31 291068.4a 230.5 445.6b 85±19 5.8 CS 64±21 L

c
L

c

33-32 300159.7a 244.9 459.6b 102±22 3.6 DCO+ <56d L

c
L

c

CH3CN 150–140 275915.6a 105.9 1700b 60±20 5.4 CS <32d L

c
L

c

160–150 294302.4a 120.1 1814b 50±10 3.2 CS <38d L

c
L

c

Notes.
a Center frequency of collapsed hyperfine components (spacing smaller than channel width).
b mSij 2 of combined hyperfine components.
c
Ldenotes transition not detected above 3σ with any filter.

d Upper limits are 2σ.
e c-C3H2 818–707 is spectrally coincident with c-C3H2 808–717.
f c-C3H2 716–625 is partially blended with c-C3H2 726–615.

Figure 4. 13C18O observations in MWC480 (top) and LkCa15 (bottom). Far left:matched filter impulse response spectra using the filter which yielded the strongest
response (see Table 3). Source systemic velocity is denoted by the dashed red line. Middle left: aperture-extracted spectra. Source systemic velocity is denoted by the
dashed red line. Middle right: deprojected and azimuthally averaged radial profiles. 1σ uncertanties are shown in shaded blue. Far right: moment-0 maps showing total
integrated 13C18O emission. All contours are [−3, 3, 5, 7, 10, 15, 20, 25, K]×σ.
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4.3. Species Sensitive to CO Freeze-out: N2H
+ and H2CO

N2H
+ 3–2 emission is strongly detected toward both disks

(Figure 5), but is much brighter toward LkCa15 (flux ratio of
∼7.7; 1750± 20 versus 228± 13 mJy km s−1, respectively).
Without detailed chemical modeling, it is unclear whether this
is due to effects such as variations in total elemental
abundances or ionization between the disks, or enhanced
destruction in MWC480 due to a higher disk temperature and
less CO freeze-out. Similar to 13C18O, N2H

+ has also been
proposed as a tracer of the CO snowline (e.g., Qi et al.
2013a, 2013b, 2015), although its simplicity as a tracer of the
snowline location has been debated (van’t Hoff et al. 2017).
Reaction with CO is one of the main destruction pathways of
N2H

+, and the inner edge of its emission ring may therefore
trace the midplane CO abundance profile. The N2H

+ emission
in both disks demonstrate this ringed morphology, although the
emission around LkCa15 displays a double ring. A similar
double-ring morphology has been observed for both DCN and
H13CO+ in LkCa15 (Huang et al. 2017). By deprojecting and
azimuthally averaging the emission from both disks, we find an

inner ring radius of ∼115au for MWC480 and ∼40au for
LkCa15. The second ring of emission in LkCa15 peaks at
∼220au. The N2H

+ inner ring radius for MWC480 is similar
to the radial edge of the 13C18O emission, supporting the
hypothesis that they are both tracing the CO snowline location.
Multiple lines of H2CO are strongly detected toward both

disks (Figure 5), but as with N2H
+ the emission is much

brighter toward LkCa15 (flux ratios of 3.5–3.9). Grain surface
formation of H2CO through sequential hydrogenation of CO is
thought to be a major contributor to H2CO abundances in disks
(Watanabe & Kouchi 2002; Fuchs et al. 2009; Qi et al. 2013a;
Loomis et al. 2015; Carney et al. 2017; Öberg et al. 2017).
Similar logic may hold as with N2H

+ then, where CO freeze-
out in the colder LkCa15 disk enhances H2CO formation
compared with the warmer MWC480 disk. The H2CO in
LkCa15 also has an emission profile that is suggestive of a
possible double ring, similar to that seen for N2H

+. The
detection of many lines of H2CO spanning a wide range of
upper state energies (35–82 K) enables the use of rotational
diagrams to constrain the H2CO excitation temperature (e.g.,

Figure 5. N2H
+
(top) and H2CO (bottom) observations in MWC480 and LkCa15. Panel descriptions are identical to Figure 4. The H2CO impulse response and

moment-0 panels show stacked data, while the aperture-extracted spectra and radial profiles are shown for each individual transition. The same convention is used for
all subsequent figures.
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Carney et al. 2017), and further analysis of these observations
are presented within the context of a larger survey of H2CO in
protoplanetary disks in Pegues et al. (2020).

4.4. Deuterated Species: DCO+, DCN, and DNC

An inventory of the deuterium chemistry of a small sample
of protoplanetary disks, including both MWC480 and
LkCa15, was initially explored in Huang et al. (2017), tracing
the J=3–2 transitions of both DCO+ and DCN, as well as
their 13C isotopologues. Here we observe the J=4–3
transitions of these species and find very similar results. As
in Huang et al. (2017), we observe bright compact emission of
DCO+ in MWC480 and more diffuse emission in LkCa15
(Figure 6). Huang et al. (2017) report an inner hole in the
MWC480 DCO+ emission, but we do not have the spatial
resolution to confirm such a feature. The DCO+ radial profile
around LkCa15 is suggestive of a double-ring morphology
similar to that seen in N2H+.

DCN is detected toward both disks with emission toward
LkCa15 being 4.1×stronger (Figure 6), consistent with the
flux ratio of ∼4 reported in Huang et al. (2017). Similar
emission profiles are also observed, with emission in
MWC480 being more centrally peaked and compact, and
emission in LkCa15 containing a central peak and an
outer ring.

We additionally report the first detection of DNC in a
protoplanetary disk, with strong emission detected around
LkCa15 (Figure 6). The emission appears to have a double-
ring morphology similar to DCN and DCO+. In contrast to
these two species, however, the ratio of the outer ring surface
brightness to the inner ring surface brightness is considerably
higher for DNC. A similar difference in the emission
morphologies of HCN and HNC has been observed in the
TW Hya and HD 163296 disks (Graninger et al. 2015).

4.5. Sulfur-bearing Species: CS, C34S, 13CS, and H2CS

CS 6–5 emission is strongly detected toward both disks
(Figure 7), but is brighter toward LkCa15 (flux ratio of ∼1.8;
1497± 19 versus 811± 19 mJy km s−1, respectively), with
both the 13CS and C34S isotopologues additionally detected
toward LkCa15. The emission morphology of all CS
isotopologues in both disks is compact, but the main
isotopologues shows a small dip in the emission center toward
MWC480, similar to the CS emission distribution toward TW
Hya (Teague et al. 2017). The central dip in CS emission
toward LkCa15 can likely be explained by its large gas and
dust cavity (∼45 au in CO Jin et al. 2019).

In addition to the CS isotopologues, three lines of H2CS
(817–716, 919–818, and 918–817) are detected toward MWC480
with a very compact emission distribution. No emission is
detected toward LkCa15 above a 4σ level. The S/N of the
image plane detection in MWC480 is quite low, but the
stacked filter response is >8σ. We briefly discuss the formation
chemistry of H2CS in Section 5 as well as in Le Gal et al.
(2019), along with possible explanations for why it is detected
in MWC480 and not in LkCa15.

4.6. Hydrocarbons: c-C3H2 and C2D

Numerous transitions of the hydrocarbon ring c-C3H2 are
detected around both disks, with emission being much stronger
toward MWC480 (Figure 8). This species has previously been

reported in abundance toward both HD 163296 (Qi et al.
2013c) and TW Hya (Bergin et al. 2016), where the emission
had clear ringed distributions. Our spatial resolution is too low
to resolve the c-C3H2 radial distribution, but the MWC480
radial profile hints at a ring.
Emission rings have also been observed for the hydrocarbon

C2H (Kastner et al. 2015; Bergin et al. 2016), although more
varied emission morphologies have recently been observed in
other disks (Cleeves et al. 2018; Bergner et al. 2019). C2H was
included in our original survey plan, but unfortunately all
transitions were within the unobserved spectral setting. We do,
however, detect its deuterated isotopologues C2D toward
MWC480 (Figure 8). Once again, our spatial resolution is
too low to determine a detailed emission profile, but the
detection of this deuterated hydrocarbon presents the opportu-
nity for future comparative analysis with other deuterated
molecular tracers such as DCN and DCO+. The filter with the
highest response to the C2D line is DCO+, tentatively
suggesting that they have similar morphologies.

4.7. Nitriles: HC3N and CH3CN

Similar to the hydrocarbon species, the nitriles HC3N and
CH3CN are detected in MWC480 but not in LkCa15,
although there may be a marginal detection of HC3N toward
LkCa15 (Figure 9). The emission is spatially compact for both
species. These data are presented and discussed in Bergner
et al. (2018) in the context of a larger survey of HC3N and
CH3CN in protoplanetary disks.

5. Discussion

5.1. Comparative Analysis

To compare the molecular inventories of MWC480 and
LkCa15, we plot integrated flux density ratios in Figure 10.
Emission is coupled to excitation temperature, column density,
and spatial extent, so without multiple transitions to constrain
excitation temperatures, we cannot directly compare abun-
dances between the two disks. With the exception of CS and
N2H

+ though, emission from the species we detect is likely
optically thin, suggesting that integrated emission will be
roughly proportional to column density, with some multi-
plicative offset due to the differing excitation conditions of the
sources. We therefore use the flux density ratios as a rough
proxy for abundance comparisons between the two sources.

5.1.1.
13
C
18
O, N2H

+
and H2CO

Strong 13C18O emission is detected toward MWC480 with
none detected toward LkCa15. Our limits on 13C18O in
LkCa15, yielding a lower limit flux ratio of 5.3, are roughly
consistent with the C18O flux ratio of ∼6 in the observations
used as template filters (see Section 3.2). These results suggest
a more massive gas-phase reservoir of CO in MWC480. This
is not surprising, given both that MWC480 is a more massive
disk and that CO is likely frozen out in much of the cold
LkCa15 disk, while it will remain in the gas phase in the
warmer MWC480 disk. CO freeze-out and processing on
grains via sequential hydrogenation (e.g., Qi et al. 2013a) can
also explain the much higher fluxes of N2H

+ and H2CO in
LkCa15. These data are further analyzed in C. Qi et al. (2020,
in preparation).
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Figure 6. DCO+, DCN, and DNC observations in MWC480 and LkCa15. Panel descriptions are identical to Figure 4, but contours for DNC are [−2, 2, 4, 6,
8, K]×σ.
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Figure 7. CS, C34S, 13CS, and H2CS observations in MWC480 and LkCa15. Panel descriptions are identical to Figure 4, but C34S, 13CS, and H2CS have contours of
[−2, 2, 4, 6, 8, K]×σ.
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5.1.2. Deuterated Species

We find that DCO+ 4–3 emission is much brighter in
MWC480 than in LkCa15. Huang et al. (2017) find similar
integrated flux densities between the two disks, however, for
the 3–2 transition of DCO+. Combining our results with those
in Huang et al. (2017) yields a DCO+ 4–3/3–2 flux ratio of
∼1.9±0.3 in MWC480 and ∼1.25±0.3 in LkCa15. This
may suggest that the DCO+ in MWC480 is warmer, which
would additionally be consistent with the broad distribution of
DCO+ in LkCa15 and the more centrally peaked DCO+ in
MWC480 (i.e., there is more DCO+ present in the colder outer
regions of LkCa 15). The presence of both warm and cold
pathways contributing to DCO+ abundances has also recently
been demonstrated in Carney et al. (2018) for the Herbig Ae
disk system HD 169142.

Similar to Huang et al. (2017), we also find that the
MWC480/LkCa15 flux density ratio of DCO+ is much
higher than that of DCN. Huang et al. (2017) interpreted these
results as possible evidence that both warm and cold pathways
(Roueff et al. 2013) contribute significantly to the formation of
DCN. The present detection DNC may offer a possible path for

investigating this chemistry further. In the gas phase, DNC
forms via reaction of H2D

+ with HCN, while DCN forms via
reaction of H2D

+ with HNC (e.g., Willacy & Woods 2009).
Now that HCN, HNC, DCN, and DNC have all been detected
in disks (and three of the four in LkCa 15), future targeted
studies may be able to better constrain the chemistry of this
small deuteration network.

5.1.3. S-bearing Species

The main CS isotopologues is strongly detected toward both
disks and is possibly optically thick at smaller radii (e.g.,
Teague et al. 2017; Liu et al. 2019), making it difficult to make
an abundance comparison from this transition alone. A higher
CS column density in LkCa15 is supported, however, by the
fact that the optically thin CS isotopologues 13CS and C34S are
only detected there. Emission from the main isotopologues is
compact with small emission holes seen for both disks.
Observations of CS 5–4 emission toward the edge-on Flying
Saucer disk were reported by Dutrey et al. (2017) to be
vertically unresolved, suggestive of dominant emission from
dense gas near the midplane. If this vertical distribution is also

Figure 8. c-C3H2 and C2D observations in MWC480 and LkCa15. Panel descriptions are identical to Figure 4, but contours for C2D are [−2, 2, 4, 6, 8, K]×σ.
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Figure 9. HC3N and CH3CN observations in MWC480 and LkCa15. Panel descriptions are identical to Figure 4, but with contours of [−2, 2, 4, 6, 8, K]×σ.

Figure 10. Integrated flux density ratios between MWC480 and LkCa15 for each molecule. When a molecule is not detected in one disk, ratio limits are calculated
using the 2σ upper limits presented in Table 3. Molecules are color coded by the molecular groups used in Section 4.
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present in MWC480, the central depression in the CS emission
could be explained by continuum subtraction effects in the
inner disk where the dust optical depths are high (e.g., Cleeves
et al. 2016; Teague et al. 2017).

Interestingly, H2CS is detected toward MWC480 with a
compact emission profile, even though we suspect this disk has
a lower CS abundance. Unlike its analog H2CO, H2CS
formation is thought to be dominated by the gas-phase reaction
of CH3 with atomic S (Le Gal et al. 2019), so this discrepancy
may be due to the warmer conditions and stronger radiation
fields in MWC480 enhancing the concentration of reactants.
These observations are analyzed in more detail in the context of
a larger survey of S-bearing species in Le Gal et al. (2019).

5.1.4. Hydrocarbons and Nitriles

The hydrocarbons c-C3H2 and C2D as well as the nitriles
HC3N and CH3CN are found to be brighter toward MWC480.
One possible cause of this would be an enhanced C/O ratio
toward MWC480, which would then result in increased
hydrocarbon and nitrile production, as suggested by Du et al.
(2015), Bergin et al. (2016), and Cleeves et al. (2018). We
caution however that the upper state energies of the c-C3H2 and
nitrile transitions are quite high (50–200 K), and thus the
measured flux densities are likely to be biased by the warmer
temperature of MWC480. Both of these phenomena are
discussed in greater detail in Bergner et al. (2018).

5.2. Double-ringed Structures in LkCa15

N2H
+, H2CO, DCO

+, DCN, and DNC all show varying
degrees of evidence for possible double-ring structure in
LkCa15, with an inner ring near the edge of the dust cavity
and a second ring around 180 au, near the edge of the
millimeter dust disk. This feature was previously reported by
Huang et al. (2017) for the 3–2 transition of DCN around
LkCa15, as well as transitions of other species around HD
163296 and IM Lup (where a double ring of DCO+ was first
identified by Öberg et al. 2015). Öberg et al. (2015) and
Cleeves et al. (2016) suggest that dust evolution may expose
the outer disk to increase levels of irradiation, increasing
temperatures and allowing CO to return to the gas phase. If this

is the case, it may explain why the chemically linked and CO-
sensitive species N2H

+ and H2CO have double-ring profiles
that follow each other closely.

5.3. Where are the COMs?

Predictions from chemical networks such as Walsh et al.
(2014) and Furuya & Aikawa (2014) suggest that a number of
larger molecular species (e.g., CH3CN, CH3OH, HNCO,
HCOOH, and CH3CHO) should have been detectable in our
survey (assuming excitation temperatures of 10–40 K). The
detection then of only CH3CN in one disk is therefore quite
interesting, and appears to be in agreement with mounting
observational evidence for suppressed COM emission in disks
(e.g., Carney et al. 2019). Although there is strong evidence for
abundant grain surface formation of COM precursors such as
H2CO in protoplanetary disks (Loomis et al. 2015; Carney
et al. 2017; Öberg et al. 2017), the sole detection of CH3OH
thus far (Walsh et al. 2016) found a column density up to an
order of magnitude lower than expected from models (Furuya
& Aikawa 2014; Walsh et al. 2014).
Searching for CH3OH lines in our data yields no firm

detections, as seen in Figure 11. Two tentative features are
identified at ∼3σ in the stacked spectra, but require further
analysis and/or follow-up observations to be confirmed. Using
the integrated flux uncertainties on each line (determined as
detailed in Section 3.3) and assuming an excitation temperature
of 25K (Walsh et al. 2016; Carney et al. 2019), we find a 3σ
upper limit column density of ∼8×1012 cm−2, below the
column densities expected from models (Furuya &
Aikawa 2014; Walsh et al. 2014). A more stringent analysis
of these upper limits is presented within the context of a larger
sample in J. Ilee et al. (2020, in preparation).
These observations suggest that chemical models over-

produce gas-phase abundances of O-bearing complex species.
As recently discussed in Walsh et al. (2017), there are two
plausible explanations. First, the rate coefficients assumed for
O-bearing COM formation mechanisms on grain surfaces may
be too high, due to e.g., overestimates of the internal radiation
fields in disks. In this scenario, COMs may be present in the
gas phase, but at reduced abundances, mirroring their reduced
ice abundances. The second possibility is that more complex

Figure 11. CH3OH observations in MWC480 and LkCa15. Panel descriptions are identical to Figure 4, but with contours of [−2, 2, 4, 6, 8, K]×σ.
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species are not able to desorb off the grain surfaces in
appreciable quantities. Recent studies suggests that larger
molecules such as CH3OH readily fragment when irradiated,
and may not be able to efficiently photodesorb intact from grain
surfaces (Bertin et al. 2016; Cruz-Diaz et al. 2016), an
explanation which has been invoked to explain observed
CH3OH column densities toward TW Hya (Walsh et al. 2017;
Ligterink et al. 2018). Future stacking analyses, deeper targeted
integrations, or a combination of both are needed to obtain even
limited COM inventories in disks, to explore COM/CH3OH
ratios, and CH3OH and COM radial and vertical distributions.
The latter will especially be key to distinguish between
reduced-production and reduced-desorption scenarios, as the
photodesorption efficiencies of COMs should depend on disk
radius and height.

6. Summary

We have presented an overview of an unbiased interfero-
metric spectral line survey toward the protoplanetary disks
MWC480 and LkCa15. These results can be summarized as
follows:

1. 24 transitions of 14 molecular species are detected, with 5
of these species (C34S, 13CS, H2CS, DNC, and C2D)
detected for the first time in a protoplanetary disk.

2. Matched filtering of the survey using prior observations
as templates allowed much faster line identification than a
traditional imaging approach and improved S/N by
factors of ∼2–3.

3. Significant differences are observed in the molecular
inventories of MWC480 and LkCa15, which may be
mostly explained by temperature differences between the
disks.

4. Species that require CO freeze-out are enhanced toward
LkCa15, while the detection of 13C18O in MWC480
suggests highly abundant gas-phase CO.

5. S-bearing species are brighter toward LkCa15, with the
exception of H2CS. Its presence in MWC480 can likely
be explained by warm gas-phase chemistry, which is
investigated further in Le Gal et al. (2019).

6. Observed transitions of hydrocarbons and nitriles are
brighter toward MWC480. It is unclear if this is due to
the high upper state energies of these transitions and
therefore a temperature bias, or whether abundances are
truly higher toward MWC480, suggestive of an
enhanced C/O ratio. Forward modeling (beyond the
scope of this work) may be able to distinguish between
these scenarios.

7. Emission from COMs such as CH3OH, CH3CHO, and
HCOOH is conspicuously absent, in conflict with column
density predictions from chemical models, although two
tentative features are found in the stacked CH3OH
spectra. These results are in line with the low CH3OH
column densities observed in TW Hya and discussed in
Walsh et al. (2017) and Carney et al. (2019), possibly
suggesting that the desorption rates of O-bearing COMs
in disk chemical models are currently overestimated.
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