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Abstract 

Sapropels S5 and S7 formed in the semi-enclosed Eastern Mediterranean Sea (EMS) 

during peak interglacial periods MIS5e and MIS7a, respectively, are considered 

among the most strongly developed Quaternary sapropels. This study investigates the 

redox dynamics of the water column during their formation, via Fe isotope and Fe 

speciation studies of cores taken at 2550 m depth at site ODP-967. Both sapropels 

show an inverse correlation between d
56

Fe and FeT/Al, with slopes mostly matching 

that found for the Black Sea, pointing to a benthic shelf to basin shuttle of Fe and 

subsequent precipitation of Fe sulphides in euxinic bottom waters. An exception to 

these Black Sea-type trends occurs during the later, peak, stages of S7, where the 

negative d
56

Fe - FeT/Al slope shallows. Fe speciation studies reveal that the dominant 

highly reactive Fe phase (FeHR) in the sapropels is pyrite, with Fe (oxyhydr)oxides 

forming the second major mineral component. Correspondingly, FeHR/FeT plots show 

increased strengthening of anoxic water conditions during the passage from pre-

sapropel sediment into the sapropel. Nevertheless, despite the evidence for euxinic 

conditions from both Fe isotopes and high Mo concentrations in the sapropel, 

Fepy/FeHR ratios remain below values commonly used to identify water column 

euxinia. This apparent contradiction is ascribed to the sedimentary preservation of a 

high flux of crystalline Fe (oxyhydr)oxide minerals to the basin, which resulted in a 

relatively low degree of sulphidation, despite the presence of euxinic bottom waters.  

Thus, the operationally defined ferruginous/euxinic boundary for EMS sapropels is 

better placed at Fepy/FeHR = 0.6, which is somewhat below the usually ascribed lower 

limit of 0.7. Consistent with the significant presence of crystalline Fe 

(oxyhydr)oxides, the change in the d
56

Fe - FeT/Al slope during peak S7 is ascribed to 

an enhanced monsoon-driven flux of detrital Fe(III) oxides from the River Nile into 

the EMS basin and comcomitant diagenetic sulphidation. Euxinic water column 

conditions in sapropel S5 and S7 are interpreted here to reflect the positive balance 

between dissolved sulphide formation and rates of reductive dissolution of Fe 

(oxyhydr)oxide minerals. Both of these parameters in turn depend on the extent to 

which water overturn times are reduced and export productivity increased during 

sapropel formation.  
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1 Introduction 

Mediterranean sapropels are organic carbon-rich sediments and are important 

for the understanding of water column redox conditions in low-oxygen environments.  

Their late Quaternary formation and good preservation in cores makes them excellent 

proxies for recording sedimentation and early diagenesis of organic carbon-rich 

sediments.  Sapropels provide insights that bridge the gap between modern day 

deposits, such as the Black Sea, and consolidated sediments in Phanerozoic and more 

ancient rocks. Moreover, sapropels formed during reduced oxygen conditions related 

to global and regional climatic forcing events. Two major processes are proposed to 

account for the formation and preservation of organic matter in sapropels: (1) higher 

export productivity, which generates anoxicity through the consumption of oxygen 

and (2) physical disruption of the normal thermohaline water overturn system, leading 

to bottom water stagnation (Rossignol-Strick et al., 1982; Rohling and Hilgen, 1991; 

Calvert et al., 1992; Rohling, 1994; Thomson et al., 1999; Weldeab et al, 2003; 

Meyers, 2006; de Lange et al., 2008; Meyer and Kump, 2008). In the Eastern 

Mediterranean Sea (EMS), physical disruption of water overturn is related to 

freshening of the sea surface layer during enhanced insolation-driven (precession 

cycle) riverine discharge, primarily that of the River Nile, and amplified rainfall 

(Rossignol-Strick, 1985; Emeis et al, 1998; Emeis et al., 2003; Scrivner et al., 2004; 

Osborne et al., 2008; Bar-Matthews, 2014; Rohling et al., 2015; Wu et al., 2018). 

Coupled oceanographic-biogeochemical models also stress the potential importance 

of anoxic deep water formation resulting from sea level rise following glaciation 

(Grimm et al., 2015; Grant et al., 2016). U-Mo isotope study of sapropel S5 formed 

during the last interglacial MIS5e indicates that deep water overturning circulation in 

the EMS (Fig. 1) could have decreased by a factor of 10 (Andersen et al., 2018). 

Oxygen depleted water conditions show considerable variation during 

sapropel deposition. de Lange et al. (2008) demonstrated the regional-scale presence 

of anoxic bottom waters at depths >1800 metres below sea level (mbsl) during EMS 

Holocene sapropel S1. A recent Nd isotope study of water circulation dynamics 

shows that stagnant conditions prevailed at depths > 800 mbsl throughout the entire 

Mediterranean basin (Wu et al., 2019). Sub-oxic bottom water conditions were 

identified in S1 sediment recovered at 1780 mbsl water depth in the EMS eastern 

Levantine basin, (Tachikawa et al., 2015). S1 sapropels deposited in the Nile Fan at 

sub-oxic to anoxic conditions show absence of benthic foraminifera, together with 
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evidence for enhanced Nile suspended sediment flux, pollen and spore transport 

(Almogi-Labin et al., 2009; Box et al., 2011; Langgut et al, 2011; Revel et al., 2014; 

Hennekam et al., 2015; van Helmond et al., 2015; Matthews et al., 2017).  Euxinic 

(sulphidic) water column conditions are less commonly identified for the S1 event. 

Azrieli-Tal et al. (2014) used Mo/U systematics and Mo and Fe stable isotope 

compositions to infer weakly sulphidic bottom water conditions for S1 sediments 

taken from ODP Leg 160 core 967D at 2550 mbsl (Fig. 1). Fillipidi and de Lange 

(2019) deduced sulphidic water conditions below 1400 mbsl from a bathymetric 

transect of S1 at the transition between the Adriatic Sea and the EMS.  

In contrast to S1, Pleistocene sapropels S5 and S7 are among the most 

intensely developed of the more recent sapropels (Rohling et al., 2006; Gallego-

Torres et al., 2010; Melki et al., 2010) and the most likely to record euxinia. Rohling 

et al. (2006) proposed photic zone euxinia during S5 based on the presence of green 

sulphur bacteria (isorenieratene) at ODP site 971 (western Levantine basin, south of 

Crete; 2026 mbsl). Rohling et al. (2015) further proposed a model for S5 formation in 

the EMS featuring photic-zone euxinia in the Aegean, Ionian and western Levantine 

sub-basins and a basin wide anoxic sea floor ‘blanket’ overlying the surface 

topography. Nijenhaus et al. (1999) and Passier et al. (1999a) also inferred regional 

sulphidic water conditions in Leg 160 Pliocene sapropels on the basis of the presence 

of isorenieratene derivatives and high trace element scavenging.   

Numerous geochemical proxies have been used to interpret redox conditions 

prevailing prior to, after, and during sapropel formation, including: d
18

O of planktonic 

and benthonic foraminifera, organic biomarkers, elements sensitive to 

paleoproductivity and organic burial (e.g. Ba, Ni) and reduction sensitive trace 

elements (RSTE: Mo, U, V), S isotopes, Sr and Nd isotopes (e.g., Passier et al., 1996; 

van Santvoort et al., 1996; Thomson et al., 1999; Warning and Brumsack, 2000; Cane 

et al., 2002; Rohling et al., 2006; de Lange et al., 2008; Almogi –Labin et al., 2009; 

Gallego-Torres et al, 2010; Wu et al., 2019)). Redox sensitive metal stable isotopes 

(Mo, Fe, U) are among the newer proxies providing new insights into water column 

conditions (Reitz et al., 2007; Scheiderich et al., 2010; Azrieli-Tal et al., 2014; 

Matthews et., 2017; Andersen et al., 2018). The transition metal isotope systems of 

Mo and Fe are powerful tracers of redox conditions in the water column and pore 

waters (Arnold et al., 2004; Neubert et al., 2008; Johnson et al., 2008; Kendall et al., 
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2016; Dauphas et al., 2016). Sediments acquire high Mo contents and the Mo isotopic 

signature of seawater (d
98/95

Mo  ̴ 2.3‰) in euxinic water conditions due to 

quantitative Mo scavenging (Arnold et al., 2004; Neubert et al., 2008; Nägler et al., 

(2011). Recent experimental and thermodynamic modeling studies suggest that Mo 

uptake into euxinic sediments likely reflects increasing bottom water sulphide 

concentrations, which initiates the reversible precipitation of FeMo(VI)S4, followed 

by its irreversible transformation to FeMo(IV)S2(S2) (Helz et al., 2011; Vorlicek et 

al., 2018; Helz and Vorlicek, 2019). The effects of water column sulphide formation 

are particularly evident in the Fe isotope system, where a major diagnostic feature is 

an inverse correlation between d
56

Fe and FeT/Al during euxinic sedimentation. This 

inverse relationship reflects the benthic shelf to euxinic basin export of isotopically 

light Fe(II)aq and subsequent precipitation and sedimentation of Fe sulphides 

(Severmann et al., 2008; Lyons et al., 2009; Severmann et al., 2010). 

Fe speciation studies complement stable metal isotope as tracers of water 

redox conditions. The sequential Fe speciation studies, as developed by Poulton and 

Canfield (2005); reviewed by Poulton and Canfield (2011) and Raiswell et al. (2018), 

provide a measure of highly reactive Fe (FeHR), which refers to Fe minerals that are 

considered highly reactive towards biological/abiological reduction under anoxic 

conditions (Canfield et al., 1992; Canfield et al., 1996; Raiswell and Canfield, 1998; 

Poulton et al., 2004). Fe speciation studies, involving a series of sequential dissolution 

steps, measure distinct mineralogical fractions such as Fe (oxyhydr)oxides (Feox), 

magnetite (Femag) and pyrite (Fepy); allowing distinction between oxic and anoxic 

water column conditions and between euxinic and ferruginous conditions in anoxic 

waters (Poulton and Canfield, 2011).  

This study uses Fe isotope and Fe speciation in combination with selected 

RTSE measurements to investigate water column redox conditions during the 

formation of sapropel S5 (hereafter “S5”) and sapropel S7 (hereafter “S7”), deposited 

in EMS deep waters at ODP site 967 (Fig 1). Both sapropels formed at peak 

interglacial periods characterized by strong insolation maxima, MIS5e and MIS7a, 

respectively (Fig. 1). Fe isotope and Fe speciation methods enable specific focus on 

the development of water column euxinia during sapropel formation, the mechanisms 

of authigenic Fe sulphide formation, and the controls of anoxic water column 

formation. An important wider implication of the Fe speciation studies in this paper is 
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that the operationally defined ferruginous/euxinic boundary for EMS sapropels is 

placed at lower limit than usually ascribed to consolidated sediments of the past.  

Currently accepted models of Fe mobilization in sapropels favour diagenetic 

processes in which pyrite formation within and directly below sapropels is governed 

by the relative rates of sulphide production and Fe release and diffusion (Passier et al., 

1996; Passier et al., 1997; Passier et al., 1999b). These studies envisaged two 

contrasting models of pyrite formation: (1) ‘high Fe content model: sulphide 

production is lower than Fe liberation and supply; (2) ‘low Fe content’ model: excess 

sulphide production leads to its migration into the underlying sediments and bottom 

waters. In the former scenario, reduced S is fixed as pyrite by reaction with 

Fe(oxyhydr)oxides and upward diffusing Fe(II) liberated from the underlying 

sediments. In the latter scenario, pyrite formation is fixed within the sapropel; upward 

diffusing Fe(II) does not reach the sapropel, but reacts to form pyrite with downward 

migrating sulphide, which also sulphidizes Fe oxides below the sapropel. These well-

developed models present an opportunity to examine between diagenetic Fe 

mobilization and the water column proxies studied in this work. 

 

 

2. Samples and Methods 

The samples were taken from cores drilled at ODP site 967, located at 2550 m 

depth in the Cyprus Arc on the northern lower flanks of the Eratosthenes Sea mount 

(Fig. 1b).  Bulk sample profiles were taken of both sapropels (1-2 cm intervals) and 

enclosing sediments (1-5 cm intervals) from core sections 967C-1H5 (S5) and 967D-

2H2,3 acquired from the IODP Core Depository, Bremen. S5 samples were obtained 

by resampling the S5 core section studied by Scrivener et al. (2004),Vance et al. 

(2004), and Andersen et al (2018). The received core samples were subdivided into 

two portions; one portion was taken for Fe isotope and Fe speciation studies and the 

second portion for chemical analytical work. The wet samples were freeze dried using 

a lyophilizer and stored in closed vials prior to the analytical work. 

Sample preparation and measurements were conducted at the facilities of the 

Hebrew University, Israel (clean laboratory chromatographic Fe separation), the 

Geological Survey of Israel (Fe isotopes, trace and major element chemistry), and the 

University of Leeds (Fe speciation).    

2.1  
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Major and trace metal chemistry and analyses  

Organic matter was  content was determined by low temperature plasma ashing of 

weighed amounts of sediments. Chemical analyses were made at the Geological 

Survey of Israel (GSI) using sodium peroxide sintered solution for S7 samples and 

HF-HNO3-HCl digested solution for S5 samples. Major elements were analysed by 

ICP-OES and trace elements by ICP-MS as reported in Azrieli-Tal et al. (2014). 

Based on the analyses of geostandards BHVO-1 and GIT-IWG	IF-G	(supplement	1),	

analytical errors on single values for major and trace elements using both procedures 

were within ±5%. 	

2.2.  

Fe isotope analyses 

Digestion of samples for Fe separation and isotopic analysis was done in the 

clean laboratory at the Hebrew University of Jerusalem (HUJI). Samples were 

pyrolized at 800°C for approximately 12 hours to oxidize organic carbon. The 

pyrolized residue was then dissolved using HF, HNO3 and HCl in the presence of 

H2O2. Iron isotope analyses were measured on a Nu Plasma II MC-ICP-MS at GSI, 

using the sample-standard bracketing approach in medium resolution mode. Iron 

purification was based on the protocol developed at ETH, Zurich (Teutsch et al., 

2005). Details of these procedures and standard calibrations are given in Supplement 

2. 

The d
56

Fe values are reported relative to the IRMM-014 metal standard. 

Results for repeated δ
56

Fe measurements of the ETH Fe-salt solution standard (over 

18 months) are −0.73±0.11‰ (2 SD, n=61), which is identical within errors to 

previously published data (−0.71±0.18‰, Teutsch et al., 2009 and −0.73±0.10‰, 

Fehr et al., 2008). The geochemical reference sample, IF-G, processed in four 

different sessions (including digestion and column chemistry) produced δ
56

Fe = 

0.63±0.09‰ (2 SD, n=16), which is in excellent agreement with the recommended 

value of 0.639±0.013‰ (Craddock and Dauphas, 2011 and references cited therein). 

Duplicates of 2 samples were fully processed including column chemistry to check 

for reproducibility. Results on both Fe solutions after column chemistry are within 

instrumental error (Supplement 2). 

All published d
56

Fe analyses cited relative to the Madison igneous rock 

standard (Beard et al., 2003a) are adjusted in this paper to the IRMM-014 standard. 
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Data reported using d
57

Fe IRMM-014 values (Azrieli-Tal et al., 2014) are recalculated 

to d
56

Fe values using the mass fractionation relationship. Isotopic fractionation factors 

are expressed as D
56

FeA-B = d
56

FeA – d
56

FeB. 

2.3  

Fe speciation measurements 

Fe extractions were made on bulk samples at the University of Leeds using the 

calibrated extraction of Poulton and Canfield (2005), as modified for application to 

recent sediments (see Goldberg et al., 2012; Zegeye et al., 2012; Matthews et al., 

2017; Xiong et al., 2019). The first step consists of a 0.5 N HCl extraction for 1 h, 

which targets reduced Fe phases, including acid volatile Fe sulphides (FeAVS) such as 

mackinawite, surface-reduced Fe(II), and potentially some poorly crystalline ferrous 

carbonate/phosphate phases. The FeAVS is also measured separately (see below), and 

thus after subtraction of FeAVS, this pool consists of the remaining non-sulphidized 

Fe(II) minerals (termed Fe(II)HCl). The Fe(II)HCl pool was determined by 

spectrophotometer using the ferrozine assay (Stookey, 1970), immediately after 

completion of the extraction. The 0.5 N HCl extraction also extracts the most reactive 

Fe(III) minerals remaining in the sediment, in particular ferrihydrite (termed 

Fe(III)HCl). This pool was determined by atomic adsorption spectrometry (AAS), after 

subtraction of Fe(II)HCl and FeAVS. The second sequential extraction step utilizes a 

buffered Na dithionite solution to extract more crystalline Fe (oxyhydr)oxide 

minerals, such as goethite and hematite (termed Feox; Poulton and Canfield, 2005). 

The final sequential extraction targets magnetite, using a Na oxalate extraction 

(termed Femag; Poulton and Canfield, 2005). The Feox and Femag fractions were 

measured via AAS, with all sequential extraction steps giving a RSD of <5%, based 

on replicate extractions. Total Fe (FeT) values were determined via an HF-HClO4-

HNO3 extraction on ashed sediments, followed by analysis by AAS. Replicate 

extractions of international sediment standard PACS-2 gave a RSD of 2% and a 

recovery of 98% for Fe. 

Pyrite (Fepy) and FeAVS were determined via the procedure of Canfield et al. 

(1986), whereby FeAVS is extracted using hot 6 N HCl, and Fepy is extracted from the 

residue via chromous chloride distillation.  These determinations indicated that FeAVS 

was below detection in all cases. The H2S liberated by chromous chloride distillation 

was precipitated as Ag2S, and sulphide was determined gravimetrically and then 
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converted to Fe concentrations according to the stoichiometry of the mineral phase 

(i.e., as FeS2 for pyrite). Replicate extractions gave a RSD of <5% for the sulphide 

extraction. The sum of Fe(II)HCl, Fe(III)HCl, Feox, Femag, and Fepy defines the FeHR 

pool.  

Table 1 lists sample depths, isotopic data, and elemental proxies used in this 

study. The elemental data are normalized to Al to minimize the effects of fluctuations 

in carbonate or silica-bearing biogenic sediment content (Thomson et al., 1999; 

Raiswell et al., 2018), with the exception of TOC. A complete listing of bulk sample 

chemical analyses is given in Supplement 1. As noted, Supplement 2 details Fe 

isotope procedures and standard calibrations. Fe speciation data are presented in 

Supplement 3. Supplement 4 presents calculations of detrital and authigenic U, Mo, 

Fe elemental fractions and authigenic Fe isotopic compositions. 

 

3. Results 

3.1  

Sapropel boundaries and timing. 

Establishing the upper and lower boundaries between sapropels and their 

underlying (pre-sapropel) and overlying (post-sapropel) sediments is most commonly 

done using a combination of Ba/Al (a paleoproductivity proxy; Thomson et al., 1999; 

Weldeab et al., 2003) and total organic carbon (TOC) core depth profiles. Using both 

proxies avoids incorrect boundary assignment due to post-sapropel organic matter 

oxidation (burndown), which may truncate the TOC profile. In the case of S5 and S7 

at ODP site 967 (hereafter “ODP967”), the boundaries defined by both Ba/Al and 

TOC enrichments coincide (S5: Fig. 2A; S7: Fig.  2B), indicating that oxidative 

burndown was negligible. The lower and upper sapropel boundaries at 103.5 and 74 

cm (S5) and 154.5 and 131.5 cm (S7) indicate that the sapropels have thicknesses of 

29.5 and 23 cm, respectively. Ni/Al has also been recognized as a potential 

paleoproductivity proxy (Tribollivard et al., 2006) and its elevated values in the 

sapropels are compatible with this boundary definition (Figs. 2A, 2B). Nevertheless, 

the Ni/Al profiles are sufficiently similar to the other RSTE profiles, that it is not 

possible to distinguish a unique productivity signal.   Mn/Al profiles are also a useful 

indicator of reduced oxygen (sub-oxic) conditions and frequently show peaks at 

sapropel upper and/or lower boundaries (van Santwoort et al., 1996; Thomson et al., 



 

 

11 

1999; de Lange et al., 2008). The Mn/Al profile of S5 shows both peaks, whereas S7 

only shows the lower boundary peak (Figs. 2A, 2B). The latter is generally interpreted 

as reflecting mobilization of Mn in anoxic sapropel and its re-precipitation at the 

interface between the organic-rich sediment and the underlying sediment (van 

Santvoort et al., 1996). 

The duration of S5 at ODP967 has been independently estimated as 6.8 ky 

from 128.3 to 121.5 ka (Grant et al., 2012 (Fig. 1). Assigning an accurate age to S7 is 

more problematic. Emeis et al. (2003) estimated a 6 ky timespan at ODP 967 from 

197 to 191 ka, based on tuning the sapropel onset to peak insolation. This timescale 

broadly matches the timing of a syn-S7 rainfall event recorded in the EM speleothem 

record (Bar-Matthews et al., 2003). However, based on constant linear sedimentation 

rates between adjacent sapropels and 21 ky insolation cycles, Gallego-Torres et al. 

(2010) showed that S7 could have formed between ca 200 to 189 ka at ODP site 966 

(located 25 km south of ODP967 on the northern Erastothenes Seamount plateau). 

Here, we report all our time series data according to core depth in cm (Table 1).  For 

reference, the sapropel durations of Grant et al. (2012) for S5 and Emeis et al. (2003) 

for S7 are plotted at the top of Figs. 2A and 2B.  

3.2  

Geochemical proxies for redox conditions 

3.2.1 

FeT/Al variations  

FeT/Al ratios show enrichments in both S5 and S7 relative to background 

sediment values (Fig. 2). At its onset and for the first ten cm, S5 shows a moderate 

overall rise (FeT/Al < 1) from initial sediment FeT/Al values, but there is then a 

marked rise to FeT/Al =1.3 at 92.5cm, followed by elevated FeT/Al values of 1.0-1.25 

for the rest of the sapropel until its termination at 74 cm (Fig 2A). These trends match 

those previously found for the <63 mm fraction of the same core section of S5 

(Andersen et al., 2018). S7 initially behaves similarly to S5 with moderate of FeT/Al 

values in the first 10 cm, but there is then a rapid rise to values greater than 1.5 at 

140.5-137.5 cm, reaching a maximum FeT/Al of 1.9 at 137.5 cm (Fig 2B). Following 

this peak there is a smooth well defined decrease in FeT/Al values until termination of 

the sapropel at 131.5 cm.  

 A significant feature of the sediments enclosing both sapropels is their high 

background FeT/Al values (0.62-0.83), which overlap and exceed the upper limit of 
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the range of 0.55 ± 0.11 defined for modern marine sediments deposited under oxic 

conditions (Clarkson et al., 2014). Similar high background sediment FeT/Al values 

were also observed in other EMS sapropel sites (sapropel S1from ODP967 and cores 

MD9501 and MD9509; Fig. 1) and reflect a very high detrital Fe mineral input from 

the River Nile into the EMS (Poulton and Raiswell, 2002; Lyons and Severmann, 

2006; Matthews et al., 2017). The average FeT/Al value of non-sapropel sediments 

sampled at ODP 967 is 0.724 ± 0.064; 1SD; n=35; Supplement 4).  

3.2.2 

Authigenic U–Mo enrichments  

Redox sensitive trace element (RSTE) proxies U/Al, V/Al and Mo/Al (Figs. 

2A, 2B) show marked enrichments in both sapropels, which broadly match the FeT/Al 

profiles. Late sapropel peaking of RSTE was also found at nearby ODP site 966 

(Gallego-Torres et al., 2010). Commonly adopted schemes for estimating the 

authigenic elemental fractions use the measured element abundances compared to 

[Al], and normalize these ratios to the estimates from detrital terrigenous siliciclastics, 

giving relative authigenic enrichment factors (EF) (e.g. Warning and Brumsack, 2000, 

Brumsack, 2006; Algeo and Tribovillard, 2009). Elevated EF estimates for [U] and 

[Mo] (Table 1) indicate that the authigenic fraction (>95%; Supplement 4) dominates 

both the Mo and U budgets during the sapropel events. The sediments surrounding S5 

and S7 tend to have relatively higher UEF compared to MoEF (Fig. 3). Comparing the 

background sediment values to the schematic marine water mass trajectories of Algeo 

and Tribovillard (2009), gives a broad trajectory from open marine anoxic to 

progressively more sulphidic conditions (trends 2 and 3), with elevated MoEF over 

UEF. The sapropels deviate from this trend and plot close to the Mo/U seawater line 

(Fig. 3). These seawater MoEF to UEF trends in S5 and S7 also differ from those of 

Black Sea sediments, which show a flatter trajectory (high enrichment factors with 

elevated UEF over MoEF) that reflect Mo depletion in a highly restricted basin (Fig. 3). 

Algeo and Tribollivard (2009) suggest that the sapropel-type trajectory could occur 

when the tendency toward higher (Mo/U)EF values under reducing (sulphidic) 

conditions was offset by lower aqueous Mo concentrations in a moderately restricted 

basin. This would be consistent with the much larger size and sill-restricted surface 

water inflow/outflow conditions of the EMS (Fig. 1). 

The MoEF/UEF trajectory of S7 differs from that of S5 in one significant 

respect. This is the gradual decline in (Mo/U)EF values from the seawater trend shown 



 

 

13 

by the uppermost 4 samples of the sapropel (136.5-131.5 cm) (Fig. 3), which is not 

observed in S5 samples. The progressive decline in enrichment factors in these 

uppermost samples correlates with sample depth. The slope of the S7 decline broadly 

parallels the sulphidic-anoxic trends 2 and 3, suggesting a progressive, rather than 

abrupt, transformation from sulphidic through to anoxic non-sulphidic conditions. 

3.3.  

Fe isotope profiles 

FeT/Al and d
56

Fe profiles indicate opposed enrichment/depletion relationships 

between the two proxies (Fig. 4). Background sediment FeT/Al ratios correspond to 

d
56

Fe values that generally fall within the 0 to 0.2‰ range typical of igneous 

minerals, suspended river sediments and marine sediments (Beard et al., 2003b; 

Severmann et al., 2008; Escoube et al., 2009; Poitrasson et al., 2014). Exceptions to 

this general trend are three samples of pre-S5 sediment at 126.5 to 116.5 cm, which 

have high d
56

Fe values of 0.3 to 0.5‰. Sapropel d
56

Fe values are mostly negative, the 

few exceptions being samples that also have FeT/Al values close to the background 

sediment range of 0.72 ± 0.07. The most negative d
56

Fe value in S5 (-0.72‰) matches 

the FeT/Al peak of 1.31 at 92.5 cm, whereas the remaining sapropel shows d
56

Fe 

values of -0.2 to -0.6‰, corresponding to FeT/Al values of 1.0 to 1.2 (Fig. 4a). As 

with S5, the first ten cm of sapropel S7 are mostly characterized by moderate FeT/Al 

enrichments and slightly negative d
56

Fe values, but where FeT/Al shows a sharp rise 

at 145 cm, a commensurate drop occurs in d
56

Fe. The most negative d
56

Fe values (-

0.7 to -0.4‰) occur when FeT/Al values exceed 1.2, and there is a gradual rise in 

d
56

Fe during the terminal decay of the sapropel. 

3.4  

Fe speciation mineralogy, 

The five FeHR fractions extracted by the Fe speciation measurements 

(Supplement 3), represent: (1) FeIIHCl- surface reduced Fe(II) and potentially poorly 

crystalline ferrous carbonate/phosphate minerals (i.e., unsulphidized Fe(II); (2) 

Fe(III)HCl -ferrihydrite, a likely oxidation product of AVS and pyrite; (3) Feox – ferric 

(oxyhydr)oxides (hematite/goethite); (4) Femag – magnetite; and (5) Fepy – pyrite. 

Ferrihydrite is considered an unlikely primary mineral phase in sulphidic sapropel 

sediments due to the rapid sulphidation kinetics of this phase (Poulton et al., 2004), 

and the Fe(III)HCl fraction in these core samples (which were not stored anoxically) 
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most likely represents the oxidation product of AVS and pyrite. Accordingly, the 

Fe(III)HCl pool is added to the Fepy fraction to give an estimate of the total Fe sulphide 

pool prior to post-sampling oxidation. Following Matthews et al. (2017), this pyrite 

dominated Fe sulphide pool is referred to as CorrFepy,. Pyrite is taken to be the 

predominant mineral phase though the presence of minor amounts of FeS minerals 

would not affect the conclusions of this paper.   

The Fe-speciation profiles (Fig. 5) show that pyrite is the major FeHR mineral 

phase in both sapropels and pre-sapropel sediments. The second major component is 

crystalline Fe (oxyhydr)oxides (Feox), which, however, become more abundant than 

pyrite in post-sapropel sediments. Femag and Fe(II)HCl are minor components of FeHR 

(<0.4 wt%) in both sapropels (Fig. 5). Pyrite abundances broadly match the 

enrichments in FeT/Al and depletions in d
56

Fe (Fig. 4), suggesting that pyrite is a 

major carrier of both of these signatures. Notably, crystalline Fe (oxyhydr)oxides do 

not show a significant decrease in the sapropels relative to the background sediments 

(see Matthews et al. (2017) for an opposite case where diagenetic reactions in 

Sapropel S1 leads to pyrite replacing Fe (oxyhydr)oxides). Rather, with the exception 

of five samples in S7 (141.5-137.5 cm), Feox values are relatively constant in both 

sediments and sapropels (0.64 ± 0.16 wt%, 1SD). The five exceptional Feox values 

show correlated increases in both Feox and CorrFepy (and FeHR) (Fig. 5), though the 

relative increase in Feox (0.84 to 1.8 wt%) is greater than that of CorrFepy (3 to 3.5 

wt%). These high Feox values correspond to 16-25% of the total Fe in the sapropel.   

The inorganic redox aspects of the dominant pyrite and Fe (oxyhydr)oxide 

mineral phases are readily evident from classic Eh-pH diagrams in the system Fe-O-

H-S (e.g., Langmuir, 1997, Chapter 12). At pH values of ~7-8, which are appropriate 

to euxinic marine settings (Helz et al., 2011; Kondratev et al., 2017), hematite or 

goethite would be the stable Fe minerals over a wide range of Eh values. Only in the 

most reducing conditions would pyrite become the stable mineral. The stable 

formation of authigenic pyrite in euxinic bottom waters therefore renders Fe 

(oxyhydr)oxides to be metastable minerals, be they of detrital or authigenic origin. In 

sulphide-free waters, magnetite or siderite would occupy the reducing field occupied 

by pyrite, as is commonly found in anoxic Precambrian marine settings where 

sulphate (and hence porewater sulphide) was much lower than the present day 

(Canfield et al., 2008; Poulton et al., 2010; Raiswell et al., 2011). 
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4. Discussion 

4.1  

Shelf to basin Fe transport during sapropel formation 

4.1.1 

Benthic Fe shuttle 

d
56

Fe values and FeT/Al ratios values (Fig. 4) are diagnostic parameters of the 

benthic iron shuttle model (Canfield et al., 1996; Wijsman et al, 2001; Lyons and 

Severmann, 2006; Severmann et al., 2008; Severmann et al., 2010; Raiswell and 

Canfield, 2012). A key feature of this model is an inverse correlation between FeT/Al 

and d
56

Fe, which has been recognized in modern euxinic basins such as the Black Sea 

and the Baltic Sea (Severmann et al., 2008; Fehr et al., 2008, 2010; Wegwerth et al., 

2018).  The benthic Fe shuttle model envisages onlapping of the sub-oxic chemocline 

waters onto the continental shelf (Raiswell and Canfield, 2012). The inverse 

correlation represents the remobilization of Fe from shelf porewaters and its shuttling 

as isotopically depleted Fe(II)aq into euxinic basin bottom waters, where reaction with 

dissolved sulphide gives rise to isotopically light authigenic pyrite. This diagnostic 

feature was identified in sapropel S1 at ODP 967D (Azrieli-Tal et al., 2014), but is 

not present in sapropel S1 in the Nile Fan, where pyrite was formed by diagenetic 

porewater reactions (Matthews et al., 2017). 

As originally described for the Black Sea by Severmann et al. (2008), the Fe 

sources for the shuttle were oxic shelf sediments with FeT/Al values 0.4 to 0.6 (i.e., 

within the modern oxic range of 0.55 ± 0.11; Clarkson et al., 2014). This range is 

significantly lower than the average background sediment FeT/Al of 0.73 ± 0.07 at 

ODP 967. Indeed, background sediments at intermediate depth (~900 m) core sites 

MD9509 and MD9501in the Nile Fan (Fig.1) have even higher Fe/Al values of 0.79 ± 

0.02 (1SD; n=15), directly reflecting the high Fe content of the suspended load output 

from the Blue Nile (Supplement 4). Given these high background sediment FeT/Al 

values, an offset from the original Black Sea benthic FeT/Al-d
56

Fe trend is anticipated.  

Both S5 and S7 show inverse correlations between FeT/Al and d
56

Fe (Fig. 6). 

The shifts in FeT/Al and d
56

Fe initiate at the lower sapropel boundary (Fig. 4) and 

indicate that the shuttle commences at the sapropel onset. These inverse correlations 

are displaced to higher FeT/Al values in comparison to the Black Sea, but nonetheless, 
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the FeT/Al vs d
56

Fe trend for S5 and most of the S7 samples falls parallel to that 

identified by Severmann et al. (2008) for the Black Sea (Fig. 6), and are significantly 

steeper in slope than that previously found for the weakly euxinic sapropel S1 at 

ODP967 (Azrieli-Tal et al., 2014). However, whereas most sapropel S7 samples fit 

the Black Sea trend, there is a clearly defined flattening of the trend at high Fe values. 

This flattening is exhibited by the previously noted  samples with peak FeT/Al values 

at 141.5 to 137.5 cm. Thus, the overall S7 trend is best described by two segments, 

one subparallel to the Black sea trend, the second (defined by the five samples) by a 

shallow, almost horizontal slope (Fig. 6). Overall, however, the data strongly support 

the Severmann et al. (2008) benthic Fe isotopic model for shuttling of isotopically 

light Fe(II) into strongly euxinic bottom waters, with a substantial part of the light 

isotopic signatures being derived from the abundant pyrite (Fig. 5). Nevertheless, 

questions remain as to the reasons for the five ‘anomalous’ samples at the peak of S7. 

This question will be developed further in the next section via consideration of 

authigenic vs detrital inputs to the EMS. 

4.1.2 

Authigenic Fe transport into EMS deep water 

FeT/Al enrichments and d
56

Fe depletions reflect authigenic Fe transported into 

the euxinic basin by the iron shuttle. The authigenic Fe fraction (Feauth) and its Fe 

isotopic composition (d
56

Feauth) can be estimated with a simple two-end member 

mixing model from the elemental concentrations and bulk d
56

Fe values, as done for U 

and Mo by Andersen et al. (2018) and for Fe by Severmann et al. (2008, 

supplementary data). The mass balance calculations require the determination of 

FeT/Al ratios and d
56

Fe values of the detrital Fe fraction (Fedet). These are taken as the 

average values for background sediments: FeT/Al = 0.724 (n=35) and d
56

Fe = 0.15‰ 

(n=14). The detrital Fe (Fedet) wt% in a sapropel sample is then calculated from its 

FeT/Al value, and the authigenic Fe wt% given by subtraction of Fedet wt% from the 

bulk sample Fe wt%. The authigenic calculations (including those mentioned earlier 

for U and Mo) are given in Supplement 4. Percentage Feauth values of the sapropels 

are detailed in Table 2, and vary from 15% in samples with lowest FeT/Al values, up 

to 60%. The Feauth percentage is significantly lower than the authigenic Mo and U 

estimates for the sapropel samples (>90%), reflecting the modal importance of the 

detrital Fe component in the sapropel sediment, compared to the chemically 
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precipitated RSTE. Corresponding d
56

Feauth values are calculated from Feauth fractions 

and bulk d
56

Fe values by subtracting the detrital contribution and detrital d
56

Fe value 

(Supplement 4). Uncertainties in this composition are propagated from d
56

Fe errors 

(Table 1) by weighting the relative size of the detrital component (Andersen et al., 

2014, 2018). The authigenic calculations are only made for sapropels with FeT/Al 

values > 0.86, i.e., with FeT/Al at least 2SD higher than the detrital FeT/Al value. 

Even so, sapropels with low FeT/Al values (<1) and higher bulk sample d
56

Fe show 

significant errors (Table 2 and Fig. 7). 

The calculated d
56

Feauth averages at -1.33 ± 0.51‰ (S5) and -1.22 ± 0.24‰ 

(S7).  These numbers compare with d
56

Feauth values of -1.4 ± 0.3‰ estimated for 

Black Sea euxinic sediments (Severmann et al., 2008). Assuming that the Fedet 

fraction mainly consists of Fe (oxyhydr)oxides, minor magnetite and Fe-silicate 

minerals, then it is clear that the negative isotope Feauth signature should be primarily 

carried by the dominant FeHR phase, which is pyrite (Fig. 5). However, whereas all S5 

data and most S7 data show a moderately correlated inverse trend of decreasing 

d
56

Feauth with increasing Feauth, the five S7 data from 141.5 to 137.5 cm (indicated by 

light blue symbols) depart from this trend toward higher d
56

Feauth (positive arrow in 

Fig. 7). The positive d
56

Fe vs Feauth trend of these S7 samples could reflect either a 

rise in d
56

Fe of Fe(II)aq, or the greater presence of an isotopically enriched Fe mineral 

fraction. A notable feature of the S7 Fe speciation mineral profile in Fig. 5 is the 

correlated rise in both pyrite and Fe (oxyhydr)oxides at 141.5 to 137.5 cm, but as 

noted in section 3.4, there is a proportionally greater rise in latter. This suggests that a 

viable explanation for the distinct chemical signature of these samples would involve 

an enhanced input of sediment that was particularly enriched in detrital Fe 

(oxyhydr)oxides into the EMS basin at this time (thus our calculation of the % Feauth 

underestimates the detrital Fe (oxyhydr)oxide component for these samples). These 

detrital Fe (oxyhydr)oxide minerals must have a d
56

Fe signature that is isotopically 

heavier than the isotopic composition of the benthic Fe shuttle, such that sulphidation 

of this detrital Fe (oxyhydr)oxide flux during diagenesis maintains a relatively heavier 

d
56

Fe signature at higher detrital Fe (oxyhydr)oxide loadings. Such processes are 

consistent with the marked FeT/Al and d
56

Fe  rises in this late S7 interval and the 

correlated Fe (oxyhydr)oxide) vs pyrite relationship evident in Fig. 5b . 

The two end-member modelling of detrital mineral-authigenic mineral mixing 
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and the benthic shuttle model assumes that the primary control of the low d
56

Fe 

values is the Fe isotopic composition of Fe(II)aq, which is quantitatively uptaken into 

pyrite by reaction with dissolved sulphide. Several experimental studies have shown 

that kinetic fractionation may occur between Fe(II)aq and precipitating Fe sulphides 

(Butler et al., 2005; Guilbaud et al., 2011; Mansour and Fantle, 2019). However, the 

most negative kinetic D
56

FeFe(II)aq-pyrite values in these experimental studies were 

obtained when only 10% of FeS precursors were reacted into pyrite. Here, the pyrite 

constitutes a major FeHR pool, and consequently the apparent fractionation factor must 

be lower. Additionally, as noted in the previous paragraph the fractionation factor 

could reflect a mixture of 1) precipitation in the water column and 2) sulphidation of 

highly reactive minerals such as Fe (oxyhydr)oxides.  

 

4.2  

Tracing euxinia in the EMS sapropels 

4.2.1 

Fe speciation proxies in EMS sapropels and background sediments 

The FeHR/FeT and CorrFepy/FeHR ratios derived from the Fe speciation 

measurements are plotted against sample depth in Figs. 8a and 8c (S5 profile) and 8b 

and 8d (S7 profile). Using criteria summarized in Poulton and Canfield (2011) for 

marine sediments, the FeHR/FeT data indicate that the pre-sapropel sediments and 

sapropels in both profiles plot within the anoxic field (Figs. 8a,b). Only the post 

sapropel sediments fall within the possibly anoxic field. This field was defined to 

allow consideration of the potential for rapid deposition of sediment (e.g., during 

turbidite deposition) to mask water column FeHR enrichments under anoxic conditions 

(Raiswell and Canfield, 1998), and to account for the possible transfer of 

unsulphidized FeHR to Fe-rich clay minerals during early diagenesis in non-sulphidic 

porewaters (e.g., Poulton and Raiswell, 2002; Poulton et al., 2010). Neither of these 

processes has occurred in the EMS samples, and hence the FeHR/FeT ratios for post-

sapropel samples reflect a progressive return to oxic depositional conditions (Raiswell 

and Canfield, 1998). Overall the trends indicated by Fe speciation are consistent with 

the MoEF-UEF systematics (Fig. 3), which point to vertical deepening of anoxia until 

peak values, followed by weakening during sapropel termination.  



 

 

19 

Anoxic conditions in the pre-sapropel sediments are compatible with 

modeling studies on sapropel S1showing that sapropel formation is preceded by 

the formation of anoxic deep waters (Grimm et al., 2015; Grant et al., 2016).  

The Fe speciation data (Fig. 5) and CorrFepy/FeHR partitioning (Fig. 8) show that 

~50% of FeHR in the pre-sapropel sediment is composed of pyrite, and that pyrite 

is approximately 20-30% of FeT. Nevertheless, the pre-sapropel sediments do not 

show any evident shift to light isotopic values (Fig. 4).  Such a lack of a shift 

from marine sedimentary d56Fe values has been proposed to be a diagnostic 

feature of diagenetic pyrite formation, with anoxic, non-sulphidic conditions 

developing in the absence of a benthic Fe shuttle in the overlying water column 

(Matthews et al., 2017). Alternatively, the lack of an evident isotopic shift could 

occur when a large amount of highly reactive Fe gets sulphidized into pyrite (as 

evident for pre-sapropel sediments in Fig 5), thus muting the expression of the Fe 

isotope fractionation. 

It is also notable that the pre-sapropel S5 sediments have slightly higher 

FeHR/FeT values than for S7, with a decrease from elevated values of ~0.5 at 126-131 

cm toward values of 0.4 at the sapropel boundary. These slightly elevated FeHR/FeT 

values broadly match higher RSTE (Mn, U, V, but not Mo) and possibly higher 

FeT/Al observed in this depth range (Fig. 2), suggesting stronger anoxic, but non-

sulphidic water column conditions. In this respect the ‘higher than marine’ d
56

Fe 

values of the pre-sapropel sediment at 116.5 to 126.5 cm (Fig. 4) are puzzling, since 

elevated d
56

Fe values (relative to marine values) are generally associated with 

oxidation. One possibility is that prior to the sapropel isotopically heavy Fe oxides 

were precipitated from Fe(II) mobilized in an oxygen minimum zone (Scholz et al., 

2014).  

FeHR/FeT and CorrFepy/FeHR rise at the sapropel lower boundary (Fig 8). The 

patterns generally follow the trends shown by FeT/Al, RSTE plots, Mo/U and Fe 

isotope depletions (Figs. 2, 3 and 4). FeHR values at the sapropel peaks constitute 80% 

of the total iron in the samples.  Most notable is the fact that whereas both S5 and S7 

show significant CorrFepy/FeHR enrichment (Fig. 8), apart from a few samples that 

plot in the ‘possibly euxinic’ field of Poulton and Canfield (2011), most peak sapropel 

samples fall in the uppermost parts of the ferruginous field or borderline ‘possibly 

euxinic’ values. No samples plot in the euxinic field sensu stricto (Fepy/FeHR > 0.8). 
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 4.2.2 

Evidence for euxinia from Fe speciation vs [Mo] plots 

The ferruginous field  CorrFepy/FeHR ratios are not consistent with the Fe 

isotope shuttle model for euxinic basins or the behavior of RSTE such as Mo. 

Although both ferruginous and euxinic shuttling could lead to the formation of 

isotopically light authigenic Fe minerals, the conspicuous dominance of pyrite in the 

sapropels S5 and S7, coupled with Mo enrichments that indicate sulphidic water 

column conditions (Erickson and Helz, 2000; Helz et al., 2011; Hardisty et al., 2018; 

Helz and Vorlicek, 2019), suggests that the CorrFepy/FeHR ratios are likely giving an 

false ferruginous signal in the case of EMS sapropels 5 and 7. This is supported by 

Mo isotope data of sapropel S5 from the same core (d
98/95

Mo >2‰), which suggests 

that Mo uptake occurred under strongly euxinic conditions (Andersen et al., 2018).  

At [H2S] > 11µM, dissolved molybdate species quantitatively convert to 

thiomolybdate species (Erickson and Helz, 2000), which become available for 

particulate uptake by minerals such as pyrite and/or is precipitated with Fe as 

colloidal FeMoS4 (Helz et al, 2011; Vorlicek et al., 2019; section 4.3.1 below). The 

relationship between [Mo] and Fe speciation proxies was studied by Scott and Lyons 

(2012) with the aim of distinguishing between environments in which sulphide forms 

in porewater and euxinic sediments where sulphide is present in the water column. 

Fig. 9a is a modification of their Mo ppm vs DOP (degree of pyritization) plot in 

which Mo is plotted against CorrFepy/FeHR. The [Mo] uptake fields defined by Scott 

and Lyons are transposed onto the [Mo] – CorrFepy/FeHR diagram, but with the 

‘possibly euxinic’ boundary extended from Fepy/FeHR = 0.7 down to 0.6. We define 

the lower boundary at 0.6 based on the lower limit of the average CorrFepy/FeHR value 

(0.67 ± 0.07: 1SD; Fig 9b) through the sapropel maxima. The high FeT/Al samples at 

the peak S7 conditions discussed in section 4.1 fall within this range, and as 

previously suggested likely represent the extreme case of a very high detrital 

crystalline Fe (oxyhydr)oxide flux to the EMS basin.  

Our data thus suggest that there are conditions whereby Fepy/FeHR ratios as 

low as 0.6 can occur under euxinic water column conditions. The Fepy/FeHR threshold 

for identifying euxinia was originally placed at 0.8, based solely on observations from 

the Black Sea (Anderson and Raiswell, 2004). However, based on Fe speciation and 

trace metal data from Cretaceous Oceanic Anoxic Event 3 at Demerara Rise (März et 
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al., 2008), this boundary was refined to 0.7 by Poulton and Canfield (2011). The EMS 

sapropels S5 and S7 are characterized by a very high input of crystalline detrital Fe 

(oxyhydr)oxide minerals from the River Nile (Poulton and Raiswell, 2002). Central to 

the full sulphidation of FeHR under euxinic water column conditions is the reactivity 

of this Fe pool towards dissolved sulphide (which is particularly low for crystalline Fe 

(oxyhydr)oxides such as hematite and goethite), in addition to sulphide concentration 

and exposure time (Poulton et al., 2004). Given these considerations, the EMS 

sediments likely represent an extreme case study of recent euxinic settings, whereby 

the extent of pyritization of the FeHR pool is particularly limited. Nevertheless, this 

does suggest that the ‘possibly euxinic’ boundary should be refined to a lower value 

of 0.6. Indeed, we note that a lower limit of 0.6 better satisfies Fepy/FeHR signatures in 

euxinic sediments deposited during Cretaceous Oceanic Event 2 at Tarfaya, Morocco 

(Poulton et al., 2015), which is a shallow shelf basin that likely received a high 

detrital sediment influx of Fe (oxyhydr)oxides. Furthermore, many past episodes of 

euxinia were characterized by much lower oceanic sulphate concentrations than the 

present day or the recent past (see Xiong et al., 2019), which would enhance the 

potential for more limited sulphidation of the FeHR pool, due to an overall decrease in 

exposure time to dissolved sulphide. Nevertheless, we stress that additional evidence, 

for example from trace metal systematics, is required to robustly identify the redox 

setting of samples that fall within this refined ‘possibly euxinic’ zone. 

4.3 

Implications for euxinic sapropel-forming conditions 

4.3.1 

Controls of euxinic water column formation.  

The model for Mo uptake into organic-carbon rich sediments developed by 

Helz and Vorlicek (2019) includes a number of aspects relevant to sapropel euxinia. 

The model proposes that microbial sulphate reduction in the water column produces 

sulphide and reduces pH, thus initiating the precipitation of FeMo(VI)S4
 
and its 

subsequent irreversible aging to FeMo(IV)S2(S2). The sulphate to sulphide reduction 

progress increases with water depth, and is an inverse function of water column 

overturn rate, but positively depends on organic productivity. We first turn to the 

question of water column overturn rate. According to Helz and Vorlicek (2019), 

FeMoS4 precipitation in the Black Sea occurs under high dissolved sulphide 

accumulation that reflects long water residence times (t), in which dissolved [Mo] 
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reaches solubility equilibrium with the FeMoS4 precipitate. Very low water overturn 

dynamics are common to both the Black Sea and peak EMS sapropel S5 (t = 830
+690

/-

500 yr and 1030
+920

/-520 yr, respectively) compared to modern oceanic overturn rates of 

~100 yr (Andersen et al., 2018). The parallel slopes of the benthic shuttle plots (Fig. 

6) also suggest comparable euxinic conditions in the Black Sea and EMS during S5 

and S7.  

This situation, however, differs in the early stages of sapropel formation.  The 

early stages of sapropel development (S5 samples 102.5-94.5 cm; S7 samples 153.5-

147 cm) are manifested by moderate FeT/Al increases and Fe isotope decreases, weak 

to moderate RSTE enrichments (Figs 2, 4 and 6) and lower than seawater d
98/95

Mo 

(Andersen et al., 2018). Nevertheless, CorrFepy/FeHR values for these early sapropels  

mostly plot above 0.6 within the euxinic field (Fig 9b: Supplement 3). Low d
98/95

Mo 

values (<-0.7‰ at peak reducing conditions) indicative of partial molybdenum uptake 

and a ‘weak’ benthic shuttle (evidenced by the much shallower FeT/Al –d
56

Fe slope in 

Fig 6) are shown by sapropel S1 at ODP 967 (Azrieli-Tal et al., 2014). Helz and 

Vorlicek (2019) suggest that these attributes could reflect intermediate degree of 

sulphate to sulphide reaction progress, in which isotopically depleted FeMoS4 to 

forms from negatively fractionated thiomolybdate species in equilibrium with 

seawater MoO4
2-

 (Kerl et al, 2017). Calculations of deep water renewal rates for S5 

based on the water column U depletion indicate an approximately three-fold decline 

in thermal overturning circulation in the early sapropel stages (96.5 cm; t = 340
+385

/-

325 yr (Andersen et al 2018). It therefore appears that water overturn (renewal) is an 

important factor in determining the dynamics of euxinic water column development 

and its manifestation in the slopes of the benthic shuttle FeT/Al vs d
56

Fe plots. 

As noted in the paragraph above, in addition to longer water residence times, 

high organic productivity leads to an increase in the Particulate Organic Carbon Flux 

and sulphate to sulphide reduction progress. High export organic productivity in the 

Levantine basin during S5 has been demonstrated using Ba, TOC, and carbonate 

contents by Weldeab et al (2003), who also demonstrated that this increased 

productivity reflected high riverine nutrient supply. High Ba/Al ratios found in 

sapropels  S5 and S7 in this study are compatible with Weldeab et al (2003). Thus it 

can be argued that both water column overturn slowdown and increased export 

organic productivity drive the developement of euxinic waters during S5 and S7.  
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4.3.2  

Implications for diagenetic iron mobilization. 

 The proxies studied in this work demonstrate that the combined effects of the 

benthic Fe shuttle and the euxinic water column formation exert the primary control 

of Fe sulphide formation in sapropel S5 and S7.  The euxinic conditions reflect the 

positive balance between dissolved sulphide formation and rates of reductive 

dissolution of descending Fe (oxyhydr)oxide minerals.  Nevertheless, the potential 

role of diagenetic sulphidation at high Fe (oxyhydr)oxide fluxes has been recognized 

at peak S7 (Section 4.1.2), and may contribute in part to Fe sulphide formation 

throughout sapropel formation. This raises the question of the relation between the 

water column models proposed here and the diagenetic models of Fe-S mobilization 

proposedby Passier et al., 1996, Passier et al., 1997; Passier et al., 1999b).  Of the two 

end member models, the ‘low Fe model’ described by Passier et al. 1996 and Passier 

et al., 1999b defines the scenario most compatible with our data. In this scenario, 

excess sulphide production within the sapropel leads to its migration into the 

overlying water column and underlying sediment. Such migration into the water 

column introduces additional dissolved sulphide (additional to that generated in the 

water column) for Fe-sulphide formation by reaction with descending FeHR minerals. 

Correspondingly, downward diffusion of sulphide into the underlying sediment could 

sulphidize Fe(oxyhydr)oxides below the sapropel leading to pyrite enrichment as 

described by Passier et al. (1996). Such a model would be compatible with the 

relatively high pyrite content and anoxicity of the pre-sapropel sediment, evident in 

both sapropel sequences (Fig. 5, Fig. 8). Nevertheless, it remains possible that pyrite 

in the underlying sediment formed in the anoxic water conditions preceding the 

sapropel formation.  

Sulphidation of Fe (oxyhydr)oxides concurrent with water column pyrite 

formation may take place within the sapropels, as suggested in section 4.1.2 for peak 

S7. The critical factor with the diagenetic model described by Passier and co-workers, 

as with water column reactive processes described earlier (sections 4.1 and 4.2), is the 

rate of sulphide formation relative to Fe (oxyhydr)oxide dissolution.  It is therefore 

clear that the syn-sapropel diagenetic Fe mobilization models of Passier and 

coworkers are compatible with the water body models developed in this study. 

Nonetheless, the powerful proxy signals for water column sulphide generation and 

isotopic light Fe shuttling in this study provide strong evidence for the domination of 
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water column Fe-S processes during the formation of sapropels S5 and S7. The 

redefined euxinic/ferruginous speciation Fepy/FeHR = 0.6 boundary in particular 

reflects sedimentary preservation of a high flux of crystalline Fe (oxyhydr)oxide 

minerals to the Levantine basin, which resulted in a relatively low degree of 

sulphidation, despite the presence of euxinic bottom waters.   

 

 

5.  Conclusions and paleoclimate implications. 

The paper presents convincing evidence from the benthic shuttle inverse 

FeT/Al vs d
56

Fe correlations, MoEF vs UEF plots, and high [Mo] values for the 

development of euxinic water column conditions during sapropels S5 and S7. The 

data complement seawater d
98/95

Mo values determined for S5 by Andersen et al. 

(2018). In terms of these parameters, euxinic conditions in deep water sapropels S5 

and S7 are comparable to those of the Black Sea.  

Pyrite is the dominant authigenic mineral in both sapropels. Nevertheless, the 

Fe speciation data also show that Fe (oxyhydr)oxides are a significant mineral 

component (comprising up to 25% of total Fe in the sapropels) despite their 

thermodynamic instability in pyrite-forming sulphidic waters. Such Fe 

(oxyhydr)oxides are part of the FeHR fraction of the sapropels and thus depress 

Fepy/FeHR ratios by their presence as unsulphidized FeHR minerals. Consequently, 

despite clear evidence for euxinic water column conditions and sulphidation, 

Fepy/FeHR ratios are relatively low in these two EMS sapropels, and a decrease in the 

lower limit of the ‘possibly euxinic’ zone, from 0.7 to 0.6, is more appropriate for 

identifying water column euxinia. While this lower limit may be particularly specific 

to EMS sapropels, where detrital Fe mineral inputs from the Nile are unusually high, 

it may also be an appropriate boundary for identifying some more ancient episodes of 

ocean euxinia, where overall exposure time to dissolved sulphide may have been 

relatively low due to lower oceanic sulphate concentrations than at present. However, 

in these cases, robust additional evidence from trace metal systematics or from 

consideration of the mineralogy of primary Fe inputs is required to identify euxinic 

water column conditions. 

Euxinic water column dynamics in EMS sapropels, as defined in this study in 

core ODP 967, are a function of two major kinetic controls. One is the extent of 



 

 

25 

sulphide production via bacterial sulphate reduction, as recently modelled by Helz 

and Vorlicek (2019), which explains Fe and Mo chemical and isotope systematics in 

both the early and peak stages of sapropels S5 and S7. The second kinetic parameter 

is the rate of reductive dissolution of the Fe (oxyhydr)oxide minerals that are present, 

which influences the location of the euxinic boundary in Fe speciation studies as well 

as the amount of Fe(II)aq. The interplay between these two parameters could 

potentially control the strength of euxinic and/or ferruginous conditions by regulating 

the relative supply of sulphide and ferrous ions in an anoxic basin. Water renewal 

times (thermohaline water overturn slowdown) and export productivity and high 

productivity drive the development of these strongly euxinic condition in the 

sapropels. 

Although not a main aim of this study, a number of conclusions regarding the 

paleoceanographic outcomes of the Fe data can be mentioned. Sapropel S5 developed 

during a peak interglacial (MIS5e) that followed a strong glacial termination (MIS6), 

whereas S7 formation (MIS7a) was not preceded by a significant deglaciation event, 

but its cessation was immediately followed by MIS6 (Fig 1). Despite these different 

climatic boundary conditions, the redox conditions evident from RSTE, MoEF/UEF 

values, Fe isotope depletions and Fe speciation are similar in magnitude and in the 

gradual evolution from weaker to more strongly developed sapropels under similar 

euxinic conditions. Such development is consistent with published benthic 

foraminiferal evidence for progressive evolution toward oxygen-depleted bottom 

waters prior to and during sapropels S5 and S7 (Melki et al., 2010).  

Both sapropels are preceded by anoxic deep water column conditions. This 

conforms with the oceanic-hydrological model of Grimm et al. (2015) as noted in the 

introduction. This anoxia is particularly marked for S5, which is preceded by a period 

of elevated RSTE, elevated FeHR/FeT and anomalously high d
56

Fe values at 131-115 

cm. The age interval of these samples (132 -136 ka; Fig. 2) overlaps with cold 

Heinrich stadial 11 (H11), for which a muted non-monsoonal freshwater signal has 

been identified in the EMS at ODP site 967 (Rodriques-Sanz et al, 2017). 

Nonetheless, despite the apparent pre-sapropel anoxic signal, the view proposed here 

is that the dominant factor in the formation and water column chemistry of sapropels 

S5 and S7 was the progressively declining thermohaline water overturning 

circulation.  
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Finally, we note the clear evidence in elevated FeT/Al, U/Al and Mo/Al values 

at 140.5-137.5 in sapropel S7 for increased freshwater input into the EMS. Since the 

major source of metals to the EMS Levantine basin was the River Nile (Wu et al., 

2019), the implication is that increased Monsoon activity toward the termination of S7 

resulted in increased weathering in the basaltic source area of the Blue Nile. The peak 

was followed by a gradual decline from sulphidic to anoxic non-sulphidic water 

conditions in S7 that possibly reflect the incoming glacial conditions. 
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Figure Captions 

 

Figure 1 Upper diagram: July insolation values at 65°N at 1 ky resolution (Berger and 

Loutre, 1999) and Probalistic Relative Sea Level (RSL) values (Grant et al., 2012) 

covering the estimated formation periods of sapropels S5 and S7.  Lower diagram:   

Location of core site ODP-967 and other sites mentioned in the text in the Eastern 

Mediterranean Sea (EMS). White arrows indicate surface waters circulation pattern 

(Rosentraub and Brenner, 2007. 

 

Figure 2 Total organic carbon (TOC) and elemental depth profiles for sapropels S5 

and S7 and their enclosing non-sapropelic sediments. TOC profiles are taken from 

Emeis et al. (1998); elemental profiles normalized to Al are from this study (Table 1). 

Vertical dashed lines indicate the sapropel boundaries determined from Ba/Al and 

TOC trends, and the yellow area indicates the sapropel.   

Fig 2A: Depth profiles covering sapropel S5. Ages in ka at the top of the diagram are 

as independently determined by Grant et al. (2012). 

Figure 2B: Depth profiles covering sapropel S7. Ages in ka at the top of the diagram 

are as given by Emeis et al. (2003), based on sapropel initiation at 197 ka at peak 

insolation. 

 

Figure 3  MoEF vs UEF diagram showing pre-sapropel, sapropel and post-sapropel 

authigenic Mo and U enrichment factor variations. The red line indicates the seawater 

MoEF/UEF trend. The green arrows show schematic evolution in enrichment factor 

trajectories based on physical and chemical controls on water masses estimated by 

Algeo and Tribovillard (2009). Data Source: Table 1. 

Figure 4 Variations in FeT/Al (blue font) and d
56

Fe (red font) of sapropel and pre- and 

post-sapropel samples as a function of profile depth. Dashed lines and yellow areas 

indicate the sapropels. The range of d
56

Fe values for oxygenated marine sediments is 

indicated by the thick red vertical bar. Data source: Table 1. (a) sapropel S5 profile. 

(b) sapropel S7 profile. 

Figure 5 Variations in wt% of highly reactive Fe (FeHR) pools as a function of depth. 

The F esulphide pool (predominantly pyrite) prior to post sampling oxidation is given 
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as CorrFepy values determined by adding the Fe(III)HCl and Fepy wt% values (see text 

for further explanation). The Fe(II)HCl pool represents unsulphidized Fe(II).  

Sapropel boundaries as in Fig 4. (a) sapropel S5 profile. (b) sapropel S7 profile. Data 

source: Supplement 3. 

 

Figure 6 FeT/Al vs. d
56

Fe for sapropels S5 (red data points) and S7 (blue data points). 

Also, shown for reference by green arrowed lines are the benthic Fe shuttle trends for 

the Black Sea (Severmann et al., 2008) and Holocene sapropel S1 at ODP967 

(Azrieli-Tal et al., 2014), respectively, interpreted to reflect strong and weakly euxinic 

water conditions. Most S5 and S7 data plot along an inverse FeT/Al –d
56

Fe trend 

parallel to that of the Black Sea. However, a number of sapropel S7 samples at peak 

Fe/Al values (140.5- 137.5 cm)) clearly deviate from the main trend, exhibiting higher 

d
56

Fe values than would be anticipated by the main inverse trend. 

 

Figure 7 FeT/Al vs. d
56

Fe for sapropels S5 (red data points) and S7 (blue data points). 

Also, shown for reference by green arrowed lines are the benthic Fe shuttle trends for 

the Black Sea (Severmann et al., 2008) and Holocene sapropel S1 at ODP967 

(Azrieli-Tal et al., 2014), respectively, interpreted to reflect strong and weakly euxinic 

water conditions. Most S5 and S7 data plot along an inverse FeT/Al –d
56

Fe trend 

parallel to that of the Black Sea. However, a number of sapropel S7 samples at peak 

Fe/Al values (140.5- 137.5 cm)) clearly deviate from the main trend, exhibiting higher 

d
56

Fe values than would be anticipated by the main inverse trend. 

 

Figure 8  Fe speciation plots of FeHR/FeT and CorrFepy/FeHR (after Poulton and 

Canfield, 2011). Sapropel S5 plots are given in Figs (a) and (c), respectively; sapropel 

S7 plots are given in Figs (b) and (d) respectively. In the CorrFepy/FeHR plots, the 

lower limit (0.8) of the euxinic sediments is defined by modern Black Sea data, 

whereas the lower limit for the possibly euxinic field is defined by Phanerozoic 

organic carbon-rich (OAE3) sediments (März et al., 2008). The FeHR/FeT plots show 

that pre-sapropel samples and sapropels from both S5 and S7 plot within the anoxic 

field, with FeHR/FeT values reaching 0.8 (i.e., highly reactive Fe becomes the 

dominant Fe component of the mineral assemblage). CorrFePy/FeHR values of 

sapropels mainly plot within the ferruginous field or straddle the boundary with the 
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possibly euxinic field. The five sapropel samples from S7 at 141.5 to 137.5 cm 

exhibiting the deviations to heavier d
56

Feauth values in Figs. 6 and 7 plot within the 

overall trends of all peak sapropel samples. 

Figure 9 Cross-plots of CorrFepy vs Mo (ppm) concentration [Mo] (Fig 9a) and 

CorrFepy vs FeHR/FeT (Fig 9b). Fields and boundaries in Fig 9a are taken from Scott 

and Lyons (2012) and those for Fig 9b are modified from Poulton and Canfield, 2011; 

Raiswell et al., 2018), with the lower limit of the ‘possibly euxinic’ zone reduced to 

Fepy/FeHR  = 0.6 (see main text for details). 
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Table	1	Sample,	elemental	and	isotopic	data	

Sample	No	 Mean	depth	 Fe/Al	 Ba/Al	 Mn/Al	 Ni/Al	 U/Al	 V/Al	 Mo/Al	 UEF	 MoEF	 d
56
Fe	(‰)	 Error	

		 (cm)	 g/g	 g/g*10
4
	 g/g*10

4
	 g/g*10

4
	 g/g*10

4
	 g/g*10

4
	 g/g*10

4
	 		 		 IRMM-14	 2s	(n)	

Sapropel	S5	(ODP967C-1H5)	

1H5	51-52		 51.5	 0.69	 22	 117	 10.1	 0.5	 18.5	 0.2	 4.8	 1.5	 0.22	 0.09(4)	

1H5	56-57		 56.5	 0.70	 16	 72	 8.1	 0.5	 14.1	 0.1	 4.3	 1.1	 0.17	 0.09(8)	

1H5	61-62		 61.5	 0.73	 16	 62	 8.8	 0.5	 15.8	 0.2	 4.5	 1.4	 0.20	 0.08(8)	

1H5	66-67		 66.5	 0.67	 18	 63	 9.2	 0.7	 17.7	 0.8	 6.4	 7.1	 0.11	 0.10(4)	

1H5	71-72		 71.5	 0.86	 31	 392	 14.3	 1.3	 20.9	 0.9	 12.0	 7.6	 0.22	 0.08(4)	

1H5	76-77		 76.5	 1.05	 104	 149	 22.0	 4.3	 62.7	 15.8	 40.1	 133.1	 -0.51	 0.08(5)	

1H5	78-79		 78.5	 1.20	 220	 244	 33.0	 7.6	 109.6	 32.0	 70.8	 269.3	 -0.40	 0.05(7)	

1H5	80-81	 80.5	 1.17	 179	 244	 30.1	 7.2	 98.2	 24.1	 66.9	 202.6	 -0.61	 0.1	(5)	

1H5	82-83		 82.5	 1.00	 304	 236	 31.5	 7.9	 103.2	 22.6	 73.6	 189.6	 -0.29	 0.10(13)	

1H5	84-85	 84.5	 1.06	 -	 208	 22.7	 6.0	 62.9	 33.4	 55.4	 280.9	 -0.27	 0.07	(5)	

1H5	86-87		 86.5	 1.02	 210	 231	 29.6	 9.9	 91.6	 26.0	 160.6	 218.3	 -0.34	 0.10(4)	

1H5	88-89		 88.5	 0.98	 -	 184	 26.2	 7.0	 62.4	 26.1	 65.2	 219.5	 -0.32	 0.07(6)	

1H5	90-91		 90.5	 0.99	 190	 201	 26.5	 7.1	 53.2	 30.2	 65.5	 253.4	 -0.25	 0.11(5)	

1H5	92-93		 92.5	 1.30	 245	 170	 28.6	 6.7	 54.5	 37.9	 61.6	 318.9	 -0.72	 0.11(7)	

1H5	94-95		 94.5	 0.80	 136	 195	 19.6	 3.9	 45.0	 12.2	 36.4	 102.5	 0.04	 0.03(3)	

1H5	96-97		 96.5	 0.79	 187	 189	 25.9	 5.2	 48.6	 20.8	 47.7	 174.5	 -0.01	 0.10(5)	

1H5	98-99	 98.5	 0.97	 180	 244	 27.8	 4.9	 47.1	 21.2	 45.4	 177.9	 0.07	 0.08(6)	

1H5	100-101		 100.5	 0.89	 91	 178	 24.9	 3.1	 52.4	 18.3	 28.2	 153.6	 -0.05	 0.06(5)	

1H5	102-103	 102.5	 0.99	 38	 575	 20.4	 1.6	 41.2	 6.6	 14.7	 55.8	 -0.12	 0.05(3)	

1H5	104-105		 104.5	 0.79	 18	 129	 11.7	 0.9	 18.1	 4.0	 8.3	 33.4	 -	

1H5	106-107		 106.5	 0.77	 20	 145	 11.7	 0.9	 18.9	 2.6	 8.0	 22.2	 0.05	 0.03(3)	

1H5	111-112		 111.5	 0.75	 42	 327	 18.2	 1.0	 20.4	 0.9	 9.7	 7.9	 0.20	 0.03(3)	

1H5	116-117		 116.5	 0.68	 32	 366	 16.6	 1.2	 21.0	 0.8	 11.3	 7.1	 0.29	 0.08(3)	

1H5	121-122		 121.5	 0.66	 28	 511	 12.9	 1.4	 18.0	 0.5	 12.5	 3.9	 0.51	 0.07(3)	

1H5	126-127		 126.5	 0.70	 24	 443	 14.0	 1.9	 25.3	 1.0	 17.4	 8.3	 0.36	 0.06(3)	

1H5	131-132		 131.5	 0.65	 27	 379	 19	 0.7	 20.8	 1.5	 6.6	 12.8	 0.15	 0.07(3)	

Sapropel	S7	(ODP967-2H2,3)	

2H2-124-125	 124.5	 0.66	 64	 127	 13.1	 0.6	 18.3	 0.1	 5.3	 0.9	 0.18	 0.07(3)	

2H2-129-130	 129.5	 0.63	 63	 206	 13.8	 1.0	 19.1	 0.0	 9.1	 0.4	 0.10	 0.07(3)	

2H2	131-132	 131.5	 0.64	 115	 173	 15.0	 1.1	 19.6	 0.1	 10.5	 0.6	 0.17	 0.01(3)	

2H2	133-134	 133.5	 0.71	 204	 201	 24.1	 2.2	 36.1	 0.8	 20.3	 6.4	 0.05	 0.05(3)	

2H2134-135	 134.5	 0.78	 256	 197	 31.9	 2.8	 54.9	 2.1	 25.9	 17.8	 -0.16	 0.04(3)	

2H2	135-136	 135.5	 0.97	 309	 206	 46.8	 4.9	 73.5	 8.2	 45.0	 68.7	 -0.19	 0.03(3)	

2H2	136-137	 136.5	 1.01	 315	 216	 50.3	 5.4	 73.7	 11.5	 50.1	 96.4	

2H2	137-138	 137.5	 1.89	 295	 317	 49.8	 6.7	 77.0	 28.6	 62.1	 240.7	 -0.44	 0.10(3)	

2H2	138-139	 138.5	 1.49	 295	 277	 41.3	 6.8	 63.6	 21.9	 63.0	 183.8	 -0.57	 0.023)	

2H2	139-140	 139.5	 1.48	 315	 301	 43.5	 6.9	 67.2	 25.3	 63.7	 212.3	 -0.64	 0.01(3)	

2H2	140-141	 140.5	 1.62	 342	 298	 34.7	 7.8	 71.3	 33.8	 71.8	 284.2	 -0.72	 0.02(3)	

2H2	141-142	 141.5	 1.35	 301	 287	 29.4	 7.2	 61.3	 29.8	 66.4	 250.8	 -0.55	 0.03(3)	

2H2	142-143	 142.5	 1.23	 274	 260	 27.3	 6.0	 55.8	 27.7	 55.4	 232.5	 -0.54	 0.03(6)	

2H2	143-144	 143.5	 1.21	 308	 268	 29.8	 6.5	 68.8	 30.9	 59.9	 259.5	 -0.41	 0.06(3)	

2H2	144-145	 144.5	 0.99	 264	 260	 28.3	 5.8	 58.0	 21.7	 53.9	 182.3	 -0.27	 0.00(3)	

	2H2	145-146	 145.5	 0.87	 287	 318	 31.6	 6.2	 74.0	 21.3	 57.9	 179.0	 -0.14	 0.03(3)	

2H2	146-147	 146.5	 0.88	 218	 284	 26.1	 4.8	 55.4	 16.6	 44.8	 139.5	 -0.09	 0.03(3)	

2H2	147-148	 147.5	 0.91	 237	 278	 25.3	 4.4	 51.1	 16.8	 40.7	 141.6	 -0.06	 0.02(3)	

2H2	148-149	 148.5	 0.92	 203	 270	 25.3	 4.3	 43.9	 16.3	 40.1	 136.7	 -0.09	 0.19(9)	

2H2	149-150	 149.5	 1.10	 146	 233	 22.6	 4.6	 41.4	 19.0	 42.9	 159.5	 -0.42	 0.07(3)	

2H3		0-1	 150.5	 0.86	 192	 273	 32.8	 3.8	 57.5	 17.9	 34.9	 150.4	 -0.06	 0.05(3)	

2H3	1-2	 151.5	 0.95	 116	 213	 21.5	 2.7	 52.8	 9.6	 24.9	 80.4	 -0.09	 0.08(3)	

2H3	2-3	 152.5	 0.88	 98	 854	 20.3	 2.1	 57.8	 7.8	 19.6	 65.6	 -0.10	 0.03(3)	

2H3	3-4	 153.5	 0.82	 53	 1914	 15.0	 1.5	 37.3	 5.0	 13.8	 42.2	 -0.18	 0.04(3)	

2H3	5-6	 155.5	 0.76	 26	 167	 10.5	 1.2	 21.4	 3.1	 11.3	 25.7	 0.18	 0.09(6)	

2H3	10-11	 160.5	 0.77	 28	 172	 10.2	 1.2	 19.5	 1.6	 10.9	 13.2	 0.14	 0.03(3)	

2H3	15-16	 165.5	 0.79	 33	 177	 10.5	 1.0	 20.5	 0.9	 9.1	 7.7	 0.02	 0.07(3)	
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Mean	Depth	cm	 %	Fe	detrital	 FeT/Al	 %Fe	authigenic	

d
56
Fe	

authigenic	 Error	

S5	

76.5	 69	 1.05	 31	 -2.00	 0.13	

78.5	 60	 1.20	 40	 -1.23	 0.07	

80.5	 62	 1.17	 38	 -1.85	 0.14	

82.5	 72	 1.00	 28	 -1.44	 0.32	

84.4	 69	 1.06	 31	 -1.19	 0.16	

86.5	 71	 1.02	 29	 -1.53	 0.26	

88.5	 74	 0.98	 26	 -1.63	 0.21	

90.5	 73	 0.99	 27	 -1.33	 0.32	

92.5	 56	 1.30	 44	 -1.82	 0.09	

98.5	 75	 0.97	 25	 -0.17	 0.28	

100.5	 82	 0.89	 18	 -0.93	 0.38	

102.5	 80	 0.91	 20	 -1.19	 0.29	

S7	

135.5	 75	 0.97	 25	 -1.21	 0.11	

136.5	 71	 1.01	 29	 -1.04	 0.08	

137.5	 38	 1.89	 62	 -0.81	 0.04	

138.5	 49	 1.49	 51	 -1.25	 0.01	

139.5	 49	 1.48	 51	 -1.39	 0.01	

140.5	 45	 1.62	 55	 -1.42	 0.01	

141.5	 54	 1.35	 46	 -1.36	 0.03	

142.5	 59	 1.23	 41	 -1.52	 0.04	

143.5	 60	 1.21	 40	 -1.24	 0.08	

144.5	 73	 0.99	 27	 -1.41	 0.00	

145.5	 83	 0.87	 17	 -1.59	 0.35	

146.5	 82	 0.88	 18	 -1.18	 0.24	

147.5	 79	 0.91	 21	 -0.87	 0.12	

149.5	 66	 1.10	 34	 -1.51	 0.12	

150.5	 84	 0.86	 16	 -1.12	 0.43	

151.5	 76	 0.95	 24	 -0.86	 0.28	

152.5	 83	 0.88	 17	 -1.29	 0.20	

 

 

 

 


