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Joint DOA and Polarisation Estimation with

Crossed-dipole and Tripole Sensor Arrays
Xiang Lan, Wei Liu, Senior Member, IEEE, and Henry Y. T. Ngan, Senior Member, IEEE

Abstract—Electromagnetic vector sensor arrays can track both
the polarisation and direction of arrival (DOA) of the impinging
signals. For linear crossed-dipole arrays, as shown by our
analysis, due to inherent limitation of the structure, it can only
track one DOA parameter and two polarisation parameters. For
full four-dimensional (4-D, 2 DOA and 2 polarization parameters)
estimation, we could extend the linear crossed-dipole array to
the planar case. In this paper, instead of extending the array
geometry, we replace the crossed-dipoles by tripoles and construct
a linear tripole array. Detailed proof shows that such a structure
can estimate the 2-D DOA and 2-D polarisation information
effectively in general. A brief comparison between the planar
crossed-dipole array and the linear tripole array is performed
at last, showing that although the planar structure has a better
performance, it is achieved at the cost of increased physical size.

Keywords—linear tripole array, linear crossed-dipole array,
direction of arrival (DOA), polarisation estimation.

I. INTRODUCTION

The joint estimation of direction of arrival (DOA) and

polarisation for signals based on electromagnetic (EM) vector

sensor arrays has been widely studied in the past [1]–[21]. In

[1], the EM vector sensor was first used to collect both electric

and magnetic information of the impinging signals, where all

six electromagnetic components are measured to identify the

signals. So far most of the studies are focused on the linear

structure employing crossed-dipoles [2]–[4] and tripole sensors

[5]–[8], where the general two-dimensional (2-D) DOA model

is simplified into one-dimensional (1-D) by assuming that all

the signals arrive from the same known azimuth angle φ.

In [22], [23], MUSIC algorithm was proposed to deal with

the joint DOA (θ) and polarisation (ρ, φ) estimation problem

by considering DOA (1-D) and polarisation (2-D) together,

where a three (3-D) peak search is required with a very high

computational complexity. In [9], [10], [24]–[26], methods

were developed so that the DOA and polarisation can be

estimated separately.

In practice, the azimuth angle θ and the elevation angle

φ of the signals are unknown and they are usually different

for different signals and need to be estimated together. The

existing 3-D joint DOA and polarisation work could be ex-

tended to four-dimensional (4-D) (2 DOA and 2 polarisation

parameters). However, the 4-D estimation work comes with a

uniqueness problem [27]–[32]. In [27], it indicates that the

problem is due to the linear dependence of joint steering
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vectors. In [32] and [29], Tan proved that for an EM vector

sensor and EM vector sensor array, every three joint steering

vectors with different DOAs are linearly independent, while

the fourth one with a different DOA could be the linear combi-

nation of the first three steering vectors. The linear dependence

of steering vectors with tripole sensors is discussed in [30],

where a special case of linear dependence is introduced that

with some strict constraints, two steering vectors with different

DOAs may be in parallel with each other, which can be

avoided if the signals are nonlinearly polarised and arrives

strictly from a hemispherical space.

When further reducing the tripole sensor array to a cross-

dipole sensor array, as rigorously proved for the first time

in this work, the linear crossed-dipole array has the parallel

ambiguity problem, where the azimuth angle and the elevation

angle of the impinging signals can not be uniquely identified.

To tackle this problem, one solution is to extend the linear

geometry to a 2-D array, such as the uniform rectangular array

(URA) [33]. On the other hand, it is possible to add one dipole

to the crossed-dipole structure to form a tripole sensor, and

tripole sensor arrays have been proposed in the past for DOA

estimation [34], [35]. Therefore, as another solution, motivated

by simultaneously simplifying the array structure and reduc-

ing the computational complexity, the crossed-dipoles were

replaced by tripoles and a linear tripole array was constructed

in our earlier conference publication for joint 4-D DOA and

polarisation estimation for the first time [36]. Moreover, for the

first time, we give a clear proof about why a linear tripole array

can be used for 4-D joint DOA and polarisation estimation,

while avoiding the ambiguity problem except for some special

cases.

As a URA of cross-dipoles can also achieve effective 4-

D estimation, it would be interesting to know that given the

same number of dipoles, which structure performs better. Our

simulation results show that the URA has a better performance,

at the cost of increased physical size. This observation is also

verified by their Cramér-Rao Bounds [38]–[47].

This paper is structured as follows. The linear tripole array

is introduced in Section II with a detailed proof for the 4-D

ambiguity problem of non-linearly polarised signals associated

with the linear crossed-dipole array and why the linear tripole

array can solve the problem; for linearly polarised signals,

the ambiguity exists even with tripole arrays and the case is

analysed in detail. Simulation results are presented in Section

III, and conclusions are drawn in Section IV.
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II. TRIPOLE SENSOR ARRAY MODEL

A. Tripole sensor array

Suppose there are M uncorrelated narrowband signals im-

pinging upon a uniform linear array with N tripoles, as

shown in Fig. 1. Assume that all signals are stationary and

nonlinearly-polarised (elliptically or circularly polarised). The

parameters, including DOA and polarisation of the m-th signal

are denoted by (θm, φm, γm, ηm),m = 1, 2, ...,M , where

θm ∈ [0, π/2], φm ∈ [0, 2π]. The inter-element spacing d is

usually λ/2, where λ is the signal wavelength. For each tripole

sensor, the three components are parallel to x, y and z axes,

respectively. The background noise is white Gaussian with

zero mean and variance σ2
n, uncorrelated with the impinging

signals. The steering vector for the m-th signal can be denoted

as

am = [1, e−jπ sin θm sinφm , ..., e−j(N−1)π sin θm sinφm ] (1)

and the polarisation vector pm is determined by the product

of DOA component Ωm and the polarization component gm
[48], i.e.,

pm = Ωmgm (2)

with

Ωm =





cos θm cosφm − sinφm

cos θm sinφm cosφm

− sin θm 0



 (3)

gm =

[

sin γmejηm

cos γm

]

(4)

where γm is the auxiliary polarization angle and ηm the

polarization phase difference. By expanding (2), pm can be

divided into three different components in x, y and z axes

pm =





cos θm cosφm sin γmejηm − sinφm cos γm
cos θm sinφm sin γmejηm + cosφm cos γm

− sin θm sin γmejηm



 (5)

For convenience, we replace the three elements in pm by

pmx = cos θm cosφm sin γmejηm − sinφm cos γm

pmy = cos θm sinφm sin γmejηm + cosφm cos γm

pmz = − sin θm sin γmejηm (6)

The received signal can be denoted as a function of steering

vector am, polarisation vector pm, source signals sm(t) and

background noise n. At the k-th time instant, the received

signal vector x[k] can be expressed as

x[k] =
M
∑

m=1

[am ⊗ pm]sm[k] + n[k]

=
M
∑

m=1

vmsm[k] + n[k] (7)

where ⊗ stands for the Kronecker product, vm is the Kro-

necker product of am and pm, and n[k] is the 3N×1 Gaussian

white noise vector. The covariance matrix R is given by

R = E{x[k]x[k]H}

=

M
∑

m=1

vmE{s[k]s[k]∗}vHm + σ2
nI3N (8)

d

x

y

z

d

Fig. 1. Geometry of a uniform linear tripole array.

In practice, an estimated covariance matrix R̂ is used

R̂ ≈ 1

K

L
∑

l=1

x[k]x[k]H (9)

where K is the number of snapshots.

B. Comparison between Crossed-dipole and Tripole Arrays

This section will mainly show why the ULA with crossed-

dipoles cannot uniquely determine the four parameters associ-

ated with each impinging signal, leading to the spatial aliasing

problem, and why the ULA with tripoles can provide a unique

solution for the joint 4-D estimation problem.

To show the ambiguity problem, consider one source signal

impinging upon the array so that the subscript m can be

dropped for convenience. The joint DOA and polarisation

estimation problem can be considered as an estimation of the

steering vector of this source signal.

For crossed-dipole sensor array, its joint steering vector w

is given by

w = a ⊗ q (10)

where

q = [px, py]
T . (11)

Here, w is a 2N × 1 vector with a 2 × 1 polarisation vector

q. For the tripole sensor array, the joint steering vector v is a

3N × 1 vector with a 3× 1 polarisation vector p, i.e.

v = a ⊗ p (12)

where

p = [px, py, pz]
T . (13)

For convenience, we use α = (θ, φ, γ, η) to denote the four

parameters. The ambiguity problem associated with the cross-

dipole array can be stated as follows: If there is an arbitrarily

polarised signal from α1, we can always find another signal

from α2 that satisfies w1//w2, with α1 6= α2, where // means

the two vectors are in parallel, i.e., w2 = k · w1, with k being

an arbitrary complex-valued scalar.

When we say that the tripole array can avoid the ambiguity

problem, it means that for nonlinearly polarised signals if α1 6=
α2, the joint steering vectors v1 and v1 will never be in parallel

with each other.

To prove these two statements, firstly we give the following

definition and lemma.
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Definition. Given two signals from distinct directions (θ1, φ1)
and (θ2, φ2), the two signals are in DOA parallel if a1 = a2.

Equation (1) indicates that a is only determined by the value

of sin θ sinφ. If it satisfies

sin θ1 sinφ1 = sin θ2 sinφ2 (14)

the two steering vectors will be the same, i.e. a1 = a2. In the

upper hemisphere space (0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π), there

are infinite number of directions in DOA parallel with a given

direction.

Lemma. Given two complex-valued vectors w1 = a1⊗q1 and

w2 = a2 ⊗ q2, w1//w2 is necessary and sufficient for a1//a2

and q1//q2.

The proof can be found in Appendix A. Although we used

the joint steering vector of the crossed-dipole array in the

proof, it is straightforward to show that the lemma is also

applicable to the joint steering vector of tripole sensor arrays.

Now we first consider the ambiguity problem in crossed-

dipole sensor arrays. Given w1 = a1⊗q1, our aim is to find a

vector w2 = a2 ⊗ q2 with a1//a2 and q1//q2 when α1 6= α2.

As mentioned in the DOA parallel definition, any direction

that satisfies (14) has the steering vector a2//a1. With the

constraints, we need further choose values for γ2 and η2 to

satisfy q1//q2. From (6) and (11), the polarisation vector q1

is determined by all four parameters θ1, φ1, γ1 and η1, where

q1 =

[

cos θ1 cosφ1 − sinφ1

cos θ1 sinφ1 cosφ1

] [

sin γ1e
jη1

cos γ1

]

= Ψ1g1 (15)

Hence, the other polarisation vector q2 = Ψ2g2 needs to

satisfy

Ψ1g1 = λΨ2g2 ⇒ g2 = λ−1
Ψ

−1
2 Ψ1g1 (16)

λ is a constant and without loss of generality we assume its

value is 1. Here g2 is a 2 × 1 vector with g2[1] = sin γ2e
jη2

and g2[2] = cos γ2, where “[1]” and “[2]” denote the first and

the second elements of the vector.

tan γ2 =
|g2[1]|
|g2[2]|

tan η2 =
Im{g2[1]/g2[2]}
Re{g2[1]/g2[2]}

(17)

The new parameters from (14) ensure a1//a2 and the new

parameters from (17) ensure q1//q2 with the constraint α1 6=
α2. After that, the new joint steering vector w2 will be in

parallel with the original w1. As a result, we can not uniquely

determine the four DOA and polarisation parameters of a

source using the crossed-dipole array.

Next, we consider the tripole sensor array case. Given a joint

steering vector v1 = a1 ⊗ p1, we want to prove that a parallel

v2 = a2 ⊗ p2 does not exist and we prove it by contradiction.

Similar to the crossed-dipole case, firstly a new direction

which is in DOA parallel to the original direction is selected so

that the new elevation and azimuth angles ensure a1//a2. This

step is clearly feasible and the new direction can be obtained

by (14). The remaining part of the problem is that whether

there exists another polarisation vector p2 which is in parallel

with p1. Assuming that p2 exists, i.e.

Ω1g1 = λΩ2g2 (18)

where λ is an unknown complex-valued constant. Expanding

Ω1 and Ω2 by the column vector, where Ω11 and Ω12 are the

first and second column vectors of Ω1, and Ω21 and Ω22 are

the first and second column vectors of Ω2, respectively. (18)

is transformed to

[Ω11 Ω12]

[

g1[1]
g1[2]

]

= λ[Ω21 Ω22]

[

g2[1]
g2[2]

]

⇔

Ω11g1[1] +Ω12g1[2] = Ω21g2[1]λ+Ω22g2[2]λ (19)

The left side of (19) can be viewed as a vector which is a linear

combination of Ω11 and Ω12. The right is a linear combination

of Ω21 and Ω22. Here we define a 2-D space A1 spanned

by Ω11 and Ω12, also A2 spanned by Ω21 and Ω22. Since

Ω11,Ω12,Ω21 and Ω22 are all 3 × 1 vectors, the equation

holds only in the following two cases:

Case 1: A1 and A2 are the same 2-D span.

It can be noticed that A1 intersects with the x− y plane at

vector Ω12, and A2 intersects with the x − y plane at vector

Ω22. If A1 and A2 are the same 2-D span, it must satisfy

Ω12//Ω22, and then we have




− sinφ1

cosφ1

0



 //





− sinφ2

cosφ2

0



 ⇔ − sinφ1

cosφ1
= − sinφ2

cosφ2

⇔ tanφ1 = tanφ2 (20)

However, φ1 6= φ2 and (20) contradicts with the basic

assumption, which means that with the tripole sensor array,

there is no other joint steering vector v2 in parallel with the

given v1 in such a case.

Case 2: A1 and A2 are two different 2-D spans. Then p1
and p2 must be in parallel with the intersecting vector of A1

and A2. Firstly, we denote the intersecting vector as Ωx. Since

Ω11,Ω12,Ω21,Ω22 are all real-valued, all the elements in Ωx

must also be real-valued. From eq.(5), p1 can be transformed

to

p1 = ejη





cos θ cosφ sin γ − sinφ cos γe−jη

cos θ sinφ sin γ + cosφ cos γe−jη

− sin θ sin γ



 = ejη · p̂1

(21)

It can be seen that p1//p̂1. In most situations, with γ 6= 90◦,

γ 6= 0 and η 6= 0 (nonlinearly polarized), the first two

elements in p̂1 are complex-valued and the last element in p̂1
is real-valued, which indicates that with such a situation, it is

impossible for p̂1 to be in parallel with the intersecting vector

Ωx. Hence, if the incoming signal is nonlinearly polarised,

there is no ambiguity in joint estimation with tripole sensors.

C. Ambiguity with Linearly Polarised Signals

If the signals are linearly polarised, γ = 90◦ or γ = 0 or

η = 0. p̂1 or p1 becomes a real-valued vector, and it may be

possible for p1 to be in parallel with the intersecting vector

Ωx. Now with the assumption p1//p2//Ωx, p1 and p2 must

all be real-valued, which means γ1 = 90◦ or γ1 = 0 or η1 = 0,

and at the same time γ2 = 90◦ or γ2 = 0 or η2 = 0. With the

constraint sin θ1 sinφ1 = sin θ2 sinφ2, we consider all of the

following cases:
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Case 1: γ1 = 90◦ and γ2 = 90◦.

p1 = ejη1





cos θ1 cosφ1

cos θ1 sinφ1

− sin θ1



 p2 = ejη2





cos θ2 cosφ2

cos θ2 sinφ2

− sin θ2





(22)

With θ1 = θ2 and φ1 = φ2, we have p1//p2 for ar-

bitrary η1 and η2. An example is (30◦, 60◦, 90◦, 20◦) and

(30◦, 60◦, 90◦, 50◦).
Case 2: γ1 = 90◦ and γ2 = 0◦. (same for γ1 = 0◦ and

γ2 = 90◦)

p1 = ejη1





cos θ1 cosφ1

cos θ1 sinφ1

− sin θ1



 p2 =





− sinφ2

cosφ2

0



 (23)

In this case, with θ1 = 0◦ and tanφ1 = − cotφ2, we

have p1//p2 for arbitrary θ2, η1 and η2. An example is

(0◦, 90◦, 90◦, 20◦) and (50◦, 0◦, 0◦, 50◦).
Case 3: γ1 = 90◦ and η2 = 0◦. (same for η1 = 0◦ and

γ2 = 90◦)

p1 = ejη1





cos θ1 cosφ1

cos θ1 sinφ1

− sin θ1





p2 =





cos θ2 cosφ2 sin γ2 − sinφ2 cos γ2
cos θ2 sinφ2 sin γ2 + cosφ2 cos γ2

− sin θ2 sin γ2



 (24)

Given arbitrary θ1, φ1, θ2, φ2 which satisfy the constraint (14),

if p1//p2, then














sin θ1
sin θ2 sin γ2

=
cos θ1 cosφ1

cos θ2 cosφ2 sin γ2 − sinφ2 cos γ2
sin θ1

sin θ2 sin γ2
=

cos θ1 sinφ1

cos θ2 sinφ2 sin γ2 + cosφ2 cos γ2

(25)

leading to
{

sinφ2 = cosφ2

sinφ2 = − cosφ2

(26)

which causes contradiction. In this case, there is no ambiguity.

Case 4: γ1 = 0◦ and γ2 = 0◦.

p1 =





− sinφ1

cosφ1

0



 p2 =





− sinφ2

cosφ2

0



 (27)

In this case, with φ1 = φ2, we have p1//p2 for arbitrary η1 and

η2. An example is (30◦, 60◦, 0◦, 20◦) and (30◦, 60◦, 0◦, 50◦).
Case 5: γ1 = 0◦ and η2 = 0◦. (same for η1 = 0◦ and

γ2 = 0◦)

p1 =





− sinφ1

cosφ1

0





p2 =





cos θ2 cosφ2 sin γ2 − sinφ2 cos γ2
cos θ2 sinφ2 sin γ2 + cosφ2 cos γ2

− sin θ2 sin γ2



 (28)

In this case, to satisfy the parallel condition, firstly θ2 should

be 0◦ and η1 can be an arbitrary value. Further we have

tan γ2 =
cosφ1 sinφ2 − sinφ1 cosφ2

cosφ1 cosφ2 + sinφ1 sinφ2
(29)

An example is (30◦, 0◦, 0◦, 30◦) and (0◦, 30◦, 30◦, 0◦).
Case 6: η1 = 0◦ and η2 = 0◦.

p1 =





cos θ1 cosφ1 sin γ1 − sinφ1 cos γ1
cos θ1 sinφ1 sin γ1 + cosφ1 cos γ1

− sin θ1 sin γ1





p2 =





cos θ2 cosφ2 sin γ2 − sinφ2 cos γ2
cos θ2 sinφ2 sin γ2 + cosφ2 cos γ2

− sin θ2 sin γ2



 (30)

In this case, due to the parallel condition, we know














sin θ1 sin γ1
sin θ2 sin γ2

=
cos θ1 cosφ1 sin γ1 − sinφ1 cos γ1
cos θ2 cosφ2 sin γ2 − sinφ2 cos γ2

sin θ1 sin γ1
sin θ2 sin γ2

=
cos θ1 sinφ1 sin γ1 + cosφ1 cos γ1
cos θ2 sinφ2 sin γ2 + cosφ2 cos γ2

(31)

Each equations in (31) will produce a unique solution

to tan γ2. Except that all the parameters (θ1, φ1, γ1) =
(θ2, φ2, γ2), there is no other solutions for γ2 and therefore

there is no ambiguity in this case.

Table I gives a summary of the ambiguity problem between

array and signal types, where ‘★’ means there is ambiguity

in the estimation while with ‘✦’ no ambiguity exists.

TABLE I
AMBIGUITY BETWEEN ARRAY AND SIGNAL TYPES

Array
type

Signal
Non-linearly

polarised

Linearly
polarised

(Case:1,2,4,5)

Linearly
polarised
(Case:3,6)

Crossed-dipole ★ ★ ★

Tripole ✦ ★ ✦

III. SIMULATION RESULTS

In this section, simulation results are presented to demon-

strate the ambiguity issues discussed earlier and the perfor-

mance of the proposed linear tripole arrays.

A. Ambiguity for Non-Linearly Polarised Signals

Assuming one source signal from (θ, φ, γ, η) =
(30◦, 80◦, 20◦, 50◦) impinges on both arrays. Both have

the same senor number N = 5 and d = λ/2. SNR is

10 dB. A 2-D estimator is used to estimate the DOA

and polarisations [36]. The 2-D estimator divides the 4-D

estimation into two separate 2-D searches, i.e. the 2-D DOA

and the 2-D polarisation search. Here we only focus on the

DOA estimation by the 2-D estimator.

Figs. 2(a) and 2(b) present the DOA estimation results for

these two arrays, respectively. Apparently, the tripole array

gives a unique peak at the source direction while the crossed-

dipole array shows a peak line due to the ambiguity problem

and there is no way to identify the real direction of the signal.
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(b) Linear tripole array

Fig. 2. DOA spectrum of non-linearly polarised signal (top contour view).
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(b) Linear tripole array

Fig. 3. DOA spectrum of linearly polarised signal (top contour view).

B. Ambiguity for Linearly Polarised Signals

Consider a linearly polarised signal from (θ, φ, γ, η) =
(30◦, 80◦, 20◦, 0◦). The array is constructed with N = 5
sensors with d = 0.3λ and the SNR is 10 dB. The 2-D

estimator is applied to provide the DOA estimation spectrums,

which are shown in Figs. 3(a) and 3(b). The spectrum of

Fig. 3(a) by crossed-dipole array is very similar to the results

for non-linearly polarised signals in Fig. 2(a) where there

are infinite number of ambiguity directions along a peak line

satisfying sin θ sinφ = sin 30◦ sin 80◦. However, the spectrum

of Fig. 3(b) indicates that the ambiguity still exists with the

tripole array. However, the ambiguity direction is no more of

an infinite number, and there is only one ambiguity direction

at (θ, φ) = (53◦, 38◦).

C. RMSE Results

Now we study the performance of tripole arrays for

DOA and polarisation estimation. Consider two signals

from (θ, φ, γ, η) = (10◦, 20◦, 15◦, 30◦) and (θ, φ, γ, η) =
(60◦, 70◦, 60◦, 80◦). The tripole sensor number is N = 4 and

the number of snapshots is K = 1000. Firstly, we compare

the estimation results in two cases. The first case is that the

two sources are uncorrelated while the second case is that the

two sources are partially correlated with correlation coefficient

ρ = 0.71. After applying the 2-D estimator, the results for θ
and γ are shown in Figs. 4(a)-4(b), respectively, where we can

see that uncorrelated sources has a smaller error than partially

correlated ones. With the increase of SNR, the estimation

accuracy of the two cases also increases. The results for φ
and η are omitted as they show a similar trend.

Now we compare the performance of the 4-D estimator

[36], the 2-D estimator [36], [37], 2-D estimator with Newton

optimization (see Appendix B) and the CRB for uncorrelated

sources. The RMSE results are shown in Figs. 5(a)-5(d), where
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Fig. 4. Uncorrelated sources versus partially correlated sources.
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Fig. 5. RMSE of uncorrelated sources.

we can see that with the increase of SNR, the RMSE level

decreases consistently, and the accuracy of the 4-D MUSIC is

always better than the 2-D estimator. However, after Newton

optimization, the 2-D estimator has achieved an even higher

accuracy, very close to the CRB [37], with a complexity still

much lower than the 4-D estimator.

D. Linear Tripole and Planar Crossed-dipole Arrays

Since a planar crossed-dipole array can also be used to

estimate the four parameters, it would be interesting to know

that given the same number of dipoles, which one is more

effective for 4-D parameter estimation, the linear tripole array

or the planar crossed-dipole array. Consider a 4 × 1 linear

tripole array and a 2× 3 planar crossed-dipole array with the

same number of dipoles or DOFs. We compare their estimation

accuracy using the 2-D MUSIC algorithm [36]. All the other

conditions are the same as in Section III-C.

Fig. 6 shows the RMSE results for the first signal’s azimuth

angle. It can be seen that the planar array has given a higher

estimating accuracy and its CRB is much lower than the

linear tripole array, which means that the compact structure

of the linear tripole array is achieved at the cost of estimation

accuracy.

IV. CONCLUSION AND DISCUSSION

With a detailed analysis and proof, it has been shown that

due to inherent limitation of the linear crossed-dipole structure,

it cannot uniquely identify the four parameters associated with
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impinging signals. In order to simultaneously estimate both the

2-D DOA and 2-D polarisation parameters of the impinging

signals, we could increase the dimension of the array and

construct a planar crossed-dipole array. To avoid this and have

a compact structure, a linear tripole array has been employed

instead. It has been proved and also shown that such a structure

can estimate the 2-D DOA and 2-D polarisation information

effectively except for some very special cases. Finally, a brief

comparison has shown that given the same number of dipoles,

the planar structure has a better performance, although this is

achieved at the cost of increased physical size.

APPENDIX A

PROOF OF THE LEMMA

Necessity: If a1//a2 and q1//q2, then

a2 = k1 · a1 q2 = k2 · q1 (32)

where k1 and k2 are arbitrary complex-valued constants. Then,

w2 = a2 ⊗ q2 = (k1 · a1)⊗ (k2 · q1)

= (k1k2) · (a1 ⊗ q1) = (k1k2) · w1 (33)

Hence, w1//w2.

Sufficiency: By (10), w can be expanded as

w = a ⊗ q =













a1q

.

.

.
aNq













=





















a1px
a1py
.
.
.

aNpx
aNpy





















(34)

The Hermitian transpose wH is given by

wH = aH ⊗ qH (35)

The norm of w is

|w| =
√

wHw =
√

(a1a∗1 + ...+ aNa∗N )(pxp∗x + pyp∗y)

= |a| · |q| (36)

Then, we have

|w1| = |a1| · |q1| |w2| = |a2| · |q2| (37)

Generally, by (35), the modulus of the inner product of w1

and w2 can be expanded as

|wH
1 w2| = |(aH1 ⊗ qH1 ) · (a2 ⊗ q2)| (38)

According to the mixed-product property of Kronecker prod-

uct, lemma 4.2.10 in [49], (38) can be deduced to

|wH
1 w2| = |aH

1 · a2| ⊗ |qH
1 · q2|

≤ |a1| · |a2| · |q1| · |q2| (39)

On the other hand, since w1//w2, we know w2 = kw1 and

|w2| = |k||w1|, which leads to

|wH
1 w2| = |wH

1 · kw1| = |k||w1| · |w1|
= |w1| · |w2| = |a1| · |a2| · |q1| · |q2| (40)

The equality in (39) holds only when a1//a2 and q1//q2.

Combined with (40), the sufficiency proof is completed.

APPENDIX B

2-D ESTIMATOR WITH NEWTON METHOD

As introduced in [36], [37], the 2-D MUSIC estimator

includes the following steps: Firstly, the noise subspace is

derived by applying eigenvalue decomposition to R̂. The lase

3N−M (N is the sensor number and M is the signal number)

eigenvalues and the corresponding eigenvectors form the noise

space Un. After that, apply the following 2-D estimator to find

θ and φ,

f(θ, φ) =
det{BHB}

det{BHUnUH
n B}

(41)

where B is the steering matrix associated with θ and φ (see

(13) in [36]). After obtaining θ and φ, the polarisation γ and

η can be estimated by the following estimator through another

2-D search:

f(γ, η) =
gHBHBg

gHBHUnUH
n Bg

(42)

where g = [cos γ sin γejη]T is the polarisation vector.

The estimates of θ and φ can be further refined by the

Newton method. In the spectrum, the peak directions satisfy

det{BHUnUH
n B} = 0. Define

l(θ, φ) = det{BHUnUH
n B} (43)

It can be verified that l(θ, φ) is non-negative valued. When θ
and φ meet the source signals’ direction, l(θ, φ) will reach a

minimum value, where

∇l(θ, φ) = 0 ⇒















∂l(θ, φ)

∂θ
= 0

∂l(θ, φ)

∂φ
= 0

(44)

where ∇ denotes the gradient of l(θ, φ).
With a rough estimation of θa, φa provided by the 2-D

estimator, the partial derivative with regard to θa is possibly

not equal to 0. If a tangent is plotted through (θa, φa) along

the θ-axis direction of
∂l(θ,φ)

∂θ
, the equation can be denoted as

l2(θ, φ) =
∂2l(θa, φa)

∂θ2
(θ − θa) + l(θa, φa) (45)
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Then the intersection between the equation and the θ-axis

should be

0 =
∂2l(θa, φa)

∂θ2
(θb − θa) +

∂l(θa, φa)

∂θ
(46)

The Newton method provides a more accurate value θb than

θa with one trial, where

θb = θa −
∂l(θa, φa)

∂θ
/
∂2l(θa, φa)

∂θ2
(47)

Similarly, the other parameter φ can be approached by

φb = φa −
∂l(θa, φa)

∂φ
/
∂2l(θa, φa)

∂φ2
(48)

The above process should be repeated in a finite number of

trials to obtain a better result.
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