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Summary

Conventional closed-form solution to the optimal control problemusing optimal

control theory is only available under the assumption that there are known sys-

tem dynamics/models described as differential equations.Without suchmodels,

reinforcement learning (RL) as a candidate technique has been successfully

applied to iteratively solve the optimal control problem for unknown or vary-

ing systems. For the optimal tracking control problem, existing RL techniques

in the literature assume either the use of a predetermined feedforward input for

the tracking control, restrictive assumptions on the reference model dynamics,

or discounted tracking costs. Furthermore, by using discounted tracking costs,

zero steady-state error cannot be guaranteed by the existing RL methods. This

article therefore presents an optimal online RL tracking control framework for

discrete-time (DT) systems, which does not impose any restrictive assumptions

of the existing methods and equally guarantees zero steady-state tracking error.

This is achieved by augmenting the original system dynamics with the integral

of the error between the reference inputs and the tracked outputs for use in the

onlineRL framework. It is further shown that the resulting value function for the

DT linear quadratic tracker using the augmented formulation with integral con-

trol is also quadratic. This enables the development of Bellman equations, which

use only the systemmeasurements to solve the corresponding DT algebraic Ric-

cati equation and obtain the optimal tracking control inputs online. Two RL

strategies are thereafter proposed based on both the value function approxima-

tion and the Q-learning along with bounds on excitation for the convergence of

the parameter estimates. Simulation case studies show the effectiveness of the

proposed approach.
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1 INTRODUCTION

Reinforcement learning (RL) is a type ofmachine learning technique that has been used extensively in the area of comput-

ing and artificial intelligence to solve complex optimization problems.1,2 Due to its successes, there have been concerted

efforts by researchers in the control community to explore the overlap between RL and optimal control theory, which

usually involves solving the general-purpose Hamilton-Jacobi Bellman (HJB) equations. The conventional approach to

optimal controlminimizes aweighted cost function composed of state and controlminimization objectives. A closed-form

solution (eg, Riccati equation) to this problem is available under the assumption that there are known system dynamics

described as differential equations.3Without suchmodels, this closed-form solution is not available. RL has been success-

fully applied to iteratively optimize these control cost functions for unknown or varying systems by providing solutions

to the HJB equations online.4,5 This article addresses the optimal online tracking control of varying systems under less

restrictive assumptions than previously proposed solutions and builds upon the objectives of performance seeking and

real-time optimization techniques.6,7

Variations occur in systems due to a number of factors including degradation and changing operating conditions,

which can result in a reduction in system performance. From the traditional control perspective, adaptive control offers

strategies to compensate for the system variations and can be indirect or direct. Indirect adaptive schemes use the sys-

temmeasurements to learn new systemmodels, which are then used in a conventional model-based control design while

direct schemes use the system measurements to adapt some parameterized controllers. In both of these schemes, opti-

mality is not directly achieved in the sense of optimizing some user-defined cost function.8 RL enables the development

of both optimal and adaptive strategies that are able to cope with the system variations by using only the system mea-

surements and has been linked to both optimal and adaptive control.9-12 These enabling methods are therefore classed as

intelligent, defined as self-diagnostic, prognostic, and optimizing, resulting in a through-life adaptation strategy and has

been widely reported in many applications.13-16

Mathematical implementation of RL is enabled through approximate/adaptive dynamic programming (ADP)17,18 and

has been described by different other labels including neurodynamic programming and adaptive critic designs.9,19,20

Through interactionwith the systems, the RL-ADP strategies have been applied to incrementally improve the desired con-

trol behavior for the regulation of feedback systems involving unknown continuous and discrete-time (DT) dynamics.21-28

For the tracking control problem, existing RL strategies are split between methods that employ dynamics inversion and

those that use an augmented formulation.29

In Reference 30, a method employing the dynamics inversion for the infinite-time tracking control for the DT non-

linear systems has been proposed. The method assumes that the steady-state feedforward control input is known a

priori and uses a new quadratic performance index to compute the feedback control input using RL techniques. A

finite-horizon neurooptimal equivalent that minimizes the tracking error over a finite horizon but equally assumes a

known steady-state feedforward input is proposed in Reference 31. Likewise, the authors in Reference 32 have proposed

an optimal tracking control for nonlinear DT systems that uses three online approximators and a heuristic tuning law

for the feedforward portion of the control input but assumes bounded approximation errors with fixed model structures

for the identification of the system parameters. A similar approach that uses three approximators and a generalized

policy iteration ADP to include two iteration procedures for the tracking control has been proposed in Reference 33. This

approach learns a model of the system dynamics online and generally requires pretrained models while assuming fixed

model structures for the identification. In contrast to these approaches, strategies that employ the augmented formu-

lation obviate the need to have a predetermined feedforward control input by transforming the tracking control into a

regulation problem using augmented system states. In Reference 34, an approach that transforms the optimal tracking

control problem into a regulation problem has been provided by augmenting the system states with the reference model

dynamics for linear DT systems. The approach assumes that the reference generator matrix is governed by dynamics that

tend toward zero, thereby limiting any practical usage of the approach in the case of nonzero reference inputs. Conse-

quently, an approach that relaxes the restriction on the reference dynamics by using a discounted tracking cost is given

in Reference 35. Extension of the approaches to DT nonlinear systems using neural networks and discounted tracking

cost is given in Reference 36, while the continuous time equivalents of the strategies to include input constraints are given

in Reference 37. However, by introducing a discounted tracking cost, convergence of the tracking error to zero can no

longer be guaranteed, thereby limiting the practicality of the approaches. As a result, none of the existing optimal online

tracking RL strategies are able to guarantee a nonzero steady-state tracking error using the system dynamics inversion
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or augmented formulations. Moreover, the restrictive assumptions involved in both formulations make the approaches

less desirable for use in practical tracking applications.

This article therefore presents an optimal online reinforcement learning tracking control framework for DT systems,

which uses an augmented formulation with integral control and transforms the DT optimal tracking control problem

into one of regulation. In contrast to the approaches discussed in Reference 30,31,34-36, the proposed framework removes

the need to have either a predetermined feedforward control input, any restrictive assumptions on the reference model

dynamics, or a discounted tracking cost that limits the practical applications of existing online tracking RL approaches.

Furthermore, the proposed RL framework eliminates steady-state tracking error and is able to cope with systems with

unknown or varying dynamics leading to a through-life adaptation strategy. It is shown in this article that the resulting

value function for the DT linear quadratic tracker (LQT) using the augmented formulation with integral control is also

quadratic. This enables the development of Bellman equations, which use only the system measurements to solve the

corresponding DT algebraic Riccati equation (ARE) and obtain the optimal control inputs online. Two RL strategies are

proposed in this article based on both the value function approximation (VFA) and Q-learning along with bounds on

excitation for the convergence of the parameter estimates.

The rest of the article is organized as follows. Section 2 presents the general optimal tracking control problem for

DT systems along with the existing solution strategies and their limitations. Section 3 presents the proposed augmented

formulation, while Section 4 provides the model-based control solution to the augmented LQT problem. In Section 5, the

two RL strategies and an intelligent framework for the augmented LQT problem are developed and respective algorithms

provided, while Section 6 gives two representative simulation case studies using the proposed algorithms.

2 PROBLEM FORMULATION

Consider the control affine-in-input discrete-time system with the following dynamics:

xk+1 = f (xk) + g(xk)uk

yk = h(xk), (1)

where x ∈ Rn,u ∈ Rm, and y ∈ Rp are, respectively, the system states, inputs, and outputs. The aim of the tracking control

problem is to minimize a cost function:

J(xk,uk) =
∞∑
i=k

𝜆i−kL1i , (2)

where L1i = (yi − ri)
⊤QT(yi − ri) + u⊤

i Rui is a quadratic energy function with QT ≥ 0 and R > 0, r is a desired reference

trajectory, and 0 < 𝜆 ≤ 1 is the discount factor.

It can be shown that for the special case where (1) is a linear time invariant (LTI) system:

xk+1 = Axk + Buk

yk = Cxk (3)

the standard solution to the given infinite horizon tracking problem using calculus of variation with 𝜆 = 1 is:10

uk = −Kxxk + Kvvk+1, (4)

where:

Kx = (B⊤PB + R)−1B⊤PA; Kv = (B⊤PB + R)−1B⊤

vk = (A − BKx)⊤vk+1 + C⊤QTrk (5)
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and P = P⊤ > 0 is the solution to the algebraic Riccati equation:

C⊤QTC − P + A⊤PA − A⊤PB(B⊤PB + R)−1B⊤PA = 0.

Assumption 1. Sufficient conditions for a solution are that the pair (A,B) and (A,
√
QTC) are, respectively, controllable

and observable.

It is noted that the control input (4) for the tracking problem consists of both a feedback term Kx that stabilizes
the system and a feedforward term Kv for reference tracking. Furthermore, the given standard solution is noncausal,35

as it is dependent on a backward in-time recursion of variable vk. An implication of this is that the standard solution
to the tracking problem can only be obtained offline and with full knowledge of the system dynamics. Consequently,

causal solution strategies that can be computed online have been proposed in the literature and will now be briefly

presented.

Causal solution to the optimal tracking problem

Existing causal solution strategies to the online tracking control problem can be categorized into two and are briefly

summarized as follows:

(1) Strategies using dynamics inversion:30-32 These methods assume that the desired reference dynamics is given as:

rk+1 = f (rk) + g(rk)ud,k, (6)

where ud,k = g−1(rk) (rk+1 − f (rk)) is the feedforward tracking control input. The tracking error ek = xk − rk is minimized

by defining a cost function as:

J(ek,ue,k) =
∞∑
i=k

(
e⊤i Qeei + u⊤

e,iReue,i
)

(7)

withQe ≥ 0, Re > 0 andwhere u∗
e,k

= −
1

2
R−1
e g⊤(xk)

𝜕J∗(ek+1)

𝜕ek+1
is the feedback tracking control input. The overall control input

is thus given as:

u∗
k = u∗

e,k + ud,k. (8)

Remarks

• Complete knowledge of the system dynamics is needed to compute the feedforward term ud, with a further assumption

that function g(r) is invertible.

• Online implementation of this approach therefore assumes ud is known a priori, and only the feedback term ue is

computed online. As a result, practical online adaptation strategies to cope with varying or unknown system dynamics

are limited using this strategy.

(2) Strategies using augmented formulation:34-36,38,39 These methods enable the simultaneous online computation of

both the feedforward and feedback terms of the tracking control input. This approach assumes that the reference dynamics

is governed by:

rk+1 = 𝜓(rk), (9)

where𝜓(rk) is some reference generatormodelwith𝜓(0) = 0.An augmented system is then formulated using the tracking

error and the reference dynamics as:

X r
k+1 =

[
f (ek + rk) − 𝜓(rk)

𝜓(rk)

]
+

[
g(ek + rk)

0

]
uk

= Fr(X r
k) + Gr(X

r
k)uk, (10)
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where X r
k =

[
ek
rk

]
and with a new cost defined as:

J(xk, rk,uk) =
∞∑
i=k

𝜆i−k
(
e⊤i Qeei + u⊤

i Reui
)

(11)

with u∗
k
= −

𝜆

2
R−1
e G⊤

r (X
r
k)

𝜕J∗(X r
k+1)

𝜕X r
k+1

. This way, the tracking problem is recast as a regulation problem, the solution of which

gives both the feedforward and feedback terms of the control input online.

Remarks

• It is assumed that 𝜓(rk) → 0 as k → ∞; where this is not, a discounted performance function with 0 < 𝜆 ≤ 1 must

be used to ensure the value of the cost function remains finite.35 This assumption poses a restriction on the class of

reference generator that can be used with the approach.

• By using a discount factor in the cost function, this approach cannot guarantee zero steady-state tracking error as dis-

cussed in Reference 35. This restrictive assumption on the reference dynamics and discounted cost makes the approach

less desirable for use in practical tracking applications.

Consequently, existing RL techniques for the online optimal tracking control problem assume either the use of a

predetermined feedforward input for the tracking control or use restrictive assumptions on the referencemodel dynamics

and discounted tracking costs. In the following, a new augmented formulation for the online optimal tracking control

problem that guarantees zero steady-state tracking error without imposing any restrictive assumptions on the reference

dynamics or discounted performance cost is proposed to overcome the limitations of the existing strategies.

3 AUGMENTED FORMULATION FOR THE OPTIMAL TRACKING
PROBLEM WITH INTEGRAL CONTROL

Consider again the optimal tracking control problem for system (1) and let a new state ż be defined as the integral of the

difference between the desired reference and the system output as:

ż(t) = ∫ (r(t) − y(t)) dt ∈ R
p. (12)

Using Euler's approximation, an equivalent discrete-time state with sampling time ts gives:

zk+1 = zk + ts(rk − h(xk)). (13)

An augmented system can therefore be formed using the new state as:

[
xk+1
zk+1

]
=

[
f (xk)

zk − tsh(xk)

]
+

[
g(xk)
0

]
uk +

[
0
tsI

]
rk. (14)

At steady state, the augmented system (14) becomes:

[
x∞
z∞

]
=

[
f (x∞)

z∞ − tsh(x∞)

]
+

[
g(x∞)
0

]
u∞ +

[
0
tsI

]
r∞. (15)

For a constant reference signal, that is, r∞ = rk, subtracting (15) from (14) gives:

[
xk+1 − x∞
zk+1 − z∞

]
=

[
f (xk) − f (x∞)

zk − z∞ − ts (h(xx) − h(x∞))

]
+

[
g(xk)uk − g(x∞)u∞

0

]
. (16)
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Further simplification of (16) becomes:

Xk+1 = F(Xk) + G(Xk)ũk (17)

with Xk =

[
xk − x∞
zk − z∞

]
∈ Rn+p, ũk = (uk − u∞) ∈ Rm and where F(Xk) =

[
f (xk) − f (x∞) + g(xk)u∞ − g(x∞)u∞

zk − z∞ − ts (h(xx) − h(x∞))

]
and

G(Xk) =

[
g(xk)
0

]
.

The tracking cost (2) is therefore redefined as:

J(Xk, ũk) =

∞∑
i=k

𝜆i−k
(
X⊤
i Q1X i + ũ⊤

i Rũi
)
, (18)

where Q1 ∈ R(n+p)×(n+p). This way, the tracking problem is converted to that of regulation such that the control input for

a minimum of (18) eliminates the steady-state error by ensuring that xk → x∞ and zk → z∞ as Xk → 0. Furthermore, as

the new augmented system states are not dependent on the reference dynamics, this approach removes the restrictive

assumptions of the existing methods. An equivalent difference equation to (18) for a given fixed policy is given by the

value function and defined as:

V(Xk) =

∞∑
i=k

𝜆i−k
(
X⊤
i Q1X i + ũ⊤

i Rũi
)
=

∞∑
i=k

𝜆i−kLi

= Lk + 𝜆

∞∑
i=k+1

𝜆i−(k+1)Li

∴V(Xk) = Lk + 𝜆V(Xk+1), (19)

where Lk = X⊤
kQ1Xk + ũ⊤

kRũk and V(0) = 0. Using the Bellman principle of optimality,9 the optimum value becomes:

V∗(Xk) = min
u

(Lk + 𝜆V∗(Xk+1)) . (20)

Equation (20) gives the DT Hamilton-Jacobi-Bellman (HJB) equation for the augmented tracking formulation with

integral control from which the optimal tracking control input is obtained as:

ũ∗
k = argmin

ũ
(Lk + 𝜆V∗(Xk+1)) . (21)

4 MODEL-BASED SOLUTION TO THE AUGMENTED LQT FORMULATION
WITH INTEGRAL CONTROL

A model-based control solution to the optimal tracking problem using the augmented formulation with integral control

for discrete-time (DT) linear systems is first presented to be used in comparison with the model-free RL approaches

introduced in later sections. Using the system dynamics in (3), the augmented system of (17) becomes:

Xk+1 =

[
xk+1 − x∞
zk+1 − z∞

]
=

[
A 0

−tsC I

] [
xk − x∞
zk − z∞

]
+

[
B
0

]
(uk − u∞)

= A1Xk + B1ũk. (22)

Lemma 1. (Quadratic value function). Given the LQT cost of (18) and systemwith dynamics (22), for any stabilizing control
law:

ũk = −
[
Kx −KI

] [xk − x∞
zk − z∞

]
= −K1Xk, (23)
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where K1 ∈ Rm×(n+p), Kx ∈ Rm×n, and KI ∈ Rm×p; the value function for the augmented formulation with integral control is
quadratic for some matrix P1 = P⊤1 > 0 ∈ R(n+p)×(n+p) and given as:

V(Xk) = X⊤
k P1Xk. (24)

For simplicity of notation in subsequent analysis, (x∞ and z∞) are dropped in the augmented states.

Proof. Change the lower limit for the summation in (19) and substitute for ũk to give:

V(Xk) =

∞∑
i=0

𝜆i
[
X⊤
i+kQ1X i+k + X⊤

i+kK
⊤
1 RK1X i+k

]
. (25)

Noting that X i+k = (A1 − B1K1)iXk =

([
A 0

−tsC I

]
−

[
BKx −BKI
0 0

])i [
xk
zk

]
= M

[
xk
zk

]
, where M =

[
A − BKx BKI
−tsC I

]i
=

[
M11 ∈ Rn×n M12 ∈ Rn×p

M21 ∈ Rp×n M22 ∈ Rp×p

]
and Q1 =

[
Q11 ∈ Rn×n Q12 ∈ Rn×p

Q21 ∈ Rp×n Q22 ∈ Rp×p

]

Equation (25) becomes:

V(Xk) =

∞∑
i=0

𝜆i

[[
M11xk +M12zk
M21xk +M22zk

]⊤ [
Q11 Q12

Q21 Q22

] [
M11xk +M12zk
M21xk +M22zk

]

+

[
M11xk +M12zk
M21xk +M22zk

]⊤ [
K⊤
x RKx −K⊤

x RKI
−K⊤

I RKx K
⊤
I RKI

] [
M11xk +M12zk
M21xk +M22zk

]]
. (26)

Therefore,

V(Xk) = x⊤k P
(11)
1 xk + x⊤k P

(12)
1 zk + z⊤k P

(21)
1 xk + z⊤k P

(22)
1 zk = X⊤

k P1Xk, (27)

where P1 =

[
P(11)1 P(12)1

P(21)1 P(22)1

]
and P(11)1 =

∑∞

i=0 𝜆
i[M⊤

11Q11M11 +M⊤
12
Q12M11 +M⊤

11Q12M21 +M⊤
12
Q22M21 +M⊤

11K
⊤
x RKxM11 −

M⊤
21
K⊤
I RKxM11 −M⊤

11K
⊤
x RKIM12 +M⊤

21
K⊤
I RKIM12]

P(12)1 =
∑∞

i=0 𝜆
i[M⊤

11Q11M12 +M⊤
12
Q21M12 +M⊤

11Q12M22 +M⊤
12
Q22M22 +M⊤

11K
⊤
x RKxM12 −M⊤

21
K⊤
I RKxM12 −

M⊤
11K

⊤
x RKIM22 +M⊤

21
K⊤
I RKIM22]

P(21)1 =
∑∞

i=0 𝜆
i[M⊤

12
Q11M11 +M⊤

22
Q21M11 +M⊤

12
Q12M21 +M⊤

22
Q22M21 +M⊤

12
K⊤
x RKxM11 −M⊤

22
K⊤
I RKxM11 −

M⊤
12
K⊤
x RKIM12 +M⊤

22
K⊤
I RKIM12]

P(22)1 =
∑∞

i=0 𝜆
i[M⊤

12
Q11M12 +M⊤

22
Q21M12 +M⊤

12
Q12M22 +M⊤

22
Q22M22 +M⊤

12
K⊤
x RKxM12 −M⊤

22
K⊤
I RKxM12 −

M⊤
12
K⊤
x RKIM22 +M⊤

22
K⊤
I RKIM22]. ▪

From (20), the Bellman equation for the optimal value function is thus given as:

V∗(Xk) = X⊤
k P

∗
1Xk = X⊤

kQ1Xk + ũ⊤
kRũk + 𝜆X⊤

k+1P
∗
1Xk+1 (28)

and the optimal control input of (21) with 𝜆 = 1 becomes:

ũk = argmin
ũ

(
X⊤
kQ1Xk + ũ⊤

kRũk + X⊤
k+1P1Xk+1

)

= −(R + B⊤
1 P1B1)

−1B⊤
1 P1A1Xk

= −K1Xk, (29)

where K1 =
(
(R + B⊤

1 P1B1)
−1B⊤

1 P1A1

)
=
[
Kx −KI

]
Equation (29) gives themodel-based control solution to the augmentedDTLQTproblemconsisting of both the integral

feedforward and feedback gains. Substituting for ũk in (28) and simplifying gives the corresponding algebraic Riccati
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equation (ARE) as:

P1 = Q1 + A⊤
1 P1A1 − A⊤

1 P1B1(R + B⊤
1 P1B1)

−1B⊤
1 P1A1. (30)

Lyapunov stability can be shown for the LQT system by using the Lyapunov function:

ΔV(Xk) = V(Xk+1) − V(Xk) = X⊤
k P1Xk+1 − X⊤

k P1Xk < 0

= (A1Xk + B1ũk)⊤P1(A1Xk + B1ũk) − X⊤
k P1Xk < 0

= X⊤
kA

⊤
1 P1A1Xk + X⊤

kA
⊤
1 P1B1ũk + ũ⊤

k B
⊤
1 P1A1Xk + ũ⊤

k B
⊤
1 P1B1ũk − X⊤

k P1Xk < 0. (31)

Substitute for control input (29) as:

ΔV(Xk) = X⊤
kA

⊤
1 P1A1Xk − X⊤

kA
⊤
1 P1B1K1Xk − X⊤

kK
⊤
1 B

⊤
1 P1A1Xk + X⊤

kK
⊤
1 B

⊤
1 P1B1K1Xk − X⊤

k P1Xk < 0

= X⊤
k

[
A⊤
1 P1A1 − A⊤

1 P1B1K1 − K⊤
1 B

⊤
1 P1A1 + K⊤

1 B
⊤
1 P1B1K1 − P1

]
Xk < 0. (32)

Add and subtract K⊤
1 RK1, then simplify further to give:

ΔV(Xk) = X⊤
k

[
A⊤
1 P1A1 − A⊤

1 P1B1K1 − K⊤
1 B

⊤
1 P1A1 + K⊤

1 B
⊤
1 P1B1K1 − P1 + K⊤

1 RK1 − K⊤
1 RK1

]
Xk < 0

= X⊤
k

[
A⊤
1 P1A1 − A⊤

1 P1B1K1 − K⊤
1 B

⊤
1 P1A1 + K⊤

1 (R + B⊤
1 P1B1)K1 − K⊤

1 RK1 − P1
]
Xk < 0. (33)

Finally, substitute for K1 = (R + B⊤
1 P1B1)

−1B⊤
1 P1A1 in (33) to give:

ΔV(Xk) = X⊤
k

[
A⊤
1 P1A1 − A⊤

1 P1B1(R + B⊤
1 P1B1)

−1B⊤
1 P1A1 − K⊤

1 RK1 − P1
]
Xk < 0. (34)

However, the ARE for the LQT system is given in terms of P1 in (30); therefore, Lyapunov stability is guaranteed for
the following condition:

ΔV(Xk) = Xk
[
−Q1 − K⊤

1 RK1
]
Xk < 0, (35)

if and only if Q1 and R are positive semidefinite.
Figure 1 shows the block diagram of the augmented tracking control framework with integral control consisting of

both a feedforward integral gainKI and a feedback gainKx. The given baseline integral-proportional (I-P) control structure
is widely used in practice where the tracking error is fed into the feedforward integral term, while the proportional term

is implemented in feedback.40,41

Therefore, using knowledge of the system dynamics, the above tracking framework with integral control can be used

to achieve optimal tracking control online and does not impose restrictions on the reference model dynamics or use of

discounted tracking costs. For systemswith unknown or varying dynamics, an approximate online solution to the optimal

tracking control frameworkwith integral control is developed in the next section using reinforcement learning. This offers

the advantage of not requiring the full knowledge of the system dynamics while converging to the optimum values.

F IGURE 1 Block diagram of an

augmented tracking control framework with

integral control consisting of both a feedforward

integral gain KI and a feedback gain Kx [Colour

figure can be viewed at wileyonlinelibrary.com]
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5 REINFORCEMENT LEARNING FRAMEWORK FOR THE OPTIMAL
TRACKING CONTROL USING AUGMENTED FORMULATION WITH
INTEGRAL CONTROL

As discussed in Section 2, existing approaches for the optimal tracking control problem using RL either assume that the

feedforward part of the control is known a priori or make restrictive assumptions on the reference model dynamics and

use of discounted tracking costs. These restrictive assumptions are eliminated by using the augmented formulation with

integral control as proposed in Section 3. Consequently, a novel optimal RL framework is proposed for the LQT problem

that converges to the optimum solution for systems with varying or unknown system dynamics using the augmented

formulation with integral control. Furthermore, unlike the previously proposed RL tracking approaches,30-32,34-36,38,39 the

proposed formulation is able to guarantee zero steady-state tracking error and provides adaptation for both the feed-

forward and feedback controller gains. The framework continually adapts the controller gains to optimum values and

provides a through-life adaptation strategy.

Model-free RL approaches are enabled by iterative techniques that utilize the Bellman optimality equations to develop

forward-in-time update equations, which are solved at each time step.2,42 One of such iterative technique is the policy
iteration (PI) method, which requires an initially admissible policy8 (ie, stabilizing policy with a finite cost V(⋅)) and
successively alternates between the following update equations for (20) and (21) as follows:

Vk+1(Xk) = X⊤
kQ1Xk + ũ⊤

kRũk + Vk+1(Xk+1) (36)

ũk+1 = argmin
ũ

(
X⊤
kQ1Xk + ũ⊤

kRũk + Vk+1(Xk+1)
)
. (37)

Given an admissible policy 𝜋(X), the value is evaluated by solving (36) till convergence while an improved policy is

computed using (37). Both update equations, respectively, constitute the policy evaluation and policy update steps of the

PImethod. The PImethod is justified in Reference 43 by showing that the improved policy ensures thatVk+1(Xk) ≤ Vk(Xk)

and is associated with the monotonicity property of the update equations. This way the PI recursion computes a strictly

improved policy, and convergence to the optimal policy and value under Assumption 1 has been shown in Reference 44.

Model-free approaches for the LQT problem are therefore enabled by approximating the value function of (20) as

follows:

V𝜋(Xk) ≈ 𝜃⊤c Φ(Xk) =

∞∑
i=k

𝜆i−kLi, (38)

whereΦ(X) is a set of basis function and 𝜃c are the functionweights. Equation (38) gives the value function approximation

(VFA) and is defined as the sum of the discounted reward signal Lk starting from state Xk under some fixed policy 𝜋(X).

Similarly, an approximation to the state-action value function with basis functionΨ(X , ũ) and weights 𝛽 is approximated

as:

Q𝜋(Xk, ũk) ≈ 𝛽⊤Ψ(Xk, ũk) =

∞∑
i=k

𝜆i−kLi. (39)

Equation (39) is the Q-function approximation (QFA), which is defined as the sum of the discounted reward signal Lk
starting from state Xk and taking action ũk, then following policy 𝜋(X) thereon. Depending on the function that is being

approximated, two RL strategies are therefore proposed for the LQT problem.

5.1 VFA-based RL algorithm

For the VFA approximation, the Bellman equation for the value function (38) becomes:

𝜃⊤c Φ(Xk) = X⊤
kQ1Xk + ũ⊤

kRũk + 𝜆𝜃⊤c Φ(Xk+1). (40)
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A second function approximation is used to adapt the controller gains and given as:

ũk = 𝜃⊤aXk = −K̂1Xk. (41)

The RL adaptation utilizes the PI recursion (36), (37) consisting of both value and policy update steps. For the value

update step, the policy is kept fixed while the value function parameters are updated using the system measurements at

N episodic intervals (ie, from some initial state X0 to a terminal state XN). After each episode, the controller parameters

are adapted from (21) using a gradient descent tuning as:

𝜃i+1a = 𝜃ia − la
𝜕𝜃⊤c Φ(X i)

𝜕𝜃a

= 𝜃ia − la
𝜕𝜃⊤c Φ(X i)

𝜕ũi
×

𝜕ũi
𝜕𝜃a

∴𝜃i+1a = 𝜃ia − laX i

(
2Rũi + 𝜆B⊤

1

𝜕𝜃⊤c Φ(X i+1)

𝜕X i+1

)
, (42)

where la > 0 ∈ R is a tuning step size. This is repeated till convergence of both the value function parameters and the

controller gains. This way, the VFA based RL method solves the online LQT problem of Section 2 using the proposed

augmented formulation with integral control and without requiring knowledge of the system dynamics. Algorithm 1

describes the VFA-based adaptation of the controller parameters using a policy iteration (PI) recursion.

Algorithm 1. VFA-based RL algorithm for the LQT problem

Initialize V(X) ≈ 𝜃⊤
c,k
Φ(X) at k = 0 for some stabilizing policy 𝜋(X) = 𝜃⊤

a,k
X , and do till convergence:

Value function update step

1: for j = 0 ∶ N do

2: At X j, compute the control input ũj with exploration signal 𝜖 as ũj = 𝜋(X j) + 𝜖.

3: Compute the least squares solution for 𝜃c,j+1 using measurements Lj = X⊤
j Q1X j + ũ⊤

j Rũj, X j and X j+1 as:

𝜃⊤c,j+1
(
Φ(X j) − 𝜆Φ(X j+1)

)
= X⊤

j Q1X j + ũ⊤
j Rũj

4: j = j + 1.

5: end forPolicy update step

Require: Set 𝜃c,k+1 = 𝜃c,j+1 ∣j=N
6: Update the policy parameters using the gradient descent tuning as:

𝜃i+1
a,k

= 𝜃ia,k − laX i

(
2R𝜃i⊤a,kX i + 𝜆B⊤

1

𝜕𝜃⊤
c,k+1

Φ(X i+1)

𝜕X i+1

)

7: At the end of the gradient tuning, set 𝜃a,k+1 = 𝜃i+1
a,k

and update the policy as:

𝜋(X) = 𝜃⊤a,k+1X = −K1X

8: Increment time step k = k + 1.

Remarks on implementation of Algorithm 1
• The gradient tuning update steps i can be chosen as the number of episodic steps j for the value function update.

• The VFA-based RL algorithm is not completely model free as knowledge of the input matrix B1 is needed in computing
the controller parameters update. Consequently, this approach is limited to systems with variations occurring only in

the drift or dynamics matrix A1 as this is assumed unknown.
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• For convergence of the parameter estimates, a persistence of excitation (PE) condition on the regressor matrix given by

References 45 and 46 is required. An exploration signal is therefore added to the algorithm to ensure that the regressor

matrix satisfies:

aI ≤
k+M∑
i=k

ΓiΓ
⊤
i ≤ bI ∀i, (43)

where Γi = [Φ(X i) − 𝜆Φ(X i+1)] and withM > 0, a > 0, b > 0.

5.2 Q-function-based RL algorithm

Similar to the VFA approximation method, the Bellman equation for the Q-function (39) becomes:

𝛽⊤Ψ(Xk, ũk) = X⊤
kQ1Xk + ũ⊤

kRũk + 𝜆𝛽⊤Ψ(Xk+1, ũk+1). (44)

The RL adaptation equally utilizes the PI recursion (36), (37) and consists of both Q-function and policy update steps.

In contrast to the VFA algorithm, the Q-function explicitly approximates the control inputs for each state from which the

optimal control input can be obtained via a greedy optimization. This makes the QFA algorithm completely model free

by using only themeasurements observed along the system trajectories for the controller updates and is further described

in Algorithm 2.

Algorithm 2. QFA-based RL algorithm for the LQT problem

Initialize Q(X , ũ) ≈ 𝛽⊤
k
Ψ(X , ũ) at k = 0 for some stabilizing policy 𝜋(X) = argminũ

(
𝛽⊤
k
Ψ(X , ũ)

)
, and do till

convergence:

Q-function update step

1: for j = 0 ∶ N do

2: At X j, compute the control input ũj with exploration signal 𝜖 as ũj = 𝜋(X j) + 𝜖.

3: Compute the least squares solution for 𝛽j+1 using measurements Lj = X⊤
j Q1X j + ũ⊤

j Rũj, X j and X j+1 as:

𝛽⊤j+1
(
Ψ(X j, ũj) − 𝜆Ψ(X j+1, ũj+1)

)
= X⊤

j Q1X j + ũ⊤
j Rũj

where ũj+1 = 𝜋(X j+1)

4: j = j + 1.

5: end forPolicy update step

Require: Set 𝛽k+1 = 𝛽j+1 ∣j=N
6: Update the policy parameters using a greedy optimization as:

𝜋(X) = argmin
ũ

(
𝛽⊤k+1Ψ(X , ũ)

)
= −K1X

7: Increment time step k = k + 1.

The Q-function parameters are updated in each episode while keeping the policy fixed and constitutes the Q-function

update step. For the policy update, a greedy optimization is performed after each episode using the adapted Q-function

parameters as:

ũk = argmin
ũ

(
𝛽⊤Ψ(Xk, ũk)

)
= −K̂1Xk. (45)

Like Algorithm 1, an exploration signal is added to ensure PE and to satisfy (43), where Γi = [Ψ(X i, ũi) −

𝜆Ψ(X i+1, ũi+1)].
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F IGURE 2 Schematic of the proposed RL

framework for the optimal tracking control using

augmented formulation with integral control.

The RL block represents either the VFA or QFA

algorithm that continually uses the observed

system measurements to adapt the tracking

controller gains to optimum values subject to

varying or unknown system dynamics [Colour

figure can be viewed at wileyonlinelibrary.com]

The RL control strategies described above solve the online LQT problem without knowledge of the system dynamics

or variations. Furthermore, by using the proposed augmented formulation with integral control, the RL frameworks do

not require any predetermined feedforward tracking control input or restrictive assumptions on the reference generator

dynamics and use of discounted tracking costs. The RL tracking control scheme is represented schematically in Figure 2,

where the RL block represents either the VFA or QFA algorithm that continually uses the observed systemmeasurements

to adapt the tracking controller gains to optimum values subject to varying or unknown system dynamics.

6 SIMULATION CASE STUDIES

The LQT RL approach is demonstrated on two simulation case studies. The first is a system with an initially unstable

and unknown dynamics that shows convergence of the proposed RL tracking methods to the optimal tracking controller

gains. The second case study addresses the optimal tracking control problem in a buck power converter system, which is

subject to uncertain or varying component tolerances under different operating conditions.

6.1 Case study 1

Consider a 2-state system with unstable dynamics given as:

ẋ(t) =

[
−1 2
2.2 1.7

]
x(t) +

[
2
1.5

]
u(t)

y(t) =
[
1 1

]
x(t). (46)

Using a sampling time ts = 0.03 seconds, an equivalent discrete-time system using Euler's discretization is

formed as:

xk+1 =

[
0.9724 0.0607
0.0668 1.0544

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A(1)

xk +

[
0.0605
0.0482

]

⏟⏞⏟⏞⏟
B

uk

yk =
[
1 1

]
⏟⏟⏟

C

xk. (47)

The tracking control problem is to track a time-varying step reference input from any finite initial condition x0 rep-

resentative of step commands in a servo system or precision-tracking applications. Tracking cost parameters in (18) are

considered as Q1 = 2∗(3), R = 0.05, and 𝜆 = 1.

(1) Existing online solution approach with the use of discounted cost: Existing online solution to the optimal track-

ing control problem as discussed in Section 2 requires knowledge of the reference dynamics and the use of discounted
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tracking cost. For the given tracking problem, consider the reference dynamics of (9) to be given by the linear difference

equation:

rk+1 = Frk, (48)

where F = 1. An augmented systemwith the reference dynamics can then be formulated according to (10). Furthermore,

as a result of using a reference dynamics that does not tend to zero, a discounted cost must be used. Comparison of

the performance of this approach using different discount factors to the proposed augmented formulation with integral

control is shown in Figure 3. As observed in the simulation result, a discount factor of 𝜆 = 0.8 had a slower response but

a reduced steady-state error, while a discount factor of 𝜆 = 0.7 had a faster response but larger steady-state error. Existing

online tracking approaches with the use of a discount factor are therefore not only restrictive to the type of reference

dynamics that can be used but also cannot guarantee zero steady-state tracking error. In the following, the proposed online

solution approaches that do not require knowledge of the reference dynamics or the use of discounted cost will now be

presented.

(2) Model-based solutions using the proposed augmented formulation with integral control: Baseline solution for

the augmented formulation with integral control using the system models is first presented. An augmented system with

integral control is formed according to (22) as:

Xk+1 =

[
0.9724 0.0607 0
0.0668 1.0544 0
−0.03 −0.03 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A1(1)

Xk +

[
0.0605
0.0482
0

]

⏟⏞⏞⏟⏞⏞⏟
B1

ũk. (49)

Using the given system models (A1(1),B1), the optimal solution to the corresponding ARE (30) is given as:

P∗1(1) =

[
10.1584 −6.9476 −8.8170
−6.9476 18.5835 4.5047
−8.8170 4.5047 68.4224

]
(50)

with the optimal tracking controller gains as:

K∗
1(1) =

(
(R + B⊤

1 P1B1)
−1B⊤

1 P1A1(1)

)
=
[
Kx −KI

]
=
[
3.6277 5.7644 −4.6873

]
. (51)

F IGURE 3 Comparison of the

existing online tracking methods with

the use of discount factors with the

proposed integral augmentation

approach [Colour figure can be viewed

at wileyonlinelibrary.com]
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However, in practice, the system dynamics may be unknown or time varying therefore motivating the use of online

RL methods.

(3) Model-free RL solutions: The proposed model-free RL approaches can be used to obtain the optimal tracking

controller gains online subject to the unknown or varying system dynamics.

6.1.1 VFA-based RL adaptation

From Lemma 1, the value function for the augmented formulation with integral control is quadratic, thus the value

function approximation for the given 2-state system in Algorithm 1 is chosen to be the quadratic function:

V(X) ≈ 𝜃⊤c Φ(X) = 𝜃⊤c

⎡
⎢⎢⎢⎢⎢⎣

x21
x1x2
x1z
x2
2

x2z
z2

⎤
⎥⎥⎥⎥⎥⎦

. (52)

From Algorithm 1, an initially suboptimal but stabilizing policy is arbitrarily selected as:

𝜋(X) =
[
0.4112 −2.0412 2.5011

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

−K̂1(0)

. (53)

The rest of Algorithm 1 is then run online till convergence of the tracking controller parameters using

only the observed system measurements. The VFA parameters converged to the following optimal values, 𝜃∗c(1) =

[9.9155; −14.9830; −16.7696; 18.0048; 10.1510; 68.8826] with:

⎡⎢⎢⎣

P111 P121 P131
P211 P221 P231
P311 P321 P331

⎤⎥⎥⎦
=

⎡⎢⎢⎣

𝜃
(1)
c 0.5𝜃(2)c 0.5𝜃(3)c

0.5𝜃(2)c 𝜃
(4)
c 0.5𝜃(5)c

0.5𝜃(3)c 0.5𝜃(5)c 𝜃
(6)
c

⎤⎥⎥⎦
(54)

and 𝜃∗a(1) = [−3.4202; −5.5650; 4.6468] = −K̂∗
1(1)
.

To demonstrate the adaptation of the tracking controller gains to optimal values using the proposed RL tracking

control framework, the system drift matrix A is changed instantaneously during simulation to:

A(2) =

[
0.8706 0.1672
−0.0395 1.1654

]
(55)

with a new baseline model-based solution from using the system A(2) matrix given as:

P∗1(2) =

[
23.3462 −27.4260 −34.6172
−27.4260 49.7383 38.9057
−34.6172 38.9057 127.0261

]

K∗
1(2) =

[
1.2757 8.8839 −4.6907

]
. (56)

Following this system variation, the tracking controller gains are no longer optimal resulting in a decline in the

system performance. This can be detected in practice by using a threshold on standard step response parameters like

percentage overshoot (P.O.), rise time, and so on and used as an enable signal to reinitiate the RL learning process. The

VFA parameters after the system variation converged to 𝜃∗c(2) = [23.3958; −56.2854; −69.6663; 49.9611; 78.9013; 127.1470]

and 𝜃∗a(2) = [−0.9668; −8.7688; −4.6794] = −K̂∗
1(2)
. Figure 4 shows the parameter convergence using the VFA-based RL

adaptation to the optimal but assumed unknown values before and after the system variation.

Figure 5 shows the overall system response to time-varying step reference inputs at the various stages of the RL adapta-

tion. The region with 𝜃a,c(0) in the figure corresponds to the system response using the initial suboptimal controller gains,

while the region with 𝜃a,c(1) shows the system response after convergence to the optimal controller values from the RL
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F IGURE 4 Online adaptation and

convergence of both the value function

and controller parameters to the optimal

values (in black dashed lines) using

Algorithm 1. 𝜃a,c(0) are the initial

suboptimal controller parameters, while

𝜃a,c(1) and 𝜃a,c(2) are, respectively, the

identified optimal controller parameters

before and after the system variation

[Colour figure can be viewed at

wileyonlinelibrary.com]

F IGURE 5 System response

showing the system states and tracked

output at the various stages of the RL

adaptations. Region with 𝜃a,c(0) shows

the response using the initial suboptimal

controller gains, while region with 𝜃a,c(1)

shows the response from the adapted

controller gains to the optimal values

using the proposed Algorithms. Region

with 𝜃a,c(1)with variation shows the

decline in the system performance

following variations in the system

dynamics while keeping the controller

values fixed, while region with 𝜃a,c(2)

onward shows the response after

adaptation to the new optimal control

gains [Colour figure can be viewed at

wileyonlinelibrary.com]

adaptation. After the system variation and keeping the controller values fixed, the region with 𝜃a,c(1)with variation shows
the decline in system performance following which the RL adaptation is reenabled. The new system performance after

convergence to the new optimal control gains is then shown in the region with 𝜃a,c(2).
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6.1.2 QFA-based RL adaptation

The QFA provides a completely model-free approach to the LQT problem and similar to the VFA, the Q-functions from

Algorithm 2 are approximated for the 2-state system using a quadratic basis set as:

Q(X , ũ) ≈ 𝛽⊤Ψ(X , ũ) = 𝛽⊤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x21
x1x2
x1z
x1ũ
x2
2

x2z
x2ũ
z2

zũ
ũ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (57)

Using Algorithm 2, the Q-function parameters converged to 𝛽∗
(1)

= [11.3564; −10.0880; −20.7299; 0.6605; 21.6084;

4.0903; 1.0495; 70.4224; −0.8534; 0.0910] with:

Q∗ =

[
Q1 + 𝜆A⊤

1 P
∗
1A1 𝜆A⊤

1 P
∗
1B1

𝜆B⊤
1 P

∗
1A1 R + 𝜆B⊤

1 P
∗
1B1

]
=

⎡⎢⎢⎢⎣

𝛽(1) 0.5𝛽(2) 0.5𝛽(3) 0.5𝛽(4)

0.5𝛽(2) 𝛽(5) 0.5𝛽(6) 0.5𝛽(7)

0.5𝛽(3) 0.5𝛽(6) 𝛽(8) 0.5𝛽(9)

0.5𝛽(4) 0.5𝛽(7) 0.5𝛽(9) 𝛽(10)

⎤⎥⎥⎥⎦
. (58)

Corresponding controller gains are then derived according to (45) as:

𝜋(X) = argmin
ũ

(
𝛽⊤Ψ(X , ũ)

)

= −0.5∗𝛽(10)
−1 (

𝛽(4)x1 + 𝛽(7)x2 + 𝛽(9)z
)
= 𝜃⊤aX . (59)

Therefore, the optimal controller gains with 𝛽∗1 are computed as 𝜃
∗
a(1) = [−3.6277; −5.7644; 4.6873] = −K̂∗

1(1)
.

After variation of the system drift matrix to A(2) during simulation, the parameters reconverged to new opti-

mal values as 𝛽∗
(2)

= [23.4941; −52.7916; −70.3222; 0.2319; 56.9123; 70.2357; 1.6150; 129.0261; −0.8527; 0.0909] and 𝜃∗a(2) =

[−1.2757; −8.8839; 4.6907] = −K̂∗
1(2)
. Figure 6 shows the online adaptation and convergence of the Q-function parameters

before and after the system variation, respectively. After convergence to the optimal values, the system response using the

QFA-based RL adaptations is as shown in Figure 5. The QFA RL approach therefore provides a completely model-free

online tracking control solutions.

F IGURE 6 Online adaptation and convergence of the

Q-function parameters to the optimal values (in black dashed

lines) using Algorithm 2. 𝛽(0) are the initial suboptimal

controller parameters, while 𝛽(1) and 𝛽(2) are, respectively, the

identified optimal controller parameters before and after the

system variation [Colour figure can be viewed at

wileyonlinelibrary.com]
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6.2 Case study 2

This case study addresses the optimal tracking control problem in a buck power converter system, which is subject to

uncertain or varying component tolerances under different operating conditions. Consider a buck power converter with

a switching element and consisting of an inductor Lp with a small series resistance r, a capacitor Cp, and a diode. The
voltage drop in the diode can be neglected as the value is typically small.47 For a continuous conduction mode operation

(CCM), the control input is defined as the duty-ratio u ∈ [0, 1], and the buck converter dynamics are given as:47

Lp
di(t)
dt

= −ri(t) − v(t) + Eu(t)

Cp
dv(t)
dt

= i(t) − iL, (60)

where E is the dc input voltage, i is the inductor current, v is the output voltage, iL =
v
RL
is the load current, and RL is the

load resistor.

The aim of the controller is to regulate the output voltage to a given vref. With the states chosen as the inductor current

i and output voltage v, a corresponding state-space dynamics is formulated as:

ẋ(t) =

[
i̇(t)
v̇(t)

]
=

[−r
Lp

1

Lp
1

Cp

−1

CpRL

][
i(t)
v(t)

]
+

[
E
Lp
0

]
u(t)

= Ax(t) + Bu(t), (61)

y(t) =
[
0 1

] [i(t)
v(t)

]

y(t) = Cx(t), (62)

The system component parameters are given as r = 0.5Ω, Lp = 1 mH, Cp = 50 μF, and E = 48 V. Variations can occur

due tomodeling uncertainties and component tolerances under different operating conditions. For this example, the load

resistor is changed instantaneously during simulation from RL = 200Ω to 100Ω and is assumed unknown. To demon-

strate the proposed online tracking RL approach, an augmented system as given in (22) is formed with sampling time

ts = 100 μs while the tracking cost parameters (18) are considered as Q1 = (3), R = 0.5, and 𝜆 = 1.

UsingAlgorithm 2, an initially suboptimal I-P tracking controller is selected asK1(0) = [0.3086 0.1856 − 0.0810],while

the corresponding Q-functions are approximated as in (57). Algorithm 2 is thereafter run till convergence as this does

not require any knowledge of the system dynamics. With the initially unknown RL = 200Ω, the Q-function parameters

converged to 𝛽∗
(1)

= [8.9375; 5.3019; −6.7680; 50.0148; 2.1108; −3.5540; 14.5264; 10003.7412; −18.3036; 84.5461],while the

adapted optimal control gains are computed from (59) as 𝜃a(1) = [−0.2958; −0.0859; 0.1082] = −K̂∗
1(1)
. Figure 7 shows the

F IGURE 7 Online adaptation and convergence of

the Q-function parameters of the buck power converter to

the optimal values (in black dashed lines) using Algorithm

2 [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 8 Online adaptation and convergence of

the Q-function parameters of the buck power converter

to the optimal values (in black dashed lines) after

variation in the load resistor RL using Algorithm 2

[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 9 Buck power converter

response showing the system states and

control input at the various stages of the

RL adaptations. Region with 𝛽(0) shows

the response using the initial suboptimal

controller gains, while region with 𝛽(1)

shows the response from the adapted

controller gains to the optimal values

using the proposed Algorithms.

Following variations in the load resistor

RL, region with 𝛽(2) onward shows the

response after adaptation to the new

optimal control gains [Colour figure can

be viewed at wileyonlinelibrary.com]



SANUSI et al. 19

convergence of the online adaptation of the Q-function parameters compared with the optimal but assumed unknown

values.

With a variation in the load resistor to RL = 100Ω, the Q-function parameters reconverged to 𝛽∗
(2)

=

[8.8961; 5.2366; −6.7850; 49.8444; 2.0918; −3.5425; 14.3679; 10004.1098; −18.3944; 84.3797] as shown in Figure 8 and to

optimal control gains 𝜃a(2) = [−0.2954; −0.0851; 0.1090] = −K̂∗
1(2)
.

Figure 9 shows the overall buck power converter system response at the various stages of the online RL adaptation.

The region with 𝛽(0) in the figure corresponds to the system response using the initially suboptimal tracking controller

gains, while the region with 𝛽(1) shows the system response after convergence to the optimal controller values from the

RL adaptation. Following variation in the load resistor RL, the system performance after convergence to the new opti-

mal control gains is then shown in the region with 𝛽(2). This way the proposed online optimal and adaptive tracking

RL framework is able to maintain the desired level of system performance subject to gradual variations in the system

parameters.

7 CONCLUSIONS

This article has proposed and demonstrated an online optimal and adaptive reinforcement learning (RL) tracking con-

troller using an augmented formulationwith integral control for unknown or varying discrete-time (DT) systems. Existing

online tracking methods either assume a predetermined feedforward input for the tracking control or use restrictive

assumptions on the referencemodel dynamics anddiscounted tracking costs.Moreover, the existing online trackingmeth-

ods are unable to guarantee zero steady-state tracking error. By contrast, the proposedmethod transforms the DT optimal

tracking control into a regulation problem and solves a resulting DT algebraic Riccati equations online without knowl-

edge of the system dynamics or any restrictive assumptions of the existing methods and eliminates steady-state tracking

error. Two RL strategies are proposed for the LQT based on both the value function approximation and Q-learning. The

approaches offer a through-life adaptation strategy for the controller gains and guarantee zero steady-state tracking error

as shown in the case study examples.
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