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Supplementary Results
Generation of a {-carotene producing strain of Rba. sphaeroides

A (-carotene producing strain of Rba. sphaeroides was generated by introduction of the gene
encoding the Synechocystis 9,15,9'-tri-cis-(-carotene-forming 2-step phytoene desaturase (PDS)
to a mutant lacking both the native all-trans-neurosporene-forming 3-step phytoene desaturase
(Crtl) and hydroxy-neurosporene synthase (CrtC) encoding genes, as described in the Materials
and Methods section in the main text. The crtC gene was deleted to prevent potential 1,2-hydration

of any carotenoid species produced in the modified strain.

Figure S1 shows the native carotenoid biosynthesis pathways in Rba. sphaeroides (panel
A) and oxygenic phototrophs (panel B), and the modified pathway in the Acrtl AcrtC PDS" strain
described in the present study (panel C). In wild-type Rba. sphaeroides, 15-cis-phytoene (N = 3)
is converted to al-trans-neurosporene (N = 9) by Crtl via al-trans-phytofluene (N = 5) and all-
trans-C-carotene (N = 7) intermediates, all-trans-neurosporene is subsequently converted to
spheroidene/spheroidenone (N = 10/N = 10+C=0) by the activities of three/four additional

enzymes in the absence/presence of Oz (1).

The pathway is different in oxygenic phototrophs, where four enzymes convert 15-cis-
phytoene to al-trans-lycopene (N = 11) (2). First, 15-cis-phytoene is converted to 9,15,9'-tri-cis-
{-carotene (N = 7) by PDS. Next, the 15-cis-bond in 9,15,9'-tri-cis-(-carotene is isomerized by (-
carotene isomerase (Z-1SO) resulting in production of 9,9'-di-cis-(-carotene, the substrate for (-
carotene desaturase (ZDS), which performs two-further desaturations generating 7,9,7',9'-tetra
cis-lycopene (N = 11). Isomerization of the cis-double bonds at the 7,9 and 7,9’ positions by a

second carotenoid isomerase, CRT-ISO, yields all-trans-lycopene, the common precursor to all
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the mature carotenoids accumulated by Synechocystis. Notably theisomerizations can be catalyzed

non-enzymaticaly by light (3, 4).

Deletion of crtl in Rba. sphaeroides results in accumulation of 15-cis-phytoene (1); this
strain grows very slowly under phototrophic growth conditions as it cannot make LH2 complexes,
which require visibly colored carotenoids for assembly (5). The Synechocystis pds gene was
introduced to the Acrtl AcrtC mutant on a plasmid and incubation under phototrophic growth
conditions resulted in afaster growing strain that contained -carotene and LH2 (see Figure 1A in
main paper for spectra of theisolated LH2 complex). Because LH2 binds all-trans-carotenoids (6,
7), and the cisbondsin 9,15,9'-tri-cis-(-carotene/7,9,7',9'-tetra-cis-lycopene are photol abile (3, 4),
incubation in the light appears to be sufficient to non-enzymatically photo-isomerize the product

of PDS, 9,15,9'-tri-cis-(-carotene, to all-trans-(-carotene.

I solation of all-trans-4-carotene

Geometric isomers of C-carotene were isolated from purified LH2 by HLPC as described in the
Materials and Methods section of the main paper (Figure S2). The predominant species (peak 4)
was all-trans-C-carotene, as expected because LH2 is known to bind all-trans-carotenoids (6, 7).
Two smaller peaks that elute shortly before the all-trans isomer and have almost identical
absorption spectraare most likely the 9,9'-di-cis (peak 2) and 9-cis or 9'-cis (eluting together; peak
3) isomers (see Figure S1c). The group of earlier eluting peaks collectively marked as (1) is
associated with central cis-isomers of -carotene that have isomerizations within the conjugated
region of the molecule resulting in a characteristic ‘cis-peak’, which for {-carotene is observed at

just below 300 nm (8).
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Transient absorption of {-carotenein solvent at room temperature and at 77 K

Transient absorption (TA) measurements of all-trans-C-carotene in 2-methyltetrahydrofuran (2-
MTHF) at room temperature and 77 K are shown in Figure S3. The carotenoid was excited at the
(0-0) vibronic band. Figures S3A and D show exemplary TA spectrataken at various delay times
after excitation. For comparative purposes steady-state absorption spectra are also provided (dash-
dot, scaled to match). Global analysis of the TA performed according to the irreversible sequential
decay of excitation isshown in Figures S3B and E. For both temperatures three kinetic components
were necessary for satisfactory fitting; according to spectral and temporal characteristics these are
associated with the decay of the S, state (EADS with lifetime < 200 fs at room temperature and
260 fs at 77 K with characteristic ground state absorption bleaching and stimulated emission and
S— S, excited state absorption in NIR), S; state vibrational equilibration (EADS with 1.34 — 3.5
pslifetimes) and decay of the S; state (EADS with lifetime of 340 psat RT/540 psat 77 K). Panels
C and F show dynamics extracted at the maximum excited state absorption band along with the

fits obtained from global analysis.
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Supplementary figures
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Figure S1. Carotenoid biosynthesis in wild-type Rba. sphaeroides (A), oxygenic phototrophs (B) and the Acrtl AcrtC PDS" strain of
Rba. sphaeroides (C). The carbon-carbon double bond conjugation (N) is indicated with shaded boxes. In (C) we predict that 9,15,9'-
tri-cis-(-carotene generated by introduction of the Synechocystis 2-step PDS to the Acrtl AcrtC mutant of Rba. sphaeroides is photo-
isomerized to 9,9-di-cis-(-carotene and all-trans-(-carotene. Carotenoid structures are taken from the KEGG database

(https://www.genome.j p/kegg-bin/show_pathway 2map00906).
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Figure S2. Isolation of the all-trans-C-carotene from purified LH2. Elution of carotenoid species
was monitored at 440 nm. The peaks associated with various carotenoid isomers are numbered 1-
4 and their normalized absorption spectra are plotted in the inset panel. The all-transisomer (peak
4) is expected to be the most dominant species as LH2 is known to bind carotenoids in the al-
trans configuration. Peaks 2 and 3 are predicted to be the 9,9'-di-cis (peak 2) and a mixture of 9-
cis and 9'-cis isomers (peak 3). The small peaks collectively labeled as 1 are cis-isomers with
central (in respect to conjugation) isomerizations, identified by the prominent ‘cis-peak’ at ~300

nm. The representative absorption spectrum of a central-cis isomer shown in the inset panel
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corresponds to peak marked with an asterisk (*). For further details see the text.
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room temperature
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Figure S3. Transient absorption of all-trans-C-carotene in 2-MTHF at room temperature (left
panels, A-C) and at 77 K (right panels, D-F). (A, D) TA spectrataken at various delay times after
excitation at the (0-0) vibronic band of the So—$; absorption (429 nm at RT and 438 nm at 77 K).
Scaled steady-state absorption spectra (dash-dot, black) are also provided for comparative
purposes. (B, E) Global analysis results, EADS — evolution associated decay spectra, resulting
from sequentia fitting model. (C, F) Exemplary TA decays extracted from the ESA band (475 nm

at RT and 497 nm at 77 K) accompanied with the fits obtained from global analysis.
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