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Supplementary Results 

Generation of a ȗ-carotene producing strain of Rba. sphaeroides 

A ȗ-carotene producing strain of Rba. sphaeroides was generated by introduction of the gene 

encoding the Synechocystis 9,15,9ƍ-tri-cis-ȗ-carotene-forming 2-step phytoene desaturase (PDS) 

to a mutant lacking both the native all-trans-neurosporene-forming 3-step phytoene desaturase 

(CrtI) and hydroxy-neurosporene synthase (CrtC) encoding genes, as described in the Materials 

and Methods section in the main text. The crtC gene was deleted to prevent potential 1,2-hydration 

of any carotenoid species produced in the modified strain. 

Figure S1 shows the native carotenoid biosynthesis pathways in Rba. sphaeroides (panel 

A) and oxygenic phototrophs (panel B), and the modified pathway in the ǻcrtI ǻcrtC PDS+ strain 

described in the present study (panel C). In wild-type Rba. sphaeroides, 15-cis-phytoene (N = 3) 

is converted to all-trans-neurosporene (N = 9) by CrtI via all-trans-phytofluene (N = 5) and all-

trans-ȗ-carotene (N = 7) intermediates; all-trans-neurosporene is subsequently converted to 

spheroidene/spheroidenone (N = 10/N = 10+C=O) by the activities of three/four additional 

enzymes in the absence/presence of O2 (1).  

The pathway is different in oxygenic phototrophs, where four enzymes convert 15-cis-

phytoene to all-trans-lycopene (N = 11) (2). First, 15-cis-phytoene is converted to 9,15,9ƍ-tri-cis-

ȗ-carotene (N = 7) by PDS. Next, the 15-cis-bond in 9,15,9ƍ-tri-cis-ȗ-carotene is isomerized by ȗ-

carotene isomerase (Z-ISO) resulting in production of 9,9ƍ-di-cis-ȗ-carotene, the substrate for ȗ-

carotene desaturase (ZDS), which performs two-further desaturations generating 7,9,7ƍ,9ƍ-tetra-

cis-lycopene (N = 11). Isomerization of the cis-double bonds at the 7,9 and 7ƍ,9ƍ positions by a 

second carotenoid isomerase, CRT-ISO, yields all-trans-lycopene, the common precursor to all 
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the mature carotenoids accumulated by Synechocystis. Notably the isomerizations can be catalyzed 

non-enzymatically by light (3, 4). 

Deletion of crtI in Rba. sphaeroides results in accumulation of 15-cis-phytoene (1); this 

strain grows very slowly under phototrophic growth conditions as it cannot make LH2 complexes, 

which require visibly colored carotenoids for assembly (5). The Synechocystis pds gene was 

introduced to the ǻcrtI ǻcrtC mutant on a plasmid and incubation under phototrophic growth 

conditions resulted in a faster growing strain that contained ȗ-carotene and LH2 (see Figure 1A in 

main paper for spectra of the isolated LH2 complex). Because LH2 binds all-trans-carotenoids (6, 

7), and the cis bonds in 9,15,9ƍ-tri-cis-ȗ-carotene/7,9,7ƍ,9ƍ-tetra-cis-lycopene are photolabile (3, 4), 

incubation in the light appears to be sufficient to non-enzymatically photo-isomerize the product 

of PDS, 9,15,9ƍ-tri-cis-ȗ-carotene, to all-trans-ȗ-carotene.  

 

Isolation of all-trans--carotene 

Geometric isomers of -carotene were isolated from purified LH2 by HLPC as described in the 

Materials and Methods section of the main paper (Figure S2). The predominant species (peak 4) 

was all-trans--carotene, as expected because LH2 is known to bind all-trans-carotenoids (6, 7). 

Two smaller peaks that elute shortly before the all-trans isomer and have almost identical 

absorption spectra are most likely the 9,9ƍ-di-cis (peak 2) and 9-cis or 9ƍ-cis (eluting together; peak 

3) isomers (see Figure S1c). The group of earlier eluting peaks collectively marked as (1) is 

associated with central cis-isomers of -carotene that have isomerizations within the conjugated 

region of the molecule resulting in a characteristic ‘cis-peak’, which for -carotene is observed at 

just below 300 nm (8).    
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Transient absorption of -carotene in solvent at room temperature and at 77 K 

Transient absorption (TA) measurements of all-trans--carotene in 2-methyltetrahydrofuran (2-

MTHF) at room temperature and 77 K are shown in Figure S3. The carotenoid was excited at the 

(0-0) vibronic band. Figures S3A and D show exemplary TA spectra taken at various delay times 

after excitation. For comparative purposes steady-state absorption spectra are also provided (dash-

dot, scaled to match). Global analysis of the TA performed according to the irreversible sequential 

decay of excitation is shown in Figures S3B and E. For both temperatures three kinetic components 

were necessary for satisfactory fitting; according to spectral and temporal characteristics these are 

associated with the decay of the S2 state (EADS with lifetime  200 fs at room temperature and 

260 fs at 77 K with characteristic ground state absorption bleaching and stimulated emission and 

S2→Sn excited state absorption in NIR), S1 state vibrational equilibration (EADS with 1.34 – 3.5 

ps lifetimes) and decay of the S1 state (EADS with lifetime of 340 ps at RT/540 ps at 77 K). Panels 

C and F show dynamics extracted at the maximum excited state absorption band along with the 

fits obtained from global analysis. 
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Supplementary figures 

 

Figure S1. Carotenoid biosynthesis in wild-type Rba. sphaeroides (A), oxygenic phototrophs (B) and the ǻcrtI ǻcrtC PDS+ strain of 

Rba. sphaeroides (C). The carbon-carbon double bond conjugation (N) is indicated with shaded boxes.  In (C) we predict that 9,15,9ƍ-

tri-cis-ȗ-carotene generated by introduction of the Synechocystis 2-step PDS to the ȴcrtI ȴcrtC mutant of Rba. sphaeroides is photo-

isomerized to 9,9ƍ-di-cis-ȗ-carotene and all-trans-ȗ-carotene. Carotenoid structures are taken from the KEGG database 

(https://www.genome.jp/kegg-bin/show_pathway?map00906). 
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Figure S2. Isolation of the all-trans--carotene from purified LH2. Elution of carotenoid species 

was monitored at 440 nm. The peaks associated with various carotenoid isomers are numbered 1-

4 and their normalized absorption spectra are plotted in the inset panel. The all-trans isomer (peak 

4) is expected to be the most dominant species as LH2 is known to bind carotenoids in the all-

trans configuration. Peaks 2 and 3 are predicted to be the 9,9ƍ-di-cis (peak 2) and a mixture of 9-

cis and 9ƍ-cis isomers (peak 3). The small peaks collectively labeled as 1 are cis-isomers with 

central (in respect to conjugation) isomerizations, identified by the prominent ‘cis-peak’ at ~300 

nm. The representative absorption spectrum of a central-cis isomer shown in the inset panel 

corresponds to peak marked with an asterisk (*). For further details see the text.  
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Figure S3. Transient absorption of all-trans--carotene in 2-MTHF at room temperature (left 

panels, A-C) and at 77 K (right panels, D-F). (A, D) TA spectra taken at various delay times after 

excitation at the (0-0) vibronic band of the S0→S2 absorption (429 nm at RT and 438 nm at 77 K). 

Scaled steady-state absorption spectra (dash-dot, black) are also provided for comparative 

purposes. (B, E) Global analysis results, EADS – evolution associated decay spectra, resulting 

from sequential fitting model. (C, F) Exemplary TA decays extracted from the ESA band (475 nm 

at RT and 497 nm at 77 K) accompanied with the fits obtained from global analysis. 
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