
Simulating Crowds in Real Time with Agent-
Based Modelling and a Particle Filter
Nick Malleson1,2, Kevin Minors3, Le-Minh Kieu3, Jonathan A.
Ward4,2, Andrew A. West3, Alison Heppenstall1,2

1Centre for Spatial Analysis and Policy, School of Geography, University of Leeds, Woodhouse
Lane, Leeds LS2 9JT, United Kingdom
2Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, United Kingdom
3Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Worsley Building,
Leeds LS2 9JT, United Kingdom
4School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
*Correspondence should be addressed to n.s.malleson@leeds.ac.uk

Journal of Artificial Societies and Social Simulation 23(3) 3, (2020). Doi: 10.18564/jasss.4266
Url: http://jasss.soc.surrey.ac.uk/23/3/3.html

Received: 22-11-2019 Accepted: 20-03-2020 Published: 30-06-2020

Abstract: Agent-based modelling is a valuable approach for modelling systems whose behaviour is driven by
the interactions between distinct entities, such as crowds of people. However, it faces a fundamental di�iculty:
there are no establishedmechanisms for dynamically incorporating real-time data intomodels. This limits sim-
ulations that are inherently dynamic, such as those of pedestrian movements, to scenario testing on historic
patterns rather than real-time simulation of the present. This paper demonstrates how a particle filter could be
used to incorporate data into an agent-based model of pedestrian movements at run time. The experiments
show that although it is possible to use a particle filter to perform online (real time) model optimisation, the
numberof individual particles required (andhence the computational complexity) increases exponentiallywith
the number of agents. Furthermore, the paper assumes a one-to-one mapping between observations and in-
dividual agents, which would not be the case in reality. Therefore this paper lays some of the fundamental
groundwork and highlights the key challenges that need to be addressed for the real-time simulation of crowd
movements to become a reality. Such success could have implications for the management of complex en-
vironments both nationally and internationally such as transportation hubs, hospitals, shopping centres, etc.

Keywords: Agent-Based Modelling, Particle Filter, Data Assimilation, Crowd Simulation, Pedestrian Modelling

Introduction

1.1 Agent-basedmodelling isa formofcomputer simulation that iswell suited tomodellinghumansystems (Bonabeau
2002; Farmer & Foley 2009). In recent years it has emerged as an important tool for decision makers who need
to base their decisions on the behaviour of crowds of people (Henein & White 2005). Such models, that sim-
ulate the behaviour of synthetic individual people, have been proven to be useful as tools to experiment with
strategies for humanitarian assistance (Crooks & Wise 2013), emergency evacuations (Ren et al. 2009; Schoen-
harl & Madey 2011), management of religious festivals (Zainuddin et al. 2009), reducing the risk of crowd stam-
pedes (Helbing et al. 2000), etc. Althoughmany agent-based crowd simulations have been developed, there is
a fundamentalmethodological di�iculty thatmodellers face: there are no establishedmechanisms for incorpo-
rating real-time data into simulations (Lloyd et al. 2016; Wang & Hu 2015; Ward et al. 2016). Models are typically
calibratedonce, usinghistorical data, and thenprojected forward in time tomakeaprediction independently of
any new data thatmight arise. Although thismakes them e�ective at analysing scenarios to create information
that can be useful in the design of crowd management policies, it means that they cannot currently be used
to simulate real crowd systems in real time. Without knowledge of the current state of a system it is di�icult to
decide on the most appropriate management plan for emerging situations.

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

n.s.malleson@leeds.ac.uk

1.2 Fortunately, methods do exist to reliably incorporate emerging data into models. Data assimilation is a tech-
nique that has been widely used in fields such as meteorology, hydrology and oceanography, and is one of the
main reasons that weather forecasts have improved so substantially in recent decades (Kalnay 2003). Broadly,
data assimilation refers to a suite of techniques that allow observational data from the real world to be incor-
porated into models (Lewis et al. 2006). This makes it possible to more accurately represent the current state
of the system, and therefore reduce the uncertainty in future predictions.

1.3 It is important to note the di�erences between the data assimilation approach used here and that of typical
agent-based parameter estimation / calibration. The field of optimisation — finding suitable estimates for the
parameters of algorithms — is an extremely well-researched field that agent-based modellers o�en draw on.
For example, agent-basedmodels regularlymake use of samplingmethods, such as Latin Hypercube sampling
(Thiele et al. 2014) or evolutionary / heuristic optimisation algorithms such as simulated annealing (Pennisi
et al. 2008), genetic algorithms, (Heppenstall et al. 2007), and approximate Bayesian computation (Grazzini
et al. 2017). There are also new so�ware tools becoming available to support advanced parameter exploration
(Ozik et al. 2018).

1.4 A fundamental di�erence between typical parameter optimisation and the data assimilation approach is that
data assimilation algorithms aim to estimate the current ‘true’ state of the underlying system at runtime, along
with the uncertainty in this estimate, rather than purely trying to find the optimal model parameter values. In
other words, data assimilation algorithms adjust the current model state in response to real-time data in order
to constrain the model’s continued evolution against observations of the real world (Ward et al. 2016). In con-
trast, even if optimal model parameters have been found via a standard calibration approach, model stochas-
ticity leads to state estimates whose uncertainty increases over time. Whilst there are some recent studies that
attempt to re-calibrate model parameters dynamically during runtime (e.g. Oloo & Wallentin 2017; Oloo et al.
2018), this does not reduce the natural uncertainty in the system state that arises as stochastic models evolve.

1.5 This paper is part of a wider programme of work1 whosemain aim is to develop data assimilationmethods that
can be used in agent-basedmodelling. The so�ware codes that underpin thework discussed here are available
in full from the project code repository (DUST 2019) and instructions for operating the codes can be found in Ap-
pendix A. The work here focuses on one particular system, pedestrianmovements, and one particular method,
the particle filter. A particle filter is a brute forceBayesian state estimationmethodwhose goal is to estimate the
‘true’ state of a system, obtained by combining a model estimate with observational data, using an ensemble
of model instances called particles. When observational data become available, the algorithm identifies those
model instances, i.e. particles, whose state is closest to that of the observational data, and then re-samples par-
ticles based on this distance. It is worth noting that once an accurate estimate of the current state of the system
has been calculated, predictions of future states should bemuchmore reliable. Predicting future system states
is beyond the scope of this paper however, the focus here is on estimating the current state of the underlying
system.

1.6 The overall aim of this paper is to: experiment with the conditions under which a typical particle filter cou-
pled with an agent-based model can estimate the ‘true’ state of an underlying pedestrian system through the
combination of a modelled state estimate and observational data. This will be achieved through a number of
experiments following an ‘identical twin’ approach (Wang&Hu2015). In the identical twin approach, the agent-
based model is first executed to produce hypothetical real data — also known as pseudo-truth (Grazzini et al.
2017) data — and these data are assumed to be drawn from the real world. During data assimilation, noisy ob-
servations are derived from thepseudo-truthdata. This approachhas the advantage that the ‘true’ systemstate
can be known precisely, and so the accuracy of the particle filter can be calculated. In reality, the true system
state can never be known.

1.7 The agent-based model under study is designed to represent an abstract pedestrian system. Rather than de-
veloping a comprehensive pedestrian simulation, the model used here is intentionally uncomplicated so that
the uncertainty in the evolution of the model can be fully understood. This makes it possible to quantify the
conditions under which the particle filter is able to successfully estimate the ‘true’ behaviour of the system.
However, the model is su�iciently complex to allow the emergence of crowding, so its dynamics could not be
easily replicated by a mathematical model as per Lloyd et al. (2016) and Ward et al. (2016). Crowding occurs
because the agents have a variable maximum speed, therefore slower agents hold up faster ones who are be-
hind them. The only uncertainty in the model, which the particle filter is tasked with managing, occurs when
a faster agent must make a random choice whether to move round a slower agent to the le� or right. Without
that uncertain behaviour the model would be deterministic. A more realistic crowd simulation would exhibit
much more complicated behavioural dynamics. A further simplification relates to the pseudo-real data that
the particle filter uses to estimate the state of the ‘real’ crowd. Currently there is a one-to-one mapping be-
tween ‘real’ individuals and agents in the particles. In reality, observational data would be drawn from diverse

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

sources such as population counters,mobile phone cell tower usage statistics, etc., whichmeans that consider-
able real-time analysis would be required before the data were appropriate for input into the data assimilation
algorithm. Hence rather thanpresenting aproven solution, this paper lays important groundwork towards real-
time pedestrian modelling, outlining the considerable challenges that remain.

Background

Agent-based crowdmodelling

2.1 Oneof the core strengths of agent-basedmodelling is its ability to replicate heterogeneous individuals and their
behaviours. These individuals can be readily placed within an accurate representation of their physical envi-
ronment, thus creating a potentially powerful tool for managing complex environments such as urban spaces.
Understanding how pedestrians are likely tomove around di�erent urban environments is an important policy
area. Recent work using agent-based models have shown value in simulating applications from the design of
railway stations (Klügl & Rindsfüser 2007; Chen et al. 2017), the organisations of queues (Kim et al. 2013), the
dangers of crowding (Helbing et al. 2000) and the management of emergency evacuations (van der Wal et al.
2017).

2.2 However, a drawback with all agent-based crowd simulations — aside from a handful of exceptions discussed
below — is that they are essentially models of the past. Historical data are used to estimate suitable model
parameters andmodels are evolved forward in time regardless of any new data thatmight arise. Whilst this ap-
proachhas value for exploring thedynamicsof crowdbehaviour, or for general policyor infrastructureplanning,
it means thatmodels cannot be used to simulate crowd dynamics in real time. The drivers of these systems are
complex, hence themodels are necessarily probabilistic. This means that a collection of models will rapidly di-
verge from each other and from the real world even under identical starting conditions. This issue has fostered
an emerging interest in themeans of better associatingmodelswith empirical data from the target system (see,
e.g., Wang & Hu 2015; Ward et al. 2016; Long & Hu 2017).

Data-driven agent-basedmodelling

2.3 The concept of Data-Driven Agent-Based Modelling (DDABM) emerged from broader work in data-driven appli-
cation systems (Darema 2004) that aims to enhance or refine a model at runtime using new data. One of the
mostwell developedmodels in this domain is the ‘WIPER’ system (Schoenharl &Madey 2011). This uses stream-
ing data frommobile telephone towers to detect crisis events andmodel pedestrian behaviour. When an event
is detected, an ensemble of agent-based models are instantiated from streaming data and then validated in
order to estimate which ensemble member most closely captured the particular crisis scenario (Schoenharl
& Madey 2008). Although innovative in its use of streaming data, the approach is otherwise consistent with
traditional methods for model validation based on historical data (Oloo & Wallentin 2017). Similar attempts
have been made to model solar panel adoption (Zhang et al. 2015), rail (Othman et al. 2015) and bus (Kieu
et al. 2020) travel, crime (Lloyd et al. 2016), bird flocking (Oloo et al. 2018) and aggregate pedestrian behaviour
(Ward et al. 2016), but whilst promising, these models have limitations. For example, they either assume that
agent behaviours can be proxied by regressionmodels (Zhang et al. 2015) (which will make it impossible to use
more advanced behavioural frameworks to encapsulate the more interesting features of agent behaviour), are
calibrated manually (Othman et al. 2015) (which is infeasible in most cases), optimise model parameters dy-
namically but not the underlying model state (Oloo et al. 2018) (which might have diverged substantially from
reality), or usemodelswhose dynamics can be approximated by an aggregatemathematicalmodel (Lloyd et al.
2016; Ward et al. 2016) (neglecting the importance of using agent-basedmodelling in the first place).

2.4 In addition to those outlined above, there are two further studies that are of direct relevance and warrant ad-
ditional discussion. The first is that of Lueck et al. (2019), who developed an agent-based model of an evacu-
ation coupled with a particle filter. Their aim is to develop a new data association scheme that is able to map
from a ‘simple’ data domain, such as that produced by population counters that might exist in the real world,
to a more complex domain, such as an agent-based model that aims to simulate the real system. This map-
ping is important because without such a method it is di�icult to determine which observations from the real
world should map onto individual agents in the simulation. As with this paper, Lueck et al. (2019) use simu-
lated “ground-truth” data akin to the ‘identical twin’ approach. The main di�erence between this paper and

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

that one relates to the underlying system that is being simulated. Here the agents move across a continuous
surface and crowding emerges as the agents collide. In theory the agents can reach any part of the environ-
ment, although in practice this is very unlikely because they attempt to move towards specific exits. In Lueck
et al. (2019) the agents navigate across a vector road network so theirmovements are constrained to a set of 100
discrete nodes and there are no collisions or ‘crowding’ as such. Ultimately although the two simulations are
drawn from the same research domain, that of pedestrianmovements, they areworking on di�erent problems.
As will be addressed in the discussion, immediate future work for this paper will be to move towards a more
realistic pedestrian system and it is expected that the mapping method proposed by Lueck et al. (2019) will be
essential as ameans of consolidating the aggregate observations that are drawn from the real world with state
vector of an agent-basedmodel that simulates individual agents.

2.5 The second study is that ofWang&Hu (2015) who investigated the viability of simulating individualmovements
in an indoor environment using streams of real-time sensor data to perform dynamic state estimation. As with
this paper and that of Lueck et al. (2019), the authors used an ‘identical twin’ experimental framework. An
ensemble of models were developed to represent the target system with a particle filter used to constrain the
models to the hypothetical reality. A new particle resampling method called ‘component set resampling’ was
also proposed that is shown tomitigate the particle deprivation problem; see Section 2.10 formore details. The
research presented within this paper builds on Wang & Hu (2015) by: (i) attempting to apply data assimilation
to a system that exhibits emergence; and (ii) performing more extensive experiments to assess the conditions
under which a particle filter is appropriate for assimilating data into agent-based crowdmodels.

Data Assimilation and the Particle Filter

2.6 ‘Data assimilation’ refers to a suite ofmathematical approaches that are capable of using up-to-date data to ad-
just the state of a runningmodel, allowing it tomore accurately represent the current state of the target system.
They have been successfully used in fields such as meteorology, where in recent years 7-day weather forecasts
have become more accurate than 5-day forecasts were in the 1990s (Bauer et al. 2015); partly due to improve-
ments in data assimilation techniques (Kalnay 2003). The need for data assimilation was initially born out of
data scarcity; numerical weather prediction models typically have two orders of magnitude more degrees of
freedom than they do observation data. Initially the problemwas addressed using interpolation (e.g. Panofsky
1949; Charney 1951), but this soon proved insu�icient (Kalnay 2003). The eventual solution was to use a com-
bination of observational data and the predictions of short-range forecasts (i.e. a model) to create the full initial
conditions (the ‘first guess’) for amodel of the current systemstate that could thenmake forecasts. In e�ect, the
basic premise is that by combining a detailed but uncertainmodel of the systemwith sparse but less uncertain
data, “all the available information” can be used to estimate the true state of the target system (Talagrand 1991).

2.7 A particle filter is only one of many di�erent methods that have been developed to perform data assimilation.
Others include the Successive Corrections Method, Optimal Interpolation, 3D-Var, 4D-Var, and various variants
of Kalman Filtering; see Carrassi et al. (2018) for a review. The particle filter method is chosen here because it is
non-parametric; suchmethods and are better suited to performing data assimilation in systems that have non-
linear and non-Gaussian behaviour (Long &Hu 2017), such as agent-basedmodels. In fact, agent-basedmodels
are typically formulated as computer programs rather than in the mathematical forms required of many data
assimilation methods, such as the Kalman filter and its variants (Wang & Hu 2015).

2.8 The particle filter is a brute force Bayesian state estimation method. The goal is to estimate a posterior distri-
bution, i.e. the probability that the system is in a particular state conditioned on the observed data, using an
ensemble of model instances, called particles. Each particle has an associated weight, normalised to sum to
one, that are drawn from a prior distribution. In the data assimilation step, discussed shortly, each particle is
confronted with observations from the pseudo-real system and weights are adjusted depending on the likeli-
hood that a particle could have produced the observations. Unlike most other data assimilation methods, a
particle filter does not actually update the internal states of its particles. Instead, the worst performing parti-
cles— those that are least likely to have generated the observations—are removed fromsubsequent iterations,
whereas better performing particles are duplicated. This has the advantage that, when performing data assim-
ilation on an agent-based model, it is not necessary to derive a means of updating unstructured variables. For
example, it is not clear how data assimilation approaches that have been designed for mathematical models
that consist of purely numerical values will update models that contain agents with categorical variables.

2.9 Formally, a particle filter (PF) Pk consists of an ensemble of simulation realisations and a corresponding set of
weights, i.e.

Pk =
{
(x

(i)
k , w

(i)
k) : i ∈ {1, . . . , Np}

}
, (1)

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

Untitled Page

200 m0 100 m

100 m

D
oo
r i
n

D
oo
r o
ut

Exported from Pencil ­ Tue Jul 30 2019 14:19:43 GMT+0100 (BST) ­ Page 1 of 1

Figure 1: StationSim environment with 3 entrance and 2 exit doors
.

whereNp is the number of particles,x
(i)
k is the state vector of the i-th particle at the k-th observation,w(i)

k is the
corresponding weight associated with particle i at observation k, and the weights are subject to the condition∑Np

i=1 w
(i)
k = 1 for all observationsk. The generalmethodof theparticle filter is to usePk, the simulationmodel

and new information in the form of observations to determine Pk+1.

2.10 There aremany di�erent PFmethods. The standard form is the sequential importance sampling (SIS) PFwhich
selects the weights using importance sampling (Bergman 1999; Doucet et al. 2000). The particles are sampled
from an importance density (Uosaki et al. 2003). One pitfall of the SIS PF is particle degeneracy. This occurs
when the weights of all the particles tend to zero except for one particle which has a weight very close to one.
This results in the population of particles being a very poor estimate for the posterior distribution. Onemethod
to prevent particle degeneracy is to resample the particles, duplicating particles with a high weight and dis-
carding particles with a low weight. The probability of a particle being resampled is proportional to its weight;
known as the sequential importance resampling (SIR) PF. The particles can be resampled in a variety of di�er-
ent ways, including multinomial, stratified, residual, systematic, and component set resampling (Liu & Chen
1998; Douc et al. 2005; Wang & Hu 2015). Although resampling helps to increase the spread of particle weights,
it is o�en not su�icient (Carrassi et al. 2018). In a similar manner to particle degeneration in the SIS PF, particle
collapse can occur in the SIR PF. This occurs when only one particle is resampled so every particle has the same
state.

2.11 Oneof themain drawbackswith PFmethods, asmany studies have found (e.g. Snyder et al. 2008; Carrassi et al.
2018), is that the number of particles required to prevent particle degeneracy or collapse grows exponentially
with the dimensionality of the model. This is an ongoing problem that will be revisited throughout this paper.
Hence the work here o�ers a useful starting point for particle filtering and agent-based crowd modelling, but
there are considerable challenges that must be overcome before it can be proven to be useful in a real setting.
Fortunately there are numerous innovations to the particle filter method, which we revisit in Section 5.4, that
will help. These include the auxiliary SIR PF and the regularised PF (Arulampalam et al. 2002), the merging PF
(Nakano et al. 2007), and the resample-move PF (Gilks & Berzuini 2001), as well as many othera (van Leeuwen
2009).

Method

The agent-basedmodel: StationSim

3.1 StationSim is an abstract agent-basedmodel that has been designed to very loosely represent the behaviour of
a crowd of people moving from an entrance on one side of a rectangular environment to an exit on the other
side. This is analogous to a train arriving at a train station andpassengersmoving across the concourse to leave.
A number of agents,Na, are created when the model starts. They are able to enter the environment, i.e. leave
their train, at a uniform rate through one of three entrances. They move across the ‘concourse’ and then leave
by one of the two exits. The entrances and exits have a set size, such that only a limited number of agents can
pass through them in any given iteration. Once all agents have entered the environment and passed through
the concourse then the simulation ends. The model environment is illustrated in Figure 1, with the trajectories
of two interacting agents for illustration. All model parameters are specified in Table 1.

3.2 The model has deliberately been designed to be elementary and does not attempt to match the behavioural
realismo�eredbymoredeveloped crowdmodels (Chen et al. 2017; Helbing et al. 2000; Klügl &Rindsfüser 2007;

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

Figure 2: An example of crowding in the StationSim model. (a) Individual trails showing the paths taken by
agents. Note the small deviations from the straight line that occurs as an agent meets others. and attempts to
navigate around them. (b) The total crowd density over the simulation run.

van der Wal et al. 2017). The reason for this simplicity is so that: (1) themodel can execute relatively quickly; (2)
the probabilistic elements in the model are limited as we know precisely from where probabilistic behaviour
arises; and (3) themodel canbedescribed fully using a state vector, as discussed in Section 3.7. Importantly, the
model is able to capture the emergence of crowding. This occurs because each agent has a di�erent maximum
speed that they can travel at. Therefore, when a fast agent approaches a slower one, they attempt to get past
by making a random binary choice to move le� or right around them. Depending on the agents in the vicinity,
this behaviour can start to lead to the formation of crowds. To illustrate this, Figure 2 shows the paths of the
agents (2) and the total agent density (2) during an example simulation. The degree and location of crowding
depends on the random allocation of maximum speeds to agents and their random choice of direction taken
to avoid slower agents; these cannot be estimated a priori. Unlike in previous work where the models did not
necessarily meet the common criteria that define agent-based models (Lloyd et al. 2016; Ward et al. 2016, e.g.)
this model respects three of the most important characteristics:

• individual heterogeneity — agents have di�erent maximum travel speeds;

• agent interactions — agents are not allowed to occupy the same space so try to move around slower
agents who are blocking their path;

• emergence — crowding is an emergent property of the system that arises as a result of the choice of exit
that each agent is heading to and their maximum speed.

3.3 Themodel code is relatively short and easy to understand. It is written in Python, and is available in its entirety
at in the project repository (DUST 2019). For the interested reader, additionalmodel diagnostics have also been
produced to illustrate the locations of collisions, a video of typical model evolution, the total evacuation time,
the expected evacuation time were there no collisions, etc2.

Data assimilation — Introduction and definitions

3.4 DAmethods are built on the following assumptions:

1. Although they may have low uncertainty, observational data are o�en spatio-temporally sparse. There-
fore there are typically insu�icient amounts of data to to describe the system in detail and a data-driven
approach would not work.

2. Models are not sparse; they can represent the target system in great detail and hence fill in the spatio-
temporal gaps in observational data by propagating data from observed to unobserved areas (Carrassi
et al. 2018). For example, somepartsof abuildingmightbemoreheavily observed thanothers, soamodel
that assimilated data from the observed areas might be able to estimate the state of the unobserved
areas. However, if the underlying systems are complex, a model will rapidly diverge from the real system
in the absence of up to date data (Ward et al. 2016).

3. The combination a model and up-to-date observational data allow “all the available information” to be
used to determine the state of the system as accurately as possible (Talagrand 1991).

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

Pseudo-
Truth Model

Particles

Observations
(pseudo-

truth)

Reweight Resample
New

particle
population

Data assimilation:
update step

Model iteration
number, i

i0 1 2 i i+1 i+2 i-1
Time

Predict Predict

Figure 3: Flowchart of data assimilation process using a particle filter.

3.5 DA algorithms work by running a model forward in time up to the point that some new observational data
become available. This is typically called the predict step. At this point, the algorithm has an estimate of the
current system state and its uncertainty; the prior. The next step, update, involves using the new observations,
and their uncertainties, to update the current state estimate to create a posterior estimate of the state. As the
posterior has combined the best guess of the state from the model and the best guess of the state from the
observations, it should be a closer estimate of the true system state than that which could be estimated from
the observations or the model in isolation.

The particle filter

3.6 There aremany di�erentways to performdata assimilation, as discussed in Section 2.10. Here, a potentially ap-
propriate solution to the data assimilation problem for agent-based models is the particle filter — also known
as a Bayesian bootstrap filter or a sequential Monte Carlomethod—which represents the posterior state using
a collection of model samples, called particles (Gordon et al. 1993; Carpenter et al. 1999; Wang & Hu 2015; Car-
rassi et al. 2018). Figure 3 illustrates the process of running a particle filter. Note that the ‘pseudo-truth model’
is a single instance of the agent-based model that is used as a proxy for the real system as per the identical
twin experimental framework that we have adopted. The Sequential Importance Resampling (SIR) filter with
systematic resampling is used here because it ranks higher in resampling quality and computational simplicity
compared to other resampling methods (Hol et al. 2006; Douc et al. 2005).

3.7 The data assimilation ‘window’ determines how o�en new observations are assimilated into the particle filter.
The size of thewindow is an important factor— largerwindowsgenerally result in theparticles deviating further
from the real system state. Here we fix the window at 100 iterations. We denote the observation times by tk, for
integers k between 1 and the number of observationsNobs, so in the particular case considered here t1 is the
100th iteration of the simulation, t2 the 200th etc.

The state vector and transition Function

3.8 Here, the state vector x(i)k at time tk of the i-th particle contains all the information that a transition function,
i.e. the simulationmodel, needs to iterate the state forwardby one time step, including all agent and simulation
environment variables. Here, the particle filter is only used to estimate the model state, but it is worth noting
that combined state and parameter estimation is possible (Ward et al. 2016). The state vector for StationSim
consists of just the coordinates of each agent, thus x(i)k ∈ R2Na . It is not necessary to store agent velocities
since StationSim determines this from each agent’s position and the positions of other agents nearby. Agents’
maximum speeds and exit choices are assumed to be known parameters.

3.9 The observation vector yk contains all of the observations made from the ‘real world’ (in this case the pseudo-
truthmodel) at the k-th observation. Here we assume that the observation vector is ameasurement of the true
state xk at time tk, with the addition of noise, so

yk = xk + ξk (2)

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

where ξk is uncorrelated Gaussian noise, i.e. ξk ∼ N (0, σ2
mI) with mean 0, variance σ2

m and I is the 2Na by
2Na identity matrix.

3.10 The fact that the state and observation vectors have the same size has the e�ect of ‘pairing’ agents in each
particle to those in the pseudo-truth data, similar to the case considered inWang&Hu (2015). Consequently it is
worthnoting that, because theparticle filterwill not be taskedwithparameter estimation, thedata assimilation
problem is somewhat less complicated than it would be in a real application where this pairing would not be
possible. For example, the agent parameter used to store the location of the exit out of the environment that
an agent is moving towards is assumed to be known, consequently the particle filter does not need to estimate
where the agents are going, only where they currently are. This is analogous to tracking all individuals in a
crowd and providing snapshots of their locations at discrete points in time to the particle filter. This ‘synthetic
observation’ is more detailed than data typically available.

Particle weights

3.11 Each particle i in the particle filter has a time varying weight w(i)
k associated with it that quantifies how simi-

lar a particle is to the observations. The weights are calculated at the end of each data assimilation window,
i.e. when observations have become available. At the start of the following window the particles then evolve
independently from each other (Fearnhead & Künsch 2018). The weights a�er the k-th observation are com-
puted as follows. For each particle, the l2-norm of the di�erence between the particle state vector x(i)k and the
observation vector yk is computed,

ε
(i)
k = ||yk − x(i)k ||2, (3)

and the updated weight is thenw(i)
k = η/(10−9 + ε

(i)
k), where η is a normalising constant. The mean PF error

at the k-th observation is then

νk =
1

Np

Np∑
i=1

ε
(i)
k . (4)

Sampling procedure

3.12 Here, a Sequential Importance Resampling (SIR, discussed in Section 2.10 or bootstrap filter is implemented
thatuses systematic resampling,which is computationally straightforwardandhasgoodempiricalperformance
(Doucet et al. 2001; Douc et al. 2005;Wang&Hu2015; Long&Hu2017; Carrassi et al. 2018). Thismethod requires
drawing just one random sample U from the uniform distribution on the interval [0, 1/Np] and then selecting
Np pointsU i for i ∈ {1, . . . , Np} on the interval [0, 1] such that

U i = (i− 1)/Np + U. (5)

Using the inversionmethod,wecalculate thecumulative sumof thenormalisedparticleweightsw(i)
k anddefine

the inverse functionD of this cumulative sum, that is:

D(u) = i for u ∈

i−1∑
j=1

w
(j)
k ,

i∑
j=1

w
(j)
k

 . (6)

Finally, the new locations of the resampled particles are given by xD(Ui). Particles with relatively large error,
and hence small weight, are likely to be removed during the resampling procedure, whereas those with low
error, and hence high weight, are likely to be duplicated. The weighted sum of the particle states,

Np∑
i=1

w
(i)
k x

(i)
k , (7)

isused toestimate the ‘true’ systemstate. Other summarystatistics canbecomputed fromappropriateweighted
sums.

3.13 A well-studied issue that particle filters face is that of particle deprivation (Snyder et al. 2008), which refers to
the problem of particles converging to a single point such that all particles, but one, vanish (Kong et al. 1994).
Here, the problem is addressed in two ways. Firstly, by simply using increasingly larger numbers of particles
and, secondly, by diversifying the particles (Vadakkepat & Jing 2006); also known as roughening, jittering, and

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

di�using (Li et al. 2014; Shephard & Flury 2009; Pantrigo et al. 2005). In each iteration of the model we add
Gaussian white noise to the particles’ state vector to increase their variance, which increases particle diversity.
This encourages a greater variety of particles to be resampled and therefore makes the algorithm more likely
to represent the state of the underlying system. This method is a special case of the resample-move method
presented in Gilks & Berzuini (2001). The amount of noise to add is a key hyper-parameter — too little and it
has no e�ect, too much and the state of the particles moves far away from the true state — as discussed in the
following section.

Experimental Results

Outline of the experiments

4.1 Recall that the aim of this paper is to experiment with the conditions under which a typical particle filter cou-
pled with an agent-based model can estimate the ‘true’ state of an underlying pedestrian system through the
combination of a modelled state estimate and observational data. By examining the error—i.e. the di�erence
between the particle filter estimate of the system state and the pseudo-truth data—under di�erent conditions,
this paper will present some preliminary estimates of the potential for the use of particle filtering in real-time
crowd simulation. In particular, this paper will estimate the minimum number of particles that are needed to
model a system that has a given number of agents. The dynamics of the model used here are less complicated
than those ofmore advanced crowdmodels, and hence the particle filter is taskedwith an easier problem than
it would have to solve in a real-world scenario. In addition, the number of particles used and the characteristics
of the observations provided to the particle filter are much less complicated than would be the case in real-
ity. Therefore although these experiments provide valuable insight into the general potential of themethod for
crowd simulation, considerable furtherworkwould be required before themethod can be used to simulate real
crowds in earnest. Sections 5.1 and 5.2 reflect on these factors in detail.

4.2 It is well known that one of themain drawbackswith a particle filter is that the number of particles required can
explode as the complexity of the system increases (e.g. Snyder et al. 2008; Carrassi et al. 2018). In this system,
the complexity of the model is determined by the number of agents. As outlined in Section 3.2, randomness
is introduced through agent interactions. Therefore the fewer the number of agents, the smaller the chance
of interactions occurring and the lower the complexity. As the number of agents increases, we find that the
number of interactions increases exponentially; Figure 6, discussed in the following section, will illustrate this.
This paper will also experiment with the amount of particle noise (σp) that needs to be included to reduce the
problemof particle deprivation, as discussed in Sections 2.2 and 3.12, but this is not a focus of the experiments.

4.3 Toquantify the ‘success’ of eachparameter configuration— i.e. thenumber of particlesNp andamountof parti-
cle noise σp that allow the particle filter to reliably represent a systemofNa agents— an estimate of the overall
error associated with a particular particle filter configuration is required. There are a number of di�erent ways
that this error could be calculated. Here, a three-step approach is adopted. Firstly, the overall error of a single
particle is calculated by taking its mean weight a�er resampling in every data assimilation window. Secondly,
to calculate the error associated with all particles in a single experimental result — e.g. a particular (Na, Np)
combination — the mean error of every particle is calculated. Finally, because the results from an individual
experiment will vary slightly, each (Na, Np) combination is executed a number of times,M , and the overall
error is taken as the median error across all of those individual experiments. The median is chosen because
some experiments are outliers, therefore it is a fairer estimate of the overall error across all experiments.

4.4 Formally, let νk(j) be themean PF error in data assimilation window k of the j-th experiment, thus themedian
ofM experiments of the time-averagedmean PF error is:

eNp,σp,Na = medianj

(∑Nobs

k=1 νk(j)

T

)
(8)

where T is the total number of data assimilation windows.

4.5 Table 1 outlines the parameters that are used in the experiments. There are a number of other model and par-
ticle filter parameters that can vary, but ultimately these do not influence the results outlined here and are not
experimented with. The parameters, and code, are available in full from the project repository (DUST 2019).

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

Table 1: The parameters used in themodel and experiments. The Symbol column gives the symbol used to rep-
resent the parameter in this paper (where applicable) and Variable gives the variable name in the source code.
‘Experimental’ parameters are varied in the experiments and ‘fixed’ parameters are kept constant throughout
all experiments. ‘Secondary’ parameters are important in that they allow crowding to emerge in StationSim,
but their values are not of direct relevance to the results of the experiments.

Parameter description Symbol Variable Value / Range

Experimental parameters

Number of agents Na pop_total [2, 40]
Number of particles Np number_of_particles [1, 10000]
Standard deviation of noise added to particles (drawn from a
Gaussian distribution with µ = 0)

σp particle_std [0.25, 0.5]

Fixed parameters
Standard deviation of noise added to observations (drawn
from a Gaussian distribution with µ = 0)

σm model_std 1.0

Number of experiments (repetitions) M number_of_runs 20
Model iterations within each data assimilation window - resample_window 100

Secondary parameters

Width of the environment - width 400
Height of the environment - height 200
Number of ‘in’ gates - gates_in 3
Number of ‘out’ gates - gates_out 2
Minimumdistance fromagate that causes pedestrian to leave
through that gate

- gates_space 1

Rate that agents enter themodel (theλparameter in an expo-
nential distribution)

- gates_speed 1

Minimum agent speed - speed_min 0.2
Mean agent speed (individual maximum speeds are drawn
from a Gaussian distribution)

- speed_mean 1

Standard deviation of agent speed - speed_std 1
Whenbeingblockedbyanagent so cannot travel atmaximum
speed, the number of discrete steps to try as approach the
agent to avoid collision

- speed_steps 3

Minimum distance between agents - separation 5
Max distance agents can move when trying to avoid a slower
agent

- max_wiggle 1

Results

Benchmarking

4.6 Before experimenting with the particle filter, a set of benchmarking experiments were conducted. In these ex-
periments the particle filter was run as normal but without particle reweighting or resampling. This provides
an illustration of the degree of uncertainty that can be attributed to the random interactions of agents in the
model and also allows us to quantify the level of error that would be expected were there no data assimilation.
The number of agents (Na) was varied from 2 to 40 in steps of 2 and for each Na ten individual experiments
were conducted. The number of particles chosen does not influence the overall error, soNp = 1000was used
in all benchmarking experiments to balance the computational demands of running larger numbers of parti-
cles with the drop in consistency that would occur with fewer particles. Figure 4 illustrates the results of the
benchmarking experiments. It presents the mean error of the population of particles for each experiment.

4.7 The error in Figure 4 increases with the number of agents. This is entirely expected because as the number of
agents increases so does the randomness in the model and, hence, the degree to which models will diverge
from a pseudo-truth state. Importantly, the red dots illustrate the median error that would be generate with
reweighting and resampling (i.e. full data assimilation, discussed in Section 4.7 under the same numbers of
agents and particles. In all cases the error is lower with data assimilation, evidencing the importance of the

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

Figure 4: Results of the bench marking experiments. Each black dot represents the error with 1000 particles
andNa agents. Red dots illustrate the equivalent error under when the particle filter conducts reweighting and
resampling (i.e. full data assimilation).

Figure 5: Median of the mean errors a�er resampling

technique as a means of constraining a stochastic model with some up-to-date observations.

Overall Error

4.8 Figure 5 plots themedian of themean error (eNp,σp,Na in Equation 8) over all experiments to showhow it varies
with di�ering numbers of agents and particles. Due to the computational di�iculty in running experimentswith
large numbers of particles and the need for an exponential increase in the number of particles with the number
of agents, discussed in detail below, there are fewer experiments with large numbers of particles and hence the
experimentsarenotdistributedevenlyacross theagents/particles space. Thus theerror ispresented in the form
of an interpolated heat map. Broadly there is a reduction in error from the bottom-right corner (few particles,
many agents) to the top le� corner (many particles, few agents). The results illustrate that, as expected, there
is a larger error with increasing numbers of agents but this can be mediated with larger numbers of particles.
Note the logarithmic scale used on the vertical axis; an exponentially greater number of particles is required for
each additional agent included in the simulation.

4.9 There are two reasons for this exponential increase in thenumber of particles required. Firstly, as thenumber of
agents increases so does the dimensionality of the state space. Also, with additional agents the chances of col-
lisions, and hence stochastic behaviour, increases exponentially. This is illustrated by Figure 6 which presents
the total number of collisions that occur across a number of simulations with a given number of agents.

4.10 On its own, the overall particle filter error (Figure 5) reveals little information aboutwhich configurationswould
be judged ‘su�iciently reliable’ to be used in practice. Therefore it is illuminating to visualise someof the results

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

Figure 6: The total number of collisions that occur given the number of agents. The blue line represents a poly-
nomial regression model of order 2 with 99% confidence intervals.

0 25 50 75 100 125 150 175 200
X position

0

20

40

60

80

100

Y
po

sit
io

n

10 agents, 10 particles, 100 iterations

0 25 50 75 100 125 150 175 200
X position

0

20

40

60

80

100

Y
po

sit
io

n

10 agents, 10 particles, 200 iterations

Figure 7: State of a particle filter with 10 agents and 10 particles a�er 100 and 200 iterations a�er resampling at
the end of the first and second data assimilation windows. Black squares illustrate the pseudo-real locations
of the agents and red circles represent the locations of those agents as predicted by individual particles. In this
case all particles predict the agents’ locations accurately and hence the red circles overlap.

of individual particle filter runs to seehow theestimatesof the individual agents’ locations vary, andwhatmight
be considered an ‘acceptable’ estimate of the true state. Figure 7 illustrates the state of a particle filter with 10
particles and 10 agents at the end of its first data assimilation window (a�er resampling). With only ten agents
in the system there are few, if any, collisions andhence very little stochasticity; all particles are able to represent
the locations of the agents accurately.

4.11 As the number of agents increases, collisions become much more likely and the chance of a particle diverg-
ing from the pseudo-truth state increases considerably. It becomes more common that no single particle will
correctly capture the behaviours of all agents. Therefore even a�er resampling there are some agents whose
locations the particle filter is not able to accurately represent. Figure 8 illustrates a filter runningwith 40 agents
and still only 10 particles. The long black lines show the locations of pseudo-real agents and the correspond-
ing agents in the individual particles; it is clear that for some agents none of the particles have captured their
pseudo-real locations. This problem can be mediated by increasing the number of particles. Figure 5 showed
that with approximately 10,000 particles the error for simulations with 40 agents drops to levels that are com-
parable to the simulations of 10 agents. Hence a rule of thumb is that any particle filter with an overall error that
is comparable to a clearly successful filter, i.e. as per Figure 7, are reliably estimating the state of the system.

Impact of resampling

4.12 Resampling is theprocess ofweighting all particles according tohowwell they represent thepseudo-truthdata;
those with higher weights are more likely to be sampled and used in the following data assimilation window.
This is important to analyse because it is the means by which the particle filter improves the overall quality of
its estimates. Figure 9 illustrates the impact of resampling on the error of the particle filter. With fewer than 10

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

0 25 50 75 100 125 150 175 200
X position

0

20

40

60

80

100

Y
po

sit
io

n

40 agents, 10 particles, 100 iterations

0 25 50 75 100 125 150 175 200
X position

0

20

40

60

80

100

Y
po

sit
io

n

40 agents, 10 particles, 200 iterations

Figure 8: State of a particle filter with 50 agents and 10 particles. Lines connecting black squares (the pseudo-
real agent locations) to red circles (particle estimate of the agent location) show that some particle estimates
are a long way from the true agent locations.

Figure 9: Median of the mean errors before and a�er resampling

agents in the system resampling is unnecessary because all particles are able to successfully model the state
of the system. Withmore than 10 agents, however, it becomes clear that the population of particles will rapidly
diverge from the pseudo-truth system state and resampling is essential for the filter to limit the overall error.

Particle variance

4.13 As discussed in Section 3.12, the variance of the population of particles can be a reliablemeasure for estimating
whether particle deprivation is occurring. If there is very little variance in the particles, then it is likely that they
have converged close to a single point in the space of possible states. This needs to be avoided because, in
such situations, it is extremely unlikely that any particles will reliably represent the state of the real system.
Figure 10 illustrates this by visualising the mean error of all particles, νk (defined in Equation 4), in each data
assimilation window, k, and their variance under di�erent numbers of agents and particles. Note that each
agent/particle configuration is executed 10 times and the results are visualised as boxplots. Also, simulations
with larger numbers of agents are likely to run for a larger number of iterations, but the long-running models
usually have very few agents in them in later iterations; most have le�, leaving only a few slow agents. Hence
only errors up to 600 iterations, wheremost of the agents have le� the environment inmost of the simulations,
are shown. The graphs in Figure 10 can be interpreted as follows:

• With 5 agents and 10 particles there is very low error and low variance (so low that the box plots are
di�icult to make out on Figure 10). This suggests that particle deprivation is occurring, but there are so
few agents that the simulation is largely deterministic so the particles are likely to simulate the pseudo-
truth observations accurately regardless.

• When the number of agents is increased to 30 agents and 10 particles, the errors are much larger. The
increased non-linearity introduced by the greater number of agents (and hence greater number of colli-

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

Figure 10: Mean error and variance of particles under di�erent combinations of the number of particles and
number of agents. The boxplots extend beyond the limit of the vertical axis to ease comparison of the error and
variance at the lower end of the scale.

sions) means that the population of particles, as a whole, is not able to simulate the pseudo-truth data.
Although particle variance can be high, none of the particles are successfully simulating the target.

• Finally, with 30 agents and 10,000 particles, the errors are relatively low in comparison, especially a�er
the first few data assimilation windows, and a reasonable level of variance is maintained.

Particle Noise

4.14 The number of particles (Np) is the most important hyper-parameter, but the amount of noise added to the
particles (σp) is also important as this is the means by which particle deprivation is prevented. However, the
addition of too much noise will push a particle a long way away from the true underlying state. Under these
circumstances, although particle deprivation is unlikely none of the particles will be close to the true state.
To illustrate this, Figure 11 presents the median error with a greater amount of noise (σp = 0.5). The overall
pattern is similar to the equivalent graph producedwith σp = 0.25 in Figure 5— as the number of agents in the
simulation (Na) increases so does the number of particles required tomaintain low error (Np) — but the overall
error in each (Na, Np) combination is substantially larger for the experiments with additional noise. Future
work could explore the optimal amount of noise in more detail; σp = 0.25 was found to be the most reliable
through trial and error.

Discussion and Future Work

Summary

5.1 This paper has experimented with the use of a sequential importance resampling (SIR) particle filter (PF) as a
means of dynamically incorporating data into an abstract agent-based model of a pedestrian system. The re-
sults demonstrate that it is possible to use a particle filter to perform dynamic adjustment of the model. How-
ever, they also show that, as expected (Rebeschini & vanHandel 2015; Carrassi et al. 2018), as thedimensionality
of the system increases, the number of particles required grows exponentially as it becomes less likely that an
individual particle will have the ‘correct combination’ of values (Long & Hu 2017). In this work, the dimension-
ality is proportional to the number of agents. At most 10,000 particles were used, which was su�icient for a

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

Figure 11: Median of the mean errors a�er resampling with additional noise (σ = 0.5).

simulation with 30-40 agents. However, for a more complex and realistic model containing hundreds or thou-
sands of agents, the number of particles required would grow considerably. In addition, the particle filter used
in this studywas also providedwithmore information thanwould normally be available. For example, informa-
tionwas supplied as fixed parameters onwhen each agent entered the simulation, theirmaximum speeds, and
their chosen destinations. Therefore the only information that the particle filter was lacking were the actual
locations of the agents and whether they would chose to move le� or right to prevent a collision with another
agent. It is entirely possible to include the additional agent-level parameters in the state vector, but this would
further increase the size of the state space and hence the number of particles required.

5.2 These constraints, and the additional computational challenges that would be required to relax them, do not
mean that real-time agent-based crowd simulation with a particle filter is not feasible. To begin with, there
are many improvements that can be made to this bootstrap filter to reduce the number of particles required.
For a thorough review of relevant methods, see van Leeuwen (2009). In addition, it is possible to execute this
particle filter on high performance machines with the thousands or tens of thousands of cores to significantly
scale up the number of particles. Implementations of particle filters on GPUs are becoming popular (Lopez
et al. 2015) due to the huge numbers of GPU cores that can be leveraged to execute the individual particles.
The StationSim model would be relatively easy to reimplement in a language that lends itself well to a GPU
implementation; current work is exploring this aspect in particular. In addition, although agent-based models
are complex, high-dimensional and non-linear, this does not preclude them from successful particle filtering.
Geophysical systems, such as the atmosphere or the oceans, are also non-linear and can have state spaces
considerably larger than 1million variables, but have proven amenable to particle filtering (van Leeuwen 2009).
Overall, although the experiments here show promise, it is important to note that work is still needed before
the aim of simulating a real crowd will be realised.

5.3 One particularly encouraging feature of the particle filter is that, unlike other data assimilation approaches, it
does not dynamically alter the state of the running model. This could be advantageous because, with agent-
basedmodelling, it is not clear that the state of an agent should bemanipulated by an external process. Agents
typically have goals and a history, and behavioural rules that rely on those features, so artificially altering an
agent’s internal statemight disrupt their behaviourmaking it, at worst, nonsensical. Experiments with alterna-
tive, potentiallymore e�icient, algorithms such as 4DVar or a the Ensemble Kalman Filter should be conducted
to test this.

Improvements to the particle filter

5.4 There are a number of possible improvements that could be made to the basic SIR particle filter to reduce the
number of particles required. One obvious example is that of Component Set Resampling (Wang & Hu 2015).
With that approach, individual components of particles are sampled, rather than whole particles in their en-
tirety. Alternatively, a more commonly used approach is to reduce the dimensionality of the problem in the
first place. With spatial agent-based models, such as the one used here, spatial aggregation provides such an
opportunity. In the data assimilation stage, the state vector could be converted to an aggregate form, such as

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

a population density surface, and particle filtering could be conducted on the aggregate surface rather than on
the individual locations of the agents. A�er assimilation, the particles could be disaggregated and then run as
normal. This will, of course, introduce error because the exact positions of agents in the particles will not be
known when disaggregating, but that additional uncertainty might be outweighed by the benefits of a more
successful particle filtering overall. In addition, the observations that could be presented to an aggregate par-
ticle filter might be much more in line with those that are available in practice; this is discussed in more detail
below. If the aim of real-time model optimisation is to give decision makers a general idea about how the sys-
tem is behaving, then this additional uncertainty might not be problematic. A similar approach, proposed by
Rebeschini & van Handel (2015), could be to divide up the space into smaller regions and then apply the algo-
rithm locally to these regions. Although it is not clear how well such a “divide-and-conquer” approach would
work in an agent-based model — for example, Long & Hu (2017) developed the method for a discrete cellular
automata model — it would be an interesting avenue to explore further.

Towards the incorporation of real-world observations

5.5 One assumption made throughout this paper, which limits its direct real-world use, is that the locations of
pseudo-real individuals are known, albeit with some uncertainty, and that these locations in the ‘real world’
map directly on to agents in the associated agent-based models that make up the individual particles in the
filter. Not only is this mapping unrealistic, it is very unlikely that all individuals in a crowd will be tracked in
the first place. Further, we would argue that the privacy implications of tracking individual people are not
outweighed by the benefits o�ered by a better understanding of the system. In reality, the data sources that
capture information about pedestrianmovements are diverse. They includeWi-Fi sensors that count the num-
ber of smart phones in their vicinity (Crols & Malleson 2019; Soundararaj et al. 2020), CCTV cameras that count
passers-by (Soldatos & Roukounaki 2017), population density estimates produced using mobile cellular net-
work data (Bogomolov et al. 2014; Grauwin et al. 2015) or social media (McArdle et al. 2012) and occasionally
some movement traces of individuals generated from smart-phone applications (Malleson et al. 2018). How-
ever, none of the data generated from these sources are going to be directly compatible with the agent-based
simulation used to represent reality. In e�ect, there is a problem of data association; i.e. “determining which
observation should be associated with which agent in the simulation” (Lueck et al. 2019). There will need to
be processes of aggregation, disaggregation, smoothing, cleaning, noise reduction, etc., in real time in order
to map the observation space to the model state space. Fortunately, attempts to create such a mapping are
emerging. For example, Lueck et al. (2019) develop a new method that maps anonymous counts of people to
individual agents. Similarly, approaches such as that of Georgievska et al. (2019), who estimate overall crowd
density from noisy, messy locations of individual smart phones, could be used to combine data frommultiple
sources but produce a consistent population density surface to inform the data assimilation algorithm. On the
whole, however, considerable furtherwork isneeded tounderstand the implicationsof attempting toassimilate
such diverse data into a real-time pedestrian model.

Future work

5.6 Ultimately the aim of this work is to developmethods that will allow simulations of human pedestrian systems
to be optimised in real time. Not only will suchmethods provide decision makers with more accurate informa-
tion about the present, but they could also allow for better predictions of the near future (c.f. Kieu et al. 2020).
As discussed previously, there are computational challenges that must be experimented with further, i.e. by
leveraging infrastructure that is capabale of running millions of particles, and fundamental challenges with
regards to mapping real observations on to an agent-based model state space. Both of these areas will be ex-
plored by immediate futurework. One problem thatmight arise, particularly with respect to the available data,
is whether real observations will be su�icient to identify a ‘correct’ agent-basedmodel. Therefore experiments
should explore the spatio-temporal resolution of the aggregate data required. Identifiability/equifinality analy-
sismight help initially as ameans of estimatingwhether the available data are su�icient to identify a seemingly
‘correct’ model in the first place. In the end, such research might help to provide evidence to policy makers for
the number, and characteristics, of the sensors thatwould need to be installed to accurately simulate the target
system, and how these could be used to maintain the privacy of the people who they are recording.

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agreement No. 757455), through a UK Economic and So-
cial ResearchCouncil (ESRC) Future Research Leaders grant [number ES/L009900/1], and throughan internship
funded by the UK Leeds Institute for Data Analytics (LIDA).

Notes

1Data Assimilation for Agent-Based Modelling: http://dust.leeds.ac.uk/
2https://github.com/Urban-Analytics/dust/blob/master/Projects/ABM_DA/experiments/pf_experiments/

pf_experiments_plots.ipynb

Appendix A: Instructions for running the source code

The source code to run the StationSimmodel and the particle filter experiments can be found in themain ‘Data
Assimilation for Agent-Based Modelling’ (DUST) project repository:

github.com/urban-analytics/dust

Specifically, scripts and instructions to run the experiments are available at:

github.com/Urban-Analytics/dust/tree/master/Projects/ABM_DA/experiments/pf_experiments

References

Arulampalam, M. S., Maskell, S., Gordon, N. & Clapp, T. (2002). A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188

Bauer, P., Thorpe, A. & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature,
525(7567), 47–55

Bergman, N. (1999). Recursive Bayesian Estimation: Navigation and Tracking Applications. Linköping: Linköping
University

Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F. & Pentland, A. (2014). Once upon a crime: Towards
crime prediction from demographics and mobile data. In ICMI ’14 Proceedings of the 16th International Con-
ference on Multimodal Interaction, (pp. 427–434). New York, NY: ACM

Bonabeau, E. (2002). Agent basedmodeling: Methods and techniques for simulating human systems. Proceed-
ings of the National Academy of Sciences of the United States of America, 99(90003), 7280–7287

Carpenter, J., Cli�ord, P. & Fearnhead, P. (1999). Improved particle filter for nonlinear problems. IEEE Proceed-
ings - Radar, Sonar and Navigation, 146(1), 2–7

Carrassi, A., Bocquet, M., Bertino, L. & Evensen, G. (2018). Data assimilation in the geosciences: An overview of
methods, issues, and perspectives. Wiley Interdisciplinary Reviews: Climate Change, 9(5), e535

Charney, J. G. (1951). Dynamic forecasting by numerical process. In T. F. Malone (Ed.), Compendium of Meteorol-
ogy, (pp. 470–482). Boston, MA: American Meteorological Society

Chen, X., Li, H., Miao, J., Jiang, S. & Jiang, X. (2017). A multiagent-based model for pedestrian simulation in
subway stations. Simulation Modelling Practice and Theory, 71, 134–148

Crols, T. & Malleson, N. (2019). Quantifying the ambient population using hourly population footfall data and
an agent-basedmodel of daily mobility. GeoInformatica, 23, 201–220

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

http://dust.leeds.ac.uk/
https://github.com/Urban-Analytics/dust/blob/master/Projects/ABM_DA/experiments/pf_experiments/pf_experiments_plots.ipynb
https://github.com/Urban-Analytics/dust/blob/master/Projects/ABM_DA/experiments/pf_experiments/pf_experiments_plots.ipynb
https://dust.leeds.ac.uk/
https://dust.leeds.ac.uk/
https://github.com/urban-analytics/dust
https://github.com/Urban-Analytics/dust/tree/master/Projects/ABM_DA/experiments/pf_experiments

Crooks, A. T. & Wise, S. (2013). Gis and agent-based models for humanitarian assistance. Computers, Environ-
ment and Urban Systems, 41, 100–111

Darema, F. (2004). Dynamic data driven applications systems: A new paradigm for application simulations and
measurements. In M. Bubak, G. D. van Albada, P. M. A. Sloot & J. Dongarra (Eds.), Computational Science -
ICCS 2004 4th International Conference, Kraków, Poland, June 6-9, 2004, Proceedings, Part III, (pp. 662–669).
Berlin/Heidelberg: Springer

Douc, R., Cappé, O. &Moulines, E. (2005). Comparison of resampling schemes for particle filtering. In ISPA 2005.
Proceedings of the 4th International Symposiumon Image and Signal Processing and Analysis, Zagreb, Croatia,
2005, (pp. 64–69)

Doucet, A., Freitas, N. & Gordon, N. (2001). An introduction to sequential Monte Carlo methods. In A. Doucet,
N. Freitas & N. Gordon (Eds.), Sequential Monte Carlo Methods in Practice, (pp. 3–14). New York, NY: Springer

Doucet, A., Godsill, S. & Andrieu, C. (2000). On sequential Monte Carlo samplingmethods for Bayesian filtering.
Statistics and Computing, 10(3), 197–208

DUST (2019). DataAssimilation for Agent-BasedModelling (DUST) project code repository, includingStationSim
and the particle filter. Available at: https://github.com/Urban-Analytics/dust

Farmer, J. D. & Foley, D. (2009). The economy needs agent-basedmodelling. Nature, 460(7256), 685–686

Fearnhead, P. & Künsch, H. R. (2018). Particle filters and data assimilation. Annual Review of Statistics and Its
Application, 5(1), 421–449

Georgievska, S., Rutten, P., Amoraal, J., Ranguelova, E., Bakhshi, R., de Vries, B. L., Lees, M. & Klous, S. (2019).
Detecting high indoor crowd density with wi-fi localization: A statistical mechanics approach. Journal of Big
Data, 6(1), 31

Gilks,W. R. &Berzuini, C. (2001). Followingamoving target-monte carlo inference for dynamicBayesianmodels.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(1), 127–146

Gordon, N., Salmond, D. & Smith, A. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estima-
tion. IEEE Proceedings F Radar and Signal Processing, 140(2), 107

Grauwin, S., Sobolevsky, S., Moritz, S., Gódor, I. & Ratti, C. (2015). Towards a comparative science of cities: Using
mobile tra�ic records in New York, London, and Hong Kong. In M. Helbich, J. Jokar Arsaniani & M. Leitner
(Eds.), Computational Approaches for Urban Environments, (pp. 363–387). Berlin/Heidelberg: Springer

Grazzini, J., Richiardi, M. G. & Tsionas, M. (2017). Bayesian estimation of agent-based models. Journal of Eco-
nomic Dynamics and Control, 77, 26–47

Helbing, D., Farkas, I. & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407, 487–490

Henein, C. M. & White, T. (2005). Agent-based modelling of forces in crowds. In D. Hutchison, T. Kanade, J. Kit-
tler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Ste�en, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G.Weikum, P. Davidsson, B. Logan &K. Takadama (Eds.),Multi-Agent and
Multi-Agent-Based Simulation, (pp. 173–184). Berlin/Heidelberg: Springer

Heppenstall, A. J., Evans, A. & Birkin, M. H. (2007). Genetic algorithm optimisation of an agent-basedmodel for
simulating a retail market. Environment and Planning B: Planning and Design, 34, 1051–1070

Hol, J. D., Schon, T. B. & Gustafsson, F. (2006). On resampling algorithms for particle filters. In 2006 IEEE Nonlin-
ear Statistical Signal Processing Workshop, (pp. 79–82). New York, NY: IEEE Press

Kalnay, E. (2003). AtmosphericModeling, DataAssimilationandPredictability. Cambridge: CambridgeUniversity
Press

Kieu, L.-M.,Malleson,N.&Heppenstall, A. (2020). Dealingwithuncertainty inagent-basedmodels for short-term
predictions. Royal Society Open Science, 7(1), 191074

Kim, I., Galiza, R. & Ferreira, L. (2013). Modeling pedestrian queuing using micro-simulation. Transportation
Research Part A: Policy and Practice, 49, 232–240

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

https://github.com/Urban-Analytics/dust

Klügl, F.&Rindsfüser, G. (2007). Large-scaleagent-basedpedestrian simulation. InP.Petta, J. P.Müller,M.Klusch
& M. George� (Eds.),Multiagent System Technologies, (pp. 145–156). Berlin/Heidelberg: Springer

Kong, A., Liu, J. S. & Wong, W. H. (1994). Sequential imputations and Bayesian missing data problems. Journal
of the American Statistical Association, 89(425), 278–288

Lewis, J. M., Lakshmivarahan, S. & Dhall, S. (2006). Dynamic Data Assimilation: A Least Squares Approach. Cam-
bridge: Cambridge University Press

Li, T., Sun, S., Sattar, T. P. & Corchado, J. M. (2014). Fight sample degeneracy and impoverishment in particle
filters: A review of intelligent approaches. Expert Systems with Applications, 41(8), 3944–3954

Liu, J. S. & Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems. Journal of the American
Statistical Association, 93(443), 1032–1044

Lloyd, D. J. B., Santitissadeekorn, N. & Short, M. B. (2016). Exploring data assimilation and forecasting issues for
an urban crimemodel. European Journal of Applied Mathematics, 27(3), 451–478

Long, Y. & Hu, X. (2017). Spatial partition-based particle filtering for data assimilation in wildfire spread simula-
tion. ACM Transactions on Spatial Algorithms and Systems, 3(2), 1–33

Lopez, F., Zhang, L., Mok, A. & Beaman, J. (2015). Particle filtering on GPU architectures for manufacturing
applications. Computers in Industry, 71, 116–127

Lueck, J., Rife, J. H., Swarup, S. & Uddin, N. (2019). Who goes there? Using an agent-based simulation for
tracking populationmovement. In 2019Winter Simulation Conference (WSC), , National Harbor, MD, USA, 2019,
(pp. 227–238). National Harbor, MD

Malleson, N., Vanky, A., Hashemian, B., Santi, P., Verma, S. K., Courtney, T. K. & Ratti, C. (2018). The charac-
teristics of asymmetric pedestrian behavior: A preliminary study using passive smartphone location data.
Transactions in GIS, 22(2), 616–634

McArdle, G., Lawlor, A., Furey, E. & Pozdnoukhov, A. (2012). City-scale tra�ic simulation from digital footprints.
In Proceedings of the ACM SIGKDD International Workshop on Urban Computing, (pp. 47–54). New York, NY:
ACM

Nakano, S., Ueno, G. & Higuchi, T. (2007). Merging particle filter for sequential data assimilation. Nonlinear
Processes in Geophysics, 14(4), 395–408

Oloo, F., Safi, K. & Aryal, J. (2018). Predicting migratory corridors of white storks, ciconia ciconia, to enhance
sustainable wind energy planning: A data-driven agent-basedmodel. Sustainability, 10(5), 1470

Oloo, F. & Wallentin, G. (2017). An adaptive agent-based model of homing pigeons: A genetic algorithm ap-
proach. ISPRS International Journal of Geo-Information, 6(1), 27

Othman, N. B., Legara, E. F., Selvam, V. & Monterola, C. (2015). A data-driven agent-based model of congestion
and scaling dynamics of rapid transit systems. Journal of Computational Science, 10, 338–350

Ozik, J., Collier, N. T., Wozniak, J. M., Macal, C. M. & An, G. (2018). Extreme-scale dynamic exploration of a dis-
tributed agent-basedmodelwith the emews framework. IEEE Transactions on Computational Social Systems,
5(3), 884–895

Panofsky, R. A. (1949). Objective weather-map analysis. Journal of Meteorology, 6(6), 386–392

Pantrigo, J. J., Sanchez, A., Gianikellis, K. & Montemayor, A. S. (2005). Combining particle filter and population-
basedmetaheuristics for visual articulatedmotion tracking. ELCVIA Electronic Letters on Computer Vision and
Image Analysis, 5(3), 68–83

Pennisi, M., Catanuto, R., Pappalardo, F. & Motta, S. (2008). Optimal vaccination schedules using simulated
annealing. Bioinformatics, 24(15), 1740–1742

Rebeschini, P. & van Handel, R. (2015). Can local particle filters beat the curse of dimensionality? The Annals of
Applied Probability, 25(5), 2809–2866

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

Ren, C., Yang, C. & Jin, S. (2009). Agent-based modeling and simulation on emergency evacuation. In O. Akan,
P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S. Shen, M. Stan, J. Xi-
aohua, A. Zomaya, G. Coulson & J. Zhou (Eds.), Complex Sciences, Vol. 5, (pp. 1451–1461). Berlin/Heidelberg:
Springer

Schoenharl, T. & Madey, G. (2011). Design and implementation of an agent-based simulation for emergency
response and crisis management. Journal of Algorithms & Computational Technology, 5(4), 601–622

Schoenharl, T. W. & Madey, G. (2008). Evaluation of measurement techniques for the validation of agent-based
simulations against streaming data. In M. Bubak, G. D. van Albada, J. Dongarra & P. M. A. Sloot (Eds.), Compu-
tational Science – ICCS 2008. 8th International Conference, Kraków, Poland, June 23-25, 2008, Proceedings, Part
III, 5103, (pp. 6–15). Springer

Shephard, N. & Flury, T. (2009). Learning and filtering via simulation: Smoothly jittered particle filters. Discus-
sion Paper Series

Snyder, C., Bengtsson, T., Bickel, P. & Anderson, J. (2008). Obstacles to high-dimensional particle filtering.
Monthly Weather Review, 136(12), 4629–4640

Soldatos, J. & Roukounaki, K. (2017). Development tools for IoT analytics applications. In J. Soldatos (Ed.),
Building Blocks for IoT Analytics: Internet-of-Things Analytics, (pp. 81–97). Gistrup: River

Soundararaj, B., Cheshire, J. & Longley, P. (2020). Estimating real-time high-street footfall from wi-fi probe
requests. International Journal of Geographical Information Science, 34(2), 325–343

Talagrand, O. (1991). The use of adjoint equations in numerical modelling of the atmospheric circulation. In
A. Griewank & G. F. Corliss (Eds.), Automatic Di�erentiation of Algorithms: Theory, Implementation, and Appli-
cation, (pp. 169–180). Philadelphia, PA: SIAM

Thiele, J. C., Kurth, W. & Grimm, V. (2014). Facilitating parameter estimation and sensitivity analysis of agent-
basedmodels: A cookbook using NetLogo and ’R’. Journal of Artificial Societies and Social Simulation, 17(3)

Uosaki, K., Kimura, Y. & Hatanaka, T. (2003). Nonlinear state estimation by evolution strategies based particle
filters. In The 2003 Congress on Evolutionary Computation, 2003. CEC ’03., vol. 3, (pp. 2102–2109). New York,
NY

Vadakkepat, P. & Jing, L. (2006). Improved particle filter in sensor fusion for tracking randomly moving object.
IEEE Transactions on Instrumentation and Measurement, 55(5), 1823–1832

van der Wal, C. N., Formolo, D., Robinson, M. A., Minkov, M. & Bosse, T. (2017). Simulating crowd evacuation
with socio-cultural, cognitive, and emotional elements. In J. Mercik (Ed.), Transactions on Computational
Collective Intelligence XXVII, (pp. 139–177). Cham: Springer International

van Leeuwen, P. J. (2009). Particle filtering in geophysical systems. Monthly Weather Review, 137(12), 4089–4114

Wang, M. & Hu, X. (2015). Data assimilation in agent based simulation of smart environments using particle
filters. Simulation Modelling Practice and Theory, 56, 36–54

Ward, J. A., Evans, A. J. & Malleson, N. S. (2016). Dynamic calibration of agent-based models using data assimi-
lation. Royal Society Open Science, 3(4)

Zainuddin, Z., Thinakaran, K. & Abu-Sulyman, I. (2009). Simulating the circumambulation of the Ka’aba using
SimWalk. European Journal of Scientific Research, 38, 454–464

Zhang, H., Vorobeychik, Y., Letchford, J. & Lakkaraju, K. (2015). Data-driven agent-based modeling, with appli-
cation to roo�op solar adoption. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’15, (pp. 513–521). Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems

JASSS, 23(3) 3, 2020 http://jasss.soc.surrey.ac.uk/23/3/3.html Doi: 10.18564/jasss.4266

	Introduction
	Background
	Agent-based crowd modelling
	Data-driven agent-based modelling
	Data Assimilation and the Particle Filter

	Method
	The agent-based model: StationSim
	Data assimilation — Introduction and definitions
	The particle filter
	The state vector and transition Function
	Particle weights
	Sampling procedure

	Experimental Results
	Outline of the experiments
	Results
	Benchmarking
	Overall Error
	Impact of resampling
	Particle variance
	Particle Noise

	Discussion and Future Work
	Summary
	Improvements to the particle filter
	Towards the incorporation of real-world observations
	Future work

	Acknowledgements
	Appendix A: Instructions for running the source code

