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We report a study of time-dependent probability density functions (PDFs) in the low-to-high confinement
mode (L-H) transition by extending the previous prey-predator-type model [E. Kim and P. H. Diamond, Phys.
Rev. Lett. 90, 185006 (2003).] to a stochastic model. We highlight the limited utility of mean value and variance
in understanding the L-H transition by showing strongly non-Gaussian PDFs, with the number of peaks changing
in time. We also propose a new information geometric method by using information length, dynamical timescale,
and information phase portrait, and show their utility in forecasting transitions and self-regulation between
turbulence and zonal flows. In particular, we demonstrate the importance of intermittency (rare events of large
amplitude) of zonal flows that can play an important role in promoting the L-H transition.
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I. INTRODUCTION

An important example of nonequilibrium processes is
found in magnetically confined fusion plasmas (ionized gas)
which aim to achieve a controlled generation of energy, mim-
icking nuclear reactions naturally taking place in the Sun and
stars. The key challenge in fusion has been proper confine-
ment of hot plasmas with a temperature greater than 107 K
(hotter than the center of the Sun) inside the device, which
itself is at most at room temperature. This large temperature
difference across a few-meter wide device is very unstable,
causing turbulent (anomalous) transport and thus confinement
degradation, or even the termination of fusion operation.

The L-H (low-to-high) transition, first discovered in the
1980s, marked one of the greatest discoveries in fusion re-
search [1], where plasma confinement improved dramatically
when an input power exceeded a critical value. This con-
stitutes an intriguing example of self-organization [2–11],
where plasmas organize themselves into an ordered, high-
confinement (H) mode from a low-confinement (L) mode
triggered by the formation of large-scale shear (mean, zonal)
flows which reduce turbulent transport [12–16]. While be-
ing reproduced in different devices, the realization of the H
mode for future burning plasmas (e.g., the $20 billion ITER
project) remains a critical issue [5,17], with controversial is-
sues including threshold power scaling, the effects of density,
magnetic geometry and neutrals, triggering mechanisms and
causality relations, hysteresis, etc. [17]. This has far reach-
ing implications for other self-regulating systems in nature
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(e.g., astro/geophysical, atmospheric sciences, etc.). Previ-
ously employed statistical methods include moments (mean
value, variance), spectral or wavelet analysis, bicoherence,
phase relation, turbulence-flow energy transfer, fluxes, trans-
port coefficients, etc.

This paper reports a study of time-dependent probability
density functions (PDFs) [18] in the L-H transition, which are
invaluable to understand strongly time-dependent fluctuations
(intermittency) [19], often associated with transitions. The
latter lead to non-Gaussian, non-stationary PDFs [19,20], with
limited validity of mean value and/or variance, or stationary
PDFs. Time-dependent PDFs also enable us to understand the
correlation/causality and hysteresis from the perspective of
information theory. In simple terms, instead of the physical
variables themselves, we consider statistical states of different
variables and how they change in time and are correlated
with each other. Here, the changes in “statistical states” are
quantified by dimensionless numbers from time-dependent
PDFs that are invariant under (time-independent) change of
variables, which can be directly compared with each other,
unlike physical variables having different units. Specifically,
we quantify how each variable passes through statistically
different states during the evolution (see below). Our proposed
method captures the dynamics rather than stationary proper-
ties of the L-H transition, which we believe to be crucial since
the latter is a dynamical process, evolving over time.

Information length. We begin by summarizing how to cal-
culate the change in statistical states for a stochastic variable x
which has a time-dependent PDF p(x, t ). By calculating an in-
finitesimal relative entropy between p(x, t ) and p(x, t + δt ) as
δt → 0, and then summing the square root of the infinitesimal
relative entropy along the path, we define the (dimensionless)
information length L(t ) [19,21–28]:

L(t ) =
∫ t

0

dt1
τ (t1)

,
1

τ (t )2
=

∫
dx

1

p(x, t )

[
∂ p(x, t )

∂t

]2

. (1)
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The unit of τ in Eq. (1) is time, representing a dynamical
time unit for information change; L(t ) then measures the
clock time in units of τ (t ), and quantifies the total number
of statistically different states that x passes through between
time 0 and t , starting from some initial PDF p(x, 0). In simple
terms, L(t ) quantifies the cumulative change in p(x, t ), taking
into account the uncertainty due to a finite width of p(x, t ).
Unlike more traditional methodologies such as entropy, rela-
tive entropy, Jensen divergence, etc., L(t ) depends on p(x, t ′)
for all t ′ ∈ [0, t] and is thus a path-dependent quantity. This
path dependence is ideally suited for understanding a long
memory and hysteresis involved in phase transitions [19] such
as the L-H transition. It can also be used to quantify attractor
structures in relaxation processes [21,22,24], providing an
alternative to a Lyapunov exponent to characterize chaos. A
strong correlation between two switching species was cap-
tured by the same evolution of L(t ) of these two species [27].

For a system with m variables xi (i = 1, 2, . . . , m), we can
extend Eq. (1) to

Lxi (t ) =
∫ t

0

dt1
τxi (t1)

, (2)

1

[τxi (t )]2
=

∫
dxi

1

p(xi, t )

[
∂ p(xi, t )

∂t

]2

≡ Exi , (3)

where p(xi, t ) = ∫
� j �=i(dx j ) p(x1, x2, . . . , xm) is a marginal

PDF of xi. Note that τxi and Lxi depend on the path of xi,
and the correlation or causality among different variables can
be inferred by comparing τxi for different xi, as demonstrated
below.

The remainder of this paper is organized as follows.
Section II provides our stochastic model. The corre-
sponding Fokker-Planck equation is solved numerically in
Sec. III. Sections IV and V present results and conclusions,
respectively.

II. STOCHASTIC MODEL

We apply Eqs. (2) and (3) to the stochastic version of
the previous prey-predator model of the L-H transition [6].
Specifically, despite highly nonlinear multiscale interactions
involved in the L-H transition, the very nature of self-
organization (universality and robustness) [25,29] makes it
possible to capture qualitative behavior of the L-H transition
through reduced models and to explore different parameters at
a low cost [7–11]. In [6], turbulence amplitude ε, zonal flow v

and density gradient N are governed by

∂ε

∂t
= Nε − a1ε

2 − a2V
2ε − a3v

2ε, (4)

∂v

∂t
= b1εv

1 + b2V 2
− b3v, (5)

∂N

∂t
= −c1εN − c2N + Q. (6)

Here ai, bi, and ci are non-negative constants, V = dN2 (with
d a positive constant) is the mean flow, and Q is the external
heating that ultimately drives the entire system. Equations
(4)–(6) are identical to Eqs. (6)–(8) in [6], v, ε, and N here
corresponding to VZF , E , and N in [6].

The right side of Eq. (4) represents the linear growth
of turbulence by the density gradient and turbulence damp-
ing due to turbulence nonlinear interaction, mean flow, and
zonal flow, respectively. Equation (5) similarly represents
the zonal flow growth from turbulence, subject to the mean
flow damping (1 + b2V 2) and linear (collisional) damping.
Equation (6) represents the damping of the density gradient
due to turbulence and neoclassical or collisional effect, and
the density gradient growth due to the external heating Q.
Equations (4)–(6) support the L-H transition either with or
without going through limit-cycle oscillation (I phase), de-
pending on precise parameter values and Q. This I phase is
due to the self-regulation between v and ε; for sufficiently
large Q the dithering phase enters a quiescent H mode where
v = ε = 0 [6,7,9,30]. In this model, zonal flows trigger the
transition to a quiescent H mode by lowering the power
threshold, while mean flow V locks the plasma in the H mode.
It is not our intention here to explore all possible cases, but
to focus on a limited set of calculations to focus attention
on the effect of stochasticity and new methods. Similarly,
detailed bifurcation analyses can be done [7,30], but would
be of limited interest for the time-dependent Q(t ) that we
consider here. Fluctuating (oscillatory) Q was shown to help
the L-H transition by lowering the constant part of the power
threshold [9]. We will show a similar effect of stochasticity in
ε and v.

For a stochastic model, it turns out to be better to work with
x = ±√

ε. Solving the Fokker-Planck equation (11) below for
x instead of ε = x2 allows us to avoid the need to impose
the “boundary” ε → 0 and instead to deal with the much
more natural boundaries x → ±∞. This also makes additive
noise more straightforward than it would be in the original
ε formulation. One further simplification to facilitate the
numerical calculation of PDFs via Eq. (11) is to assume that
N evolves sufficiently rapidly to approximate Eq. (6) as

N = Q

c1x2 + c2
. (7)

Equations (4), (5), and (7) were also proposed as a reduced L-
H transition model in [30], and the even more drastic approx-
imation N = Q/c2 was used in [11] to investigate the effect
of intermittency, while mean flow was neglected completely
in [31] to understand bistability of zonal flows and geodesic
acoustic modes. Numerical solutions of either the original set
of three or the reduced set of two ODEs yield qualitatively
the same results, but for the corresponding Fokker-Planck
equation the reduction from three to two variables results in
substantial computational savings, as discussed below.

By introducing two independent δ-correlated Gaussian
stochastic noises ξ and η in Eqs. (4) and (5) respectively [32],
we formulate stochastic equivalents of Eqs. (4) and (5):

dx

dt
= f + ξ, f = 1

2
[N − a1x2 − a2V

2 − a3v
2]x, (8)

dv

dt
= g + η, g = b1x2v

1 + b2V 2
− b3v, (9)

with N given by Eq. (7). The noise terms satisfy

〈ξ (t )ξ (t ′)〉 = 2Dxδ(t − t ′), 〈η(t )η(t ′)〉 = 2Dvδ(t − t ′),

〈ξ (t )η(t ′)〉 = 0, 〈ξ 〉 = 〈η〉 = 0, (10)
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where the angular brackets denote averages. Dx and Dv are the
amplitudes of the stochastic noise ξ and η, affecting x and v

respectively.

III. FOKKER-PLANCK EQUATION

The Fokker-Planck equation [32] for the joint PDF p =
p(x, v, t ) corresponding to Eqs. (8)–(10) is

∂ p

∂t
= − ∂

∂v
(g p) − ∂

∂x
( f p) + Dx

∂2 p

∂x2
+ Dv

∂2 p

∂v2
. (11)

In contrast, without the simplification from using Eq. (7),
the Fokker-Planck equation would describe the joint PDF
p(x, v, N, t ) depending on three random variables (x, v, N )
in addition to time t ; using Eq. (7) thus reduces the di-
mensionality of the numerical problem from three to two
“spatial” variables, allowing a far more thorough exploration
of parameter values, as well as more narrowly peaked PDFs.

The numerical solution of (11) involves second-order finite
differencing, with grid spacings as small as 10−3 in both x and
v. The time stepping is second-order Runge-Kutta, with time
steps as small as 2 × 10−5. Taking a box size with xmax =
vmax = 2 is sufficiently large to be a good approximation to
x, v → ∞; that is, the total probability

∫∫
p dx dv remains

conserved within 10−4 or better for all runs presented here.
In order to facilitate the comparison with the previous

deterministic model [6], we use the same parameter values
a1 = 0.2, a2 = a3 = 0.7, b1 = 1.5, b2 = b3 = 1, c1 = 1, c2 =
0.5, and d = 1 as those in [6]. For the input power we take
Q(t ) = 0.1 + 0.03t , for t ∈ [0, 50], so Q ramps up from 0.1 to
1.6. The initial condition is p(x, v, 0) ∝ exp[−{(|x| − 0.5)2 −
v2}/5 × 10−3]. Other initial conditions with small values of x
and v were also investigated and yield similar results. For the
noise terms Dx and Dv we explored the range 10−4 and greater.
Varying Dv turned out to have relatively little impact, so we
fix Dv = 10−4, and present results for Dx = [1, 4, 16] × 10−4.
Since the prediction from the deterministic model in [6] has
been reproduced in various laboratory experiments in terms
of the time evolution of the mean values, the results from our
stochastic model are expected to capture experimental results
qualitatively.

From the joint PDF p(x, v, t ) we can also obtain
the marginal PDFs p(x, t ) = ∫

p(x, v, t ) dv and p(v, t ) =∫
p(x, v, t ) dx, and then compute the information length diag-

nostics Ex and Ev [τx(t ) and τv (t )] as in Eq. (3), and Lx(t ) =∫ t
0 dt1/τx(t1) and Lv (t ) = ∫ t

0 dt1/τv (t1) as in Eq. (2). Although
other statistical quantities including entropy and Fisher infor-
mation were also calculated, they were less informative in
capturing the L-H transition and thus are not presented below.

IV. RESULTS

A. Mean, variance, phase portrait

Figure 1 shows the average quantities 〈x〉 and 〈v〉,
the standard deviations σx =

√
〈(x − 〈x〉)2〉 and σv =√

〈(v − 〈v〉)2〉, and the (normalized) cross-correlation
〈(x − 〈x〉)(v − 〈v〉)〉/(σxσv ). Note that the average 〈·〉 refers
to the mean value over the first quadrant x, v > 0 only, that is,
〈 f 〉 ≡ ∫ 2

0

∫ 2
0 f p dx dv. Following the abrupt increase in 〈v〉

FIG. 1. Panel (a) shows the averages 〈x〉 (solid lines) and 〈v〉
(dashed lines) against time. Panel (b) shows the corresponding
standard deviations σx (solid) and σv (dashed). Panel (c) shows the
cross-correlation. Panel (d) is the phase portrait in (〈x〉, 〈v〉). The dots
with associated numbers correspond to t = 0, 15, 40. For all panels,
[black, blue, red] correspond to Dx = [1, 4, 16] × 10−4, respectively.

at t ≈ 11 for all Dx, the dithering I phase starts where 〈x〉 and
〈v〉 oscillate. The dithering phase ends when 〈x〉 and 〈v〉 both
collapse back towards zero, corresponding to the transition to
the H mode.

The self-regulation between x and v can be inferred from
the phase shift, as the maxima of 〈x〉 precede those of 〈v〉;
note similarly the negative sign of the cross-correlation at
t ≈ 15, and the following (with alternative sign) fluctuations.
The large increase in σx and σv at the beginning and end of the
dithering phase also signifies the importance of fluctuations
around the transitions. Larger values of Dx help entering the
H mode at earlier time, and thus at smaller power Q (=
0.01 + 0.03t). That is, greater stochastic noise helps the L-H
transition by lowering the power threshold. Also, the upper
left panel of Fig. 1 reveals that the larger Dx is, the smaller the
maximum values are of 〈v〉 and 〈x〉 around t ≈ 15. However,
exactly the opposite tendency is observed in σx and σv in the
upper right panel of Fig. 2, where the larger maximum values
of σx and σv occur for a larger Dx. Their overall effect can only
be understood by investigating PDFs, and will be discussed
below when discussing Figs. 4 and 5.

B. Information length diagnostics

Figure 2 shows the information length diagnostics Ex,
Ev , Lx, and Lv . Plotted as functions of time, Ex and Ev

exhibit an intricate series of oscillations in the I phase, with
similar magnitudes overall but alternating in which is larger
(see below for detailed discussion). When Ex and Ev cross,
the timescales of p(x, t ) and p(v, t ) match (reminiscent of
resonance), implying a strong correlation between the two.
Furthermore, right before the transition to the I phase we
have Ex  Ev , corresponding to τx � τv , which suggests that
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FIG. 2. From left to right the three columns (a,b,c) are Dx =
[1, 4, 16] × 10−4. The top row (a1,b1,c1) shows Ex (red) and Ev

(blue) against time. The middle row (a2,b2,c2) shows information
phase portrait in the (Ex, Ev ) plane using logarithmic scales. The
bottom row (a3,b3,c3) shows the corresponding Lx (red) and Lv

(blue).

x (turbulence) is leading the dynamics. Also, larger Dx not
only shortens the extent of the dithering phase, but further
dampens out these oscillations, resulting in a significantly
reduced number of crossings.

By comparing Ex and Ev in Figs. 2 with 〈x〉 and 〈v〉 in
Fig. 1, we make the following important observations. First,
Ev starts increasing at much earlier time (e.g., t ≈ 3.9 for
Dx = 10−4, t ≈ 3.7 for Dx = 16 × 10−4) than 〈v〉 does (at
t ≈ 11). The maximum in Ex occurs at earlier times (e.g.,

t ≈ 10.5 for Dx = 10−4, t ≈ 9.5 for Dx = 16 × 10−4) than
〈x〉 (at t ≈ 13.5). These results suggest that Ex and Ev forecast
the transition to the I phase earlier (better) than mean values.
Third, the effect of Dx is more pronounced in Ex and Ev

than in 〈x〉 and 〈v〉. For instance, the maximum values of
Ex are ≈ 4 to 0.6 for Dx = [1, 16] × 10−4 while that of 〈x〉
is approximately the same, reflecting the sensitivity of our
diagnostics. Fourth, the transition to H mode can also be
inferred from the loss of the (fast) oscillation around τx = τv

as well as the sudden increase in Ex and Ev due to the loss of
self-regulation.

As noted above, the oscillations between Ex and Ev during
dithering manifest the competition between turbulence and
zonal flows as a result of self-regulation. To visualize this,
we show the information phase portrait of Ex against Ev in
the middle row in Fig. 2 where Ex and Ev oscillate around a
straight line Ex = Ev (τx = τv).

Finally, the bottom row of Fig. 2 shows the information
lengths Lx and Lv . Note that the slopes of Lx and Lv are

√
Ex

and
√
Ev , respectively. Overall, Lx is slightly larger than Lv ,

due to the general tendency to have Ex > Ev (τx < τv). The
shape (slope) of Lx and Lv is seen to change over the time; in
particular, during dithering, Lx and Lv are almost parallel due
to self-regulation between x and v.

C. Joint PDFs

Figure 3 shows the joint PDFs p(x, v, t ) in the (x, v) plane.
The overall position of the peaks is as expected, based on the
(〈x〉, 〈v〉) phase portraits in Fig. 1. Seeing the full structure,
however, reveals striking features, including strongly non-
Gaussian features and multiple peaks. It is also of great
interest that the final collapse to x, v → 0 does not consist
of a simple motion of the peak toward the origin. Instead,
comparing times t = 30, 40, 50, we see how the original

FIG. 3. Contour plots of the joint PDFs p(x, v, t ), with x on the horizontal axis and v on the vertical axis. From top to bottom the three
rows (a,b,c) are Dx = [1, 4, 16] × 10−4. In each row, the six panels (1–6) are at times t = 5, 10, 20, 30, 40, 50, respectively. Notice how t = 5
has different (x, v) ranges than the later times. Contours are on a logarithmic scale, 10−3, 10−2.5, 10−2, etc., to show the overall structure and
not just the peaks.
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FIG. 4. The marginal PDFs p(x) = ∫
p(x, v) dv at t = 10,

20, 30, 40 in panels (a,b,c,d), respectively. As in Fig. 1 the curves
are color-coded with [black, blue, red] corresponding to Dx =
[1, 4, 16] × 10−4 respectively.

peak remains largely in the same position, and a secondary
peak grows and eventually dominates near the origin. Thus,
although 〈x〉 and 〈v〉 appear to decrease to 〈x〉 = 〈v〉 = 0
continuously in time, the actual PDFs develop this multimodal
structure. Similar (albeit opposite) evolution from a unimodal
to a bimodal PDF was shown in the Ginzburg-Landau phase
transition [19], where the final bimodal PDF was established
by the growth of the two new peaks of a bimodal PDF
and the decay of the peak of the initial unimodal PDF. The
physics behind such behavior is that a new (stable) attractor
gets stronger while the old (unstable) one becomes weaker in
stochastic environment. Also, note that for a PDF with more
than one peak, mean value (standard deviation) fails to capture
the mostly likely value (PDF width), calling for caution in the
physical interpretation of these quantities.

D. Marginal PDFs

Figures 4 and 5 finally show the marginal PDFs p(x, t )
and p(v, t ). We see the strong deviations from Gaussian
behavior and a significant asymmetry around the peak even
more clearly here than in Fig. 3, and again the bimodal nature
of the L-H transition. Since Figs. 3–5 are shown only for
x, v � 0, PDFs have multiple peaks in x, v = (−∞,∞). Of
particular note is the observation that in Figs. 4 and 5 p(v, t )
is more stretched than p(x, t ) at the right tail; that is, rare
events of large v are more common than rare events of large
x, even though the stochasticity Dx is directly acting on x.
This effect of Dx to elevate the right tail of p(v, t ) more than
that of p(x, t ) suggests that the transitions to I phase and H
mode are facilitated by rare events of strong zonal flow v.

V. CONCLUSIONS

Our work was motivated by the fact that L-H transition
experiments are very expensive, requiring careful planning.
In particular, it is desirable that experiments are done in a
way to be able to measure the most important quantities. To

FIG. 5. The marginal PDFs p(v) = ∫
p(x, v) dx at t = 10,

20, 30, 40 in panels (a,b,c,d), respectively, and with color coding as
in Figs. 1 and 4.

this end, we have proposed methods based on time-dependent
PDFs and information diagnostics that are very sensitive to
the dynamics during the L-H transition in terms of elucidating
correlation and self-regulation among different players and
spatial locations, forecasting, etc. While rare, large-amplitude
events (e.g., blobs) have been thought to be important for
enhancing transport, our results point out the interesting pos-
sibility that rare, large amplitude events of strong zonal flow
shearing can also play an important role in helping the L-H
transition. This provides an interesting paradigm to be tested
in future works, e.g., by measuring PDFs of zonal flow as well
as turbulence in the L-H transition in experiments.

Practically, to apply our method to experimental data,
time-dependent PDFs can be calculated by sampling the data
in the time series of different variables (fluctuating density,
electric field, etc.) by using moving time windows, as was
done in a Hasagawa-Wakatani turbulence model [26] where
information length was shown to be a novel methodology
of assessing the effects of coherent structures and turbulent
dynamics in plasmas, e.g., quantifying the decorrelation of
the flux between different spatial positions due to coherent
structures. Therefore, one promising future work will be to
utilize our method to predict undesirable plasmas events (e.g.,
edge-localized modes, eruptions) well before other methods
can, so that the occurrence of such events can be avoided or
else controlled to some degree. It will also be of great interest
to apply this methodology to understand the temporal-spatial
dynamics in other L-H transition turbulence models as well as
experimental data to quantify correlations at different spatial
positions [26,28].
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