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a b s t r a c t 

Urban infrastructure assets (e.g. roads, water pipes) perform critical functions to the health and well- 

being of society. Although it has been widely recognised that different infrastructure assets are highly in- 

terconnected, infrastructure management in practice such as planning, installation and maintenance are 

often undertaken by different stakeholders without considering these dependencies due to the lack of 

relevant data and cross-domain knowledge, which may cause unexpected cascading social, economic and 

environmental effects. In this paper, we present a knowledge based decision support system for urban 

infrastructure inter-asset management. By considering various infrastructure assets (e.g. road, ground, ca- 

ble), triggers (e.g. pipe leaking) and potential consequences (e.g. traffic disruption) as a holistic system, we 

model each sub-domain using a modular ontology and encapsulate the interdependence between them 

using a set of rules. Moreover, qualitative likelihood is assigned to each rule by domain experts (e.g. civil 

engineers) to encode the uncertainty of knowledge, and an inference engine is applied to predict the po- 

tential consequences of a given trigger with location specific data and the encoded rules. A web-based 

prototype system has been developed based on the above concept and demonstrated to a wide range of 

stakeholders. The system can assist in the process of decision making by aiding data collation and inte- 

gration, as well as presenting potential consequences of possible triggers, advising on whether additional 

information is needed or suggesting ways of obtaining such information. The work shows an intelligent 

approach to integrate and process multi-source data to pioneer a novel way to aid a complex decision 

process with a high social impact. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Urban infrastructure assets, such as roads, ground and util-

ties (e.g. water, electricity, gas), are critical to the functioning
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f modern society ( Clarke et al., 2017 ). Without efficient and ef-

ective diagnosis and maintenance, asset failures such as ground

inking caused by underground sewer collapse, can lead to sig-

ificant economic, social, and environmental costs ( Hojjati, Jeffer-

on, Metje, & Rogers, 2016 ). These problems are particularly chal-

enging in urban areas with increasing destructive street works

ue to extreme weather and ageing infrastructure. Research efforts

ave been devoted to developing various kinds of decision sup-

ort systems (DSSs) for proactive urban infrastructure maintenance

 Halfawy, 2010; Hojjati et al., 2016; Quintero, Konar, & Pierre, 2005;

ogers et al., 2012 ). For example, Arsene, Gabrys, and Al-Dabass

2012) proposed a decision support system for water pipe leakage

etection, Moazami, Behbahani, and Muniandy (2011) proposed a

upporting tool for pavement rehabilitation and maintenance pri-
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Fig. 1. Building blocks of the ATU-DSS: given a trigger, an inference engine is able 

to predict the potential consequences by reasoning with uncertain data and rules 

developed based on a set of modular ontologies. 
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3 UK EPSRC funded Assessing the Underworld (ATU) Project. 
oritisation using fuzzy logic. But in general, these systems are con-

fronted with four practical challenges for achieving proactive main-

tenance. 

The first challenge is that urban infrastructure assets are inter-

dependent at multiple levels ( Ouyang, 2014; Rogers et al., 2012 ),

but they are usually constructed and maintained by different

stakeholders who plan and conduct street works independently

without considering these interdependencies. Construction works

or deterioration related to one asset may damage other assets

nearby, causing cascading problems ( Ouyang, 2014 ). For example,

breaking up or opening a road may damage the underlying ground

and buried utilities. Although it has been widely recognised that

an integrated ( Halfawy, 2010; Quintero et al., 2005 ) or a “system

of systems” approach ( Hall, Tran, Hickford, & Nicholls, 2016 ) is

needed for infrastructure management, the lack of explicit knowl-

edge of asset interdependencies makes it difficult for decision mak-

ers to have a holistic view of the potential impact of their actions.

Moreover, the ground, which supports the road and the buried

utilities and transmits actions (e.g. traffic load) between them, is

rarely considered by practitioners as an asset ( Clarke et al., 2017;

Rogers et al., 2012 ). Successful implementation of an integrated

approach largely depends on the ability to share comprehensive

multi-sector knowledge, especially the broad knowledge of asset

interdependencies. 

The second challenge is that decision making in urban infras-

tructure management requires a variety of data ( Quintero et al.,

2005 ), such as underground utility maps, road construction details

and road closure regulations. This data is often held by different

data owners and stored in disconnected or even incompatible plat-

forms, which makes it difficult for decision makers to gather use-

ful data in a short period of time. The ability to integrate discon-

nected datasets into one single system would be helpful for de-

cision makers ( Michele & Daniela, 2011 ). Although semantic tech-

niques have been proposed to integrate various buried asset data

based on ontologies ( Balasubramani et al., 2017; Halfawy, 2010;

Quintero & Pierre, 2002 ), none of these work considered other

contextual information in the urban infrastructure system, such as

weather, road traffic, and ground conditions, which significantly

limits their applicability in complex decision scenarios. 

The third challenge is how to devise appropriate methods for

proactive infrastructure maintenance, i.e. to predict the poten-

tial consequences of actions/observations in infrastructure manage-

ment and suggest appropriate countermeasures. This requires iden-

tifying potential consequences / hazards on infrastructure assets

(e.g. road collapse), society (e.g. traffic delays/disruptions, damage

to property) and environment (e.g. ground contamination), as well

as identifying the causes (e.g. possible behaviours) that may lead

to these consequences and the internal mechanism. For example,

model-based techniques, such as probabilistic models and neural

networks were used for water pipe failure prediction ( Arsene et al.,

2012; Hadzilacos et al., 20 0 0 ) and electrical utility maintenance

( Bumblauskas, Gemmill, Igou, & Anzengruber, 2017 ); case-based

reasoning techniques were used for selecting infrastructure inter-

vention techniques ( Quintero et al., 2005 ). However, all these tech-

niques require a set of historical data or cases as training samples,

which do not always exist in practice. Instead of learning from vo-

luminous historical data, Marlow, Gould, and Lane (2015) used log-

ical rules formulated by domain experts to suggest suitable pipe

and road pavements rehabilitation techniques. The advantage of

using rule-based approach lie in the fact that rules are based on

experts’ knowledge underpinned by observation, experiments and

theory so they have limited dependence on historical data; the ex-

perience from one city’s infrastructure can also be easily gener-

alised to another city. But this approach has not been fully exam-

ined for diagnosis and predicting consequences in urban infrastruc-

ture management yet. 
The last challenge is that in the application of rule-based ap-

roach, rules formulated by domain experts are not always certain

ut require hedging with a confidence. To solve this, approaches

uch as Certainty Factors (CFs) ( Shortliffe & Buchanan, 1975 ) have

een proposed by attaching degrees of belief to propositions and

ules. However, research warned that certainty factors could yield

isastrously incorrect degrees of belief through over-counting of

vidence in several circumstances ( Heckerman, 1986 ), especially

hen the rule sets become larger. So almost all CFs based rule

ystems were either purely diagnostic (e.g. MYCIN) or predictive

 Heckerman, 1986; Heckerman & Shortliffe, 1992 ). Additionally, the

elief in rules is usually specified by domain experts using nu-

erical values, whereas human judgemental reasoning is often

ore qualitative than numerical ( Parsons & Parsons, 2001 ). Fuzzy

ules have also been used to encode the uncertainty of knowledge

 Chen, 1994; Malmir, Amini, & Chang, 2017; Moazami et al., 2011 ),

ut this method still requires numerical range values for decid-

ng the membership functions and may be challenging for non-

cademic domain experts without logic background. The domain

ngineers we consulted in civil engineering also suggested that it

s difficult to formulate rules with numeric values, especially in

he case of dealing with the ground. In fact, in many cases, pre-

ise specification of numerical values may not be necessary for

upporting decision making ( Goldszmidt & Pearl, 1996; Wellman,

990 ). 

.1. Our contribution 

In order to meet the challenges described above, we present

n intelligent web-based decision support system for urban in-

rastructure inter-asset management based on a system-of-systems

pproach ( Fig. 1 ), especially focusing on the assets in direct con-

act with the underground world, including road, ground and un-

erground utilities. The system is called Assessing the Underworld

SS, referred to as ATU-DSS hereafter. 3 The above four challenges

ere addressed as below: (1) firstly, to help address the challenge

f multi-sector knowledge sharing, urban infrastructure is consid-

red as a system of multiple subsystems and a family of interlinked

odular ontologies were developed to capture the domain knowl-

dge on each sector, including assets (e.g. pipe), related triggers

e.g. road cracks), potential consequences (e.g. loss of utility ser-
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4 http://www.eionet.europa.eu/gemet . Accessed: 2020-02-26. 
5 http://aims.fao.org/standards/agrovoc . Accessed: 2020-02-26. 
6 https://wiki.dbpedia.org/services-resources/ontology . Accessed: 2020-02-26. 
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ice) and investigation techniques (e.g. ground penetrating radar

urveys), etc. Then, based on the concepts defined in these domain

ntologies, a set of logical rules were developed to encapsulate the

nterdependencies between different assets (e.g. “IF RoadBaseWa-

erContent increases and PipeLeakingRate is Severe, THEN RoadBaseS-

iffness will definitely decrease”) and the relations leading to serious

sset failures or other hazard consequences. (2) secondly, to help

ddress the challenge of disconnected data, various spatial datasets

bout the infrastructure assets and their contextual information

ere sourced from different owners and integrated in a single sys-

em to provide instant location specific data retrieval. (3) thirdly,

o face the challenge of proactive maintenance and limited historic

ata, our system adopted a rule based reasoning approach, which

ould be enriched when more human decisions or real data are

ed in. An inference engine is applied to infer the potential conse-

uences of a reported trigger based on the knowledge in the rule

ase and the retrieved data from the integrated database. (4) lastly,

 qualitative uncertainty based reasoning approach is proposed to

andle the challenge of uncertainty in human knowledge; the sys-

em can also make assumption of the states of missing data to

erive potential issues when not all data is available and suggest

nvestigation methods to obtain the missing data. This function al-

ows practitioners to plan for further surveys to reduce the poten-

ial risk. 

Our contribution in this work is twofold. Theoretically, we pro-

osed a framework (shown in Fig. 1 ) for developing a knowledge-

riven decision support system using a system-of-systems ap-

roach, which can be easily generalised to various engineering ap-

lications. The framework starts by identification and modelling of

ubsystems using modular ontologies, and capturing their interde-

endencies using logical rules, followed by definition of triggers

hich may affect the subsystems and definition of consequences

hich may have serious impact on the subsystems or external en-

ironment (e.g. social consequences). Then, an inference engine

s applied to predict the potential consequences of given triggers

nd advise on whether additional information is needed and sug-

est ways of obtaining such information. Practically, a prototype

ystem has been developed based on the above concept by com-

ining real-time site specific data retrieval with automated rea-

oning. It also allows users to modify data values for alternative

nalysis. 

The prototype system can help decision makers (e.g. incident

anagers, contractors, local authorities) to gather relevant data in

ne-stop, store and re-use previously collected data, codify require-

ents from local authorities (e.g. restrictions), predict possible is-

ues of observations or actions in advance, and learned wisdom

e.g. issues encountered) from previous experience to help data

nterpretation and decision making. These functions can improve

afety in infrastructure management and reduce costs and pre-

ent delays. For example, this system can help institutions pass

n knowledge to junior engineers and help answering questions

ike ( Clarke et al., 2017 ): ( a ) How will the condition of road sur-

ace, adjacent pipes and ground at a specific site change because of

xtreme weather, deterioration of assets, or human actions (e.g.

lanned excavation)? (b) Will this change cause any undesirable con-

equences (e.g. traffic disruption, loss of services or even fatalities)?

nd (c) which asset should we maintain/replace in the first place

r when and where should we install a new underground asset?

his evaluation of the undesirable consequences is different from

raditional traffic or environmental impact assessment as it takes

nto account the knowledge of different factors and their inter-

ependencies to achieve a more comprehensive assessment. The

ystem can also suggest the likelihood and severity of potential

onsequences which can help decision makers to prioritise their

aintenance tasks, preparation of health/safety files and reduce

he potential risk of high likelihood and severity. 
The rest of the paper is structured as follows: Section 2 briefly

ntroduces the ATU domain ontologies; Section 3 explains the qual-

tative uncertainty based reasoning approach and the strategy for

andling missing data in this system. We then provide a detailed

escription of the prototype system in Section 4 , including how the

ule base was developed, what exemplar data sources were inte-

rated and different functions of the user interface; followed by

iscussions in Section 5 and conclusions in Section 6 . 

. ATU Ontologies: A common vocabulary for data integration 

nd reasoning 

An ontology is a formal representation of the knowledge within

 domain using a set of concepts and relationships between them

 Staab & Studer, 2009 ). It can be used as a common vocabulary

nd thus plays an important role in information sharing ( Gruber,

993; Noy & McGuinness, 2001 ). More formally, an ontology con-

ists of a TBox which defines terminologies or knowledge at the

onceptual level, and an ABox which describes facts about individ-

als using terminologies defined in the TBox ( Baader, Calvanese,

cGuinness, Nardi, & Patel-Schneider, 2007; Du, Alechina, Jackson,

 Hart, 2013 ). A TBox contains definitions of classes or concepts

nd definitions of roles or object properties, which cover the con-

eptual hierarchies and relations among classes. An ABox contains

ssertions about individuals or instances. 

There exist several ontologies where concepts of infrastructure

ssets (such as the ground/soil, roads and buried pipes/cables) are

efined. The concept Soil or Ground is defined in general envi-

onmental ontologies or thesauri, including the Semantic Web for

arth and Environment Technology (SWEET) ontology ( Raskin &

an, 2005 ), the environment ontology (ENVO) ( Buttigieg, Morri-

on, Smith, Mungall, & Lewis, 2013 ), the General Multilingual En-

ironmental Thesaurus (GEMET), 4 the AGROVOC Multilingual The-

aurus 5 , etc., as well as ontologies specialised for describing soil

 Das, 2010; Heeptaisong & Srivihok, 2010; dos Santos Aparício,

e Farias, & dos Santos, 2006; Shivananda & Kumar, 2013; Zhao,

hao, Tian, Qian, & Zhang, 2009 ). Buried assets, such as pipes and

ables, are defined in several infrastructure management ontolo-

ies or utility ontologies ( Fu & Cohn, 2008; Osman & El-Diraby,

006; Zeb & Froese, 2014 ). The concept Road is defined in sev-

ral transportation ontologies as part of the transportation network

 Corsar, Markovic, Edwards, & Nelson, 2015; Katsumi & Fox, 2019;

orenz, Ohlbach, & Yang, 2005 ), and defined in ontologies for urban

evelopment ( Berdier, 2011; Berdier & Roussey, 2007 ). A survey of

xisting transportation ontologies has been provided recently by

atsumi and Fox (2018) . The concept Road is also defined in gen-

ral ontologies or vocabularies covering various domains, such as

he environment ontology (ENVO) ( Buttigieg et al., 2013 ), the DB-

edia Ontology 6 , the Linked Open Vocabularies (LOV) 7 , etc. How-

ver, none of the ontologies above provides a systematic and com-

rehensive description of soil/pipe/road properties and processes,

or how soil/pipe/road properties and processes affect each other. 

At the heart of the ATU-DSS is a suite of interlinked modu-

ar ontologies ( Fig. 2 ), developed by following the NeOn method-

logy ( Suárez-Figueroa, Gómez-Pérez, & Fernández-López, 2012 ),

onsulting various domain experts (e.g. geotechnical engineers,

eophysicists) and extensively reviewing literature, existing ontolo-

ies (e.g. NASA’s SWEET ontology ( Raskin & Pan, 2005 )), standards

nd datasets. The ATU ontologies are written in OWL 2 Web On-

ology Language Manchester Syntax ( Horridge & Patel-Schneider,

012 ), which is based on description logic. Whilst we are aware of

http://www.eionet.europa.eu/gemet
http://aims.fao.org/standards/agrovoc
https://wiki.dbpedia.org/services-resources/ontology
https://lov.linkeddata.es/dataset/lov/
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Fig. 2. Inter-dependencies between different domain ontologies. 

Table 1 

Number of processes and properties in ATU urban infrastructure asset 

ontologies. 

Ontology Number of Processes Number of Properties 

Ground Ontology 36 61 

Road Ontology 17 85 

Pipe Ontology 4 50 
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the recent work on fuzzy ontologies ( Morente-Molinera, Kou, Pang,

Cabrerizo, & Herrera-Viedma, 2019 ), which allows fuzzy relations

additionally compared to regular ontologies, the ontologies we de-

fined here are regular or crisp ontologies. To ensure the high qual-

ity of knowledge defined in them, the ATU ontologies are created

semi-automatically, going through an iterative process involving

several discussions and meetings with domain experts. As shown

in Fig. 2 , the ATU ontologies model the knowledge on infrastruc-

ture assets, triggers, environment and investigation techniques (e.g.

sensors) for urban infrastructure management. Each ontology is in-

troduced in the following sections. 

The ATU Urban Infrastructure Asset Ontologies describe the

main concepts and relations of underground related urban infras-

tructure assets using three ontologies, including the soil/ground,

road (surface infrastructure) and pipe (buried utilities) ( Du et al.,

2017; 2016 ). Each asset ontology models the investigated asset us-

ing a set of properties (e.g. ground clay content), processes (e.g.

ground biological process) and simple relations about how proper-

ties and processes affect each other ( Du et al., 2016 ). The processes

and properties are grouped into categories as the characteristics of

the asset, such as GroundBiologicalProcess and GroundChemicalProp-

erty . The number of processes and properties in the three asset

ontologies are shown in Table 1 . An example of the hierarchy of

the ATU Pipe Ontology is shown in Fig. 3 . 

A key feature of these ontologies is that within an asset on-

tology, a change in a property would activate a process which

leads to a change in other property(s). This cascading structure

was achieved by encoding the dependency between classes in each

sub-ontology with six relationships, including hasImpactOn and its

inverse influencedBy , as well as increases, decreases and their in-

verse increasedBy and decreasedBy ( Du et al., 2017; 2016 ). An ex-

ample of the cascading relationships between different ontology

concepts is “GroundSwelling decreases the GroundStiffness which

hasImpactOn some GroundS-WaveVelocity ”. The complex relation-

ships between multiple concepts are defined with rules and will

be explained in Section 3 . The urban infrastructure asset ontolo-

gies are publicly available at https://doi.org/10.5518/190 . 8 
8 Accessed: 2020-02-23. 
The ATU Trigger Ontology defines the categories and proper-

ies of events that may cause cascading effect on infrastructure

ssets ( Clarke et al., 2017 ). They are often human actions such as

lanned construction works, or observable phenomena like natural

henomena (e.g. excessive rainfall, extreme temperatures), abnor-

al observations on road (e.g road cracks), on ground (e.g. ground

ovement) or on buried utilities (e.g. drop in water pressure). For

xample, rainfall is an external trigger which infiltrates the ground

nd leading to an increase in GroundWaterContent . 32 types of trig-

ers were included in the trigger ontology as shown in Fig. 4 , each

f which relates to a scenario that we want to tackle in urban in-

rastructure management. The properties of triggers include gen-

ral properties like severity, location/spatial geometry (e.g. point,

inestring) and time (a time point or a period), and specific prop-

rties like the type of a construction work. In the prototype DSS

ystem, a decision process starts with a report of a trigger by users

hrough the user interface. 

The ATU Consequence Ontology identifies various consequences

n infrastructure management, such as direct consequences on

takeholders (e.g. cost overrun) or on infrastructure assets (e.g.

ipe burst, trench collapse), and indirect legal, social, economical

e.g. traffic disruption) or environmental consequences (e.g. wa-

er pollution) on the general public. Each consequence is attached

ith a context-dependent severity level (e.g. Negligible, Marginal,

ritical, Catastrophic). 

ATU Investigation Ontology (Sensors) . Being different from the

ell known Semantic Sensor Network (SSN) ontology , 9 the ATU In-

estigation Ontology (Sensors) encodes the knowledge of currently

vailable techniques for obtaining different infrastructure asset

roperties. These techniques can include a pointer to an external

nstitution (e.g. website), a laboratory test, or different types of

ensor surveys. By working with domain experts in geotechnical

ngineering and geophysics and reviewing literature ( sen, 1988 ),

he current ontology includes seven classes (e.g. seismic meth-

ds, electrical methods)and 26 types of geophysical techniques

e.g. Ground Penetrating Radar), together with their relationships

ith the ATU Urban Infrastructure Asset Ontologies. Two rela-

ionships were defined to describe the suitability of an investi-

ation method for measuring different asset properties in shal-

ow ( 0 − 5 m depth) surveys. The relationships are measures and

ts inverse measuredBy , which means “SensorA Measures PropertyB

ith usefulness_score N”, and “PropertyB is MeasuredBy SensorA

ith usefulness_score N”. The investigation suggestions and the

orresponding usefulness score N (i.e. an integer between 0 and

, where 0 means “not considered applicable” and 4 means “gen-
9 SSN ontology: https://www.w3.org/TR/vocab-ssn/ . Accessed: 2020-02-23. 

https://doi.org/10.5518/190
https://www.w3.org/TR/vocab-ssn/
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Fig. 3. An example of the ontology concept hierarchy of pipe properties. 

Fig. 4. Triggers and their properties included in the Trigger Ontology. 
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10 https://bioportal.bioontology.org/ontologies/SWEET . Accessed: 2020-02-23. 
11 http://environmentontology.org/ . Accessed: 2020-02-23. 
12 http://bit.ly/2Fq5u0F . Accessed: 2020-02-23. 
rally considered an excellent and well developed approach”) of

ach relation were assigned by domain experts and implemented

n OWL Protégé as annotations (which can be queried). With these

elationships established, appropriate investigation techniques can

e recommended to users in a prototype decision support system

hen the data of an asset property is missing. Other investigation

ethods can also be added into the knowledge base in the future. 

The ATU Environment Ontology models the environment fac-

ors (e.g. rainfall, drought) affecting or being affected by the in-

rastructure assets. Instead of building this ontology from scratch

ike the modular ontologies presented above, the Environment On-

ology was created based on several existing external ontologies
e.g. NASA’s SWEET Ontology, 10 the Environment Ontology, 11 Ord-

ance Survey’s Buildings and Places Ontology 12 ). This is because

ur work does not need a thorough modelling of the environment,

ut only need several essential concepts like rainfall, drought, con-

amination. 

The concepts in these ATU ontologies are used to guide relevant

ata sourcing, and as a common vocabulary for defining inference

ules (complex relationships between multiple ontology concepts)

nd integrating various datasets from different domains such that

eterogeneous data can be used seamlessly in automated reason-

ng. Though ontologies have been used widely for knowledge mod-

lling and information retrieval ( Munir & Anjum, 2018 ), most of

he existing approaches use a single domain ontology rather than

 series of ontologies covering various domains as we do here. For

ore details of the ATU ontologies, interested readers are referred

o one of our earlier works ( Du et al., 2016 ) on soil ontology. The

uthors are also preparing a separate paper to introduce the mod-

lling process of ATU ontologies. 

. Qualitative uncertainty based reasoning in rule-based 

ystems 

Based on the concepts defined in the ATU ontologies, we con-

inue to develop logical rules in collaboration with domain experts

o encapsulate the broad knowledge of internal dependencies in

ne subsystem, as well as the external dependencies between dif-

erent infrastructure assets, environment factors and human activ-

ties. For example, a rule “Heavy and Long rainfall will infiltrate the

oad if the road crack penetrates the road surface.” is defined refer-

ing to the concepts in the Environment Ontology and the Road On-

ology , written as: “Environment Rainfall Intensity (Heavy) ∧ Envi-

onmentRainfallDuration (Long) ∧ RoadCrackingDepth (High) 
De f inite −−−−−→ 

oadWaterInfiltration (Active) ”. 

As discussed previously, rules are often conditional and require

ugmenting with confidence, but the domain engineers we con-

ulted in urban infrastructure management found it difficult to

ormulate rules with numeric probabilities. Instead they preferred

xpressing uncertain information using qualitative linguistic ex-

ressions, which is in accordance with the theory proposed by

allsten and Budescu (1995) on human reasoning. In this work,

https://bioportal.bioontology.org/ontologies/SWEET
http://environmentontology.org/
http://bit.ly/2Fq5u0F
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Table 2 

Definitions of confidence levels for an event E happening. 

Confidence level Definition 

Definite (D) 100% sure that E will happen 

Very likely (V) not 100% but only rarely will E not happen 

Likely (L) E happens more than 50% of the time but it 

is not surprising if E does not happen 

Unlikely (U) E happens less than 50% of the time but it 

is not surprising if E happens 

Very unlikely (VU) not 0% chance of E happening but it will 

happen rarely 

Impossible (I) E never happens 
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13 More details about Impossible will be given in the following sections. For ex- 

ample, assume C = 〈 10 0 0 , 0 , 0 , 0 〉 and the probability related to VU is a 1 = 0.01, 

the corresponding probability of this confidence vector is P = a 10 0 0 
1 = 0 . 01 10 0 0 ≈ 0 ; 

therefore, we consider this fact/rule as impossible. 
we present a qualitative confidence levels based uncertainty man-

agement scheme, which is considered to be more accessible by

our domain experts compared with the linguistic quantifiers used

with fuzzy sets theory ( Bonissone, Gans, & Decker, 1987; Cid-Lpez,

Hornos, Carrasco, Herrera-Viedma, & Chiclana, 2017; Zadeh, 1984 )

or kappa calculus ( Clinton & David, 2004; Goldman & Maraist,

2015; Goldszmidt & Pearl, 1996; Poole & Smyth, 2005 ). The pro-

posed confidence levels can also be interpreted in terms of the

degrees of surprise using kappa calculus or using probability. Dif-

ferent calculation formulae are proposed to sequentially propagate

the qualitative confidences of data and rules, as well as combine

parallel chains leading to the same conclusion. It is an extension

of our previous work ( Mahesar et al., 2017 ) by adding probabilis-

tic interpretations of the approach, adding a mechanism to avoid

multi-counting of the same fact in different rules, checking poten-

tial contradictions in the rule base and considering diagnostic rules

for abductive inference. 

3.1. Definition of qualitative confidence levels and confidence vectors 

3.1.1. Qualitative confidence levels 

In the scope of this paper, six qualitative confidence levels { Im-

possible, Very Unlikely, Unlikely, Likely, Very Likely, Definite } were

empirically selected to describe experts’ confidence in a rule, i.e.

the degree of people’s (e.g. domain experts) belief of the conclu-

sion is true given the premise. The confidence levels can be any

other ordered linguistic lists (i.e. words/phrases) if the list follows

an order from impossible to definite. For example, a list { impos-

sible, very improbable, improbable, probable, very probable, definite }

could be used to replace the one used in this work. Furthermore,

the confidence levels granularity depends on the requirements of

different applications. For example, the designer of a decision sup-

port system could simplify the confidence levels of rule sets from

six to four as { Impossible, Unlikely, Likely, Definite } if they want to

ease the workload of domain experts. 

Definitions of the six confidence levels used in our work are

listed in Table 2 . These confidence levels constitute three pairs

of symmetrical confidence levels, including {Impossible vs Definite},

{Very Unlikely vs Very Likely} , and {Unlikely vs Likely} . With this fea-

ture, domain experts are free to use any of the two states of a bi-

nary variable (e.g. On/Off, Active/Inactive) for authoring rules, since

the complementary confidence level can be automatically inferred

to guarantee other related rules could be fired. For example, let’s

assume a binary variable B with two states On and Off, and two

rules: 

R 1 : “ If A, Then it is De f inite that B is On ”

R 2 : “ If B is Off, Then it is Likely that C will incr ease ”
(1)

Originally, if we observe A, the first rule will be fired but the sec-

ond not. However, based on our definition above, we can generate

a new rule based on the first rule as: “If A, Then it is Impossible

that B is Off”. With this rule added and fired, the second rule will

also be fired to further infer the state of C. Such complementary
ules are added to the system automatically in the rule definition

hase. We can also attach qualitative confidences to input facts to

eflect their imprecision due to the inaccuracies in observation or

easurement limitations (e.g. instrument precision). 

Confidence levels can also be interpreted in terms of the de-

rees of surprise using kappa calculus ( Goldszmidt & Pearl, 1996 ),

n order of magnitude calculus in which each component is an or-

er of magnitude more surprising than the next; a probability dis-

ribution P can be mapped to a kappa ranking κ such that P / εκ is

nite but not infinitesimal for an infinitesimal ε. Kappa rankings

an be interpreted as an approximation to probabilities through

he following relations ( Darwiche & Goldszmidt, 1994 ): 

(α ∧ β) = κ(α| β) + κ(β) (2)

(α ∨ β) = min (κ(α) , κ(β)) (3)

here multiplication in probabilities ( P (α ∧ β) = P (α| β) P (β) ) is

eplaced by addition of kappa values ( Eq. (2) ), and addition of

robabilities ( P (α ∨ β) = P (α) + P (β) − P (α ∧ β) ) is replaced by

inimisation in the kappa calculus ( Eq. (3) ) ( Clinton & David,

004; Goldszmidt & Pearl, 1996; Poole & Smyth, 2005 ). 

.1.2. Qualitative confidence vectors of facts and rules 

For computation purpose, instead of directly using the linguis-

ic confidence levels or a single confidence value (i.e., a scalar),

e use an ordered vector of four numerical elements (abbrevia-

ion of { Very Unlikely, Unlikely, Likely, Very Likely }) to encode the

onfidence level of a rule or a fact, called confidence vectors as: 

 = 〈 V U , U , L, V 〉 (4)

he four elements of the confidence vector C F of a fact can have

ny non-negative integer elements, while the confidence vector C R 
f a predictive rule can have at most one positive element corre-

ponding to the confidence levels defined in Table 2 . For exam-

le, a rule “If A happens, then it is likely that B will happen” is at-

ached with a confidence level Likely and the corresponding confi-

ence vector is C R = 〈 0 , 0 , 1 , 0 〉 . It should be noted that confidence

evel D (Definite) is implicit in the definition when VU, U, L, V are

ll 0, and confidence level I (Impossible) is implicit in the defini-

ion when any of the vector elements is with an extreme large

umber (for example, V U = 10 0 0 is assigned to rules marked as

mpossible in our application). 13 This vector representation is de-

igned to store the accumulated uncertainties from data and rules

sing simple bit-addition. We can also easily restore the approxi-

ate probability from a confidence vector at the end of an infer-

nce process. However, if the uncertainties are represented using

ne single scalar, addition cannot be used any more as it will be

ifficult to separate and reconstruct the uncertainty from one sin-

le accumulated scalar. More explanations will be given in the next

ection. 

Interpretation of confidence vectors. Given the confidence

ector C = 〈 V U , U , L, V 〉 of a fact E (or a rule R ), assuming that each

lement of this vector can be represented by a numerical value a i 
etween 0 and 1, the probability p (a measure of an expert’s belief)

f this fact (rule) to happen can be calculated as: 

p E = a V U 1 · a U 2 · a L 3 · a V 4 (5)

here { a 1 , a 2 , a 3 , a 4 } ∈ [0, 1], a 1 < a 2 < a 3 < a 4 and { V U , U , L, V } ∈
 

+ , p E ∈ [0, 1]. It can be noted that p E approximates 0 when any

f the vector elements gets extremely large (e.g. a conclusion is in-

erred from a long sequence of uncertain rules), especially for VU
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14 Proof of the lower and upper bound confidences under independent and non- 

independent assumptions are detailed in Section Appendix C . 
ince a 1 is close to zero; while p E will be close to 1 when the sum

f { VU , U , L , V } is getting close to 0. The extreme case is when VU, U,

, V are all 0, p E is equal to 1, which is consistent with the defini-

ion of “Definite” in Eq. (4) . The numerical values of { a 1 , a 2 , a 3 , a 4 }

an vary for different applications or for different experts (though

hould be consistent in one knowledge base). The confidence vec-

or provides an easy and intuitive way to encode and propagate

he uncertainties in a rule-based system. 

In terms of kappa-calculus, by taking logs of the probability de-

ned in Eq. (5) (with a positive infinitesimal base ε) and replac-

ng multiplication by addition, we get the surprise level of E (or R )

appening as: 

(E) = (V U ∗ log ε a 1 + U ∗ log ε a 2 + L ∗ log ε a 3 + V ∗ log ε a 4 ) 

= 〈 V U , U , L, V 〉 ∗ 〈 log ε a 1 , log ε a 2 , log ε a 3 , log ε a 4 〉 T 
= 〈 V U , U , L, V 〉 ∗ K (6) 

he surprise that E happens comes from the surprise of each el-

ment of 〈 VU, U, L, V 〉 , and can be re-written as the multiplica-

ion of the confidence vector 〈 VU, U, L, V 〉 and a constant vec-

or K = 〈 log ε a 1 , log ε a 2 , log ε a 3 , log ε a 4 〉 T which represents the sur-

rise of different confidence levels. As ε is infinitesimal, { a 1 , a 2 , a 3 ,

 4 } ∈ [0, 1] and 〈 VU, U, L, V 〉 are non-negative numbers, the kappa

alues are always non-negative. When all elements of 〈 VU, U, L, V 〉
re zero, the surprise of E happening is zero which is consistent

ith the definition of Definite in Table 2 . In the following sections,

e explain how to propagate the confidence vectors of data and

ules in different situations. 

.2. Formula 1: The confidence level of a rule’s conclusion given one 

act 

For a rule R 1 with one premise, 

 1 : I f a, then b;
f our confidence in a is C a = 〈 V U a , U a , L a , V a 〉 , and the experts’ con-

dence in this rule is C R 1 = 〈 V U R 1 , U R 1 , L R 1 , V R 1 〉 , then our confi-

ence in the conclusion b , denoted as C a,b (based on a ), can be

omputed by adding the confidence vectors of the premise and the

ule, written as: 

 a,b = C a + C R 1 

= 〈 V U a + V U R 1 , U a + U R 1 , L a + L R 1 , V a + V R 1 〉 (7) 

or example, if we have C a = 〈 0 , 0 , 0 , 0 〉 and C R 1 = 〈 0 , 0 , 0 , 1 〉
 Very Likely ); then, we can estimate the confidence in b as

 a,b = 〈 V U a + V U R 1 , U a + U R 1 , L a + L R 1 , V a + V R 1 〉 = 〈 0 , 0 , 0 , 0 〉 + 

 0 , 0 , 0 , 1 〉 = 〈 0 , 0 , 0 , 1 〉 . How to combine the uncertainty of a fact

nferred from parallel rules will be discussed in Section 3.4 . 

Interpretation of Formula 1 . As rule R 1 defines the belief in b

hen a happens ( P ( b | a )), we can obtain the joint probability of b

nd a through rule R 1 as: 

 (a, b) = P (a ) P (b| a ) (8)

ote we can not derive P ( b ) since P ( b | ¬a ) is not defined in this rule.

n terms of kappa-calculus, the surprise of ( a ∧ b ) happening can

e obtained based on the addition formula in Eq. (2) , and linked

o confidence vectors based on the definition of kappa values in

q. (6) : 

(a ∧ b) = κ(a ) + κ(b| a ) = C a ∗ K + C b| a ∗ K 

= 〈 V U a + V U R 1 , U a + U R 1 , L a + L R 1 , V a + V R 1 〉 ∗ K 

⇒ C a ∧ b = 〈 V U a + V U R 1 , U a + U R 1 , L a + L R 1 , V a + V R 1 〉 (9) 

The derived confidence vector is the same as the formula in

q. (7) , thus it can be considered as a simple way to accumulate

he kappa values (the first part of κ( E )) of different facts and rules.

e can decide the surprise level of a derived fact by multiplying K
ith the derived confidence vector and tuning the values of a 1 , a 2 ,

 3 , and a 4 . 

.3. Formula 2: The confidence level of a rule’s conclusion given a 

onjunction of facts 

For a rule R 2 with n uncertain premises A i and confidence vec-

or C R 2 = 〈 V U R 2 , U R 2 , L R 2 , V R 2 〉 : 
 2 : I f A 1 ∧ A 2 · · · ∧ A n , then B ;

f our confidence in each fact A i is C A i = 〈 V U i , U i , L i , V i 〉 and as-

uming all the facts are independent, our confidence in the con-

unction of ( A 1 ∧ ���∧ A n ) can be calculated by taking the sum of the

onfidence vectors of all these facts, written as: 

 (A 1 ∧ ···∧ A n ) = 

∑ 

i 

C A i = 〈 ∑ 

i 

V U i , 
∑ 

i 

U i , 
∑ 

i 

L i , 
∑ 

i 

V i 〉 (10)

fter obtaining the confidence C (A 1 ∧ ···∧ A n ) in the conjunction of

remises, our confidence in the conclusion B can be derived based

n Formula 1 ( Eq. (7) ) by adding the confidence vectors of the rule

nd the premises: 

 (A 1 ∧ ···∧ A n ) ,B = C (A 1 ∧ ···∧ A n ) + C R 2 (11)

or example, if our confidence in a rule “If c and d, then h” is

 R = 〈 0 , 1 , 0 , 0 〉 ( Unl ikel y ) and the two facts C c = 〈 0 , 0 , 1 , 0 〉 , C d =
 0 , 0 , 0 , 1 〉 , we have: 

 (c∧ d) ,h = (〈 0 , 0 , 1 , 0 〉 + 〈 0 , 0 , 0 , 1 〉 ) + 〈 0 , 1 , 0 , 0 〉 
= 〈 0 , 0 , 1 , 1 〉 + 〈 0 , 1 , 0 , 0 〉 = 〈 0 , 1 , 1 , 1 〉 

n the above formula, we assume all premises are independent. In

erms of risk we may want to know if there is any chance the

remises are not independent as this may suggest a higher con-

dence of the inferred fact 14 The following solution of multi-count

roblem partially handles the dependencies of premises (when one

remise is used to infer other premises). 

Avoidance of “Multi-count” Problem of Uncertainties. In rule

ased systems, whenever we have a rule of the form A ⇒ B , we

an conclude B given A without worrying about other rules; and

nce B is proved, it can be used regardless of how it was derived.

owever, in dealing with probabilities, the source of the premises

f a conclusion is important for subsequent reasoning ( Russell &

orvig, 2010 ). Ignoring this may result in “multi-count” of the

ncertainties of several facts during inference ( Heckerman, 1986;

eckerman & Shortliffe, 1992 ). For example, assume there are two

nput facts {a, b} and two rules in the knowledge base: 

ule 1 : i f a and b , then c ;
ule 2 : i f c and a , then d . 

(12) 

ased on Formula 2 ( Eqs. (10) and (11) ), we can derive the uncer-

ainty of c and d and record all the facts used to deduce each fact

 Mahesar, Dimitrova, Magee, & Cohn, 2017 ): 

ule 1 : ⇒ C c = 〈 C a + C b + C R 1 〉 (GF : a, b) 
ule 2 : ⇒ C d = 〈 C c + C a + C R 2 〉 (GF : a, b; a ) 

(13) 

here (GF) records the antecedents of an inferred fact. It can be

een that for inferring d , the uncertainty of a has been accu-

ulated twice. To avoid multi-counting the uncertainty of a fact,

e can first propagate the confidence vectors of rules to conclu-

ions (inferred facts) and store the corresponding antecedents of

ll premises (i.e. unique values) in an inference process; then, the

onfidence of each inferred fact can be calculated by adding the

onfidence vectors of rules and unique antecedents when inference
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Table 3 

Propagation of confidence vectors to avoid multi-count 

problem in an example ( Eq. (12) ). 

Fact C F C R GF Rule 

a C a [] [a] / 

b C b [] [b] / 

c [] C R 1 [a,b] R1: a ∧ b C R 1 −→ c

d [] C R 1 + C R 2 [ a, b ] ∨ a R2: c ∧ a C R 2 −→ d
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Fig. 5. A direct graph representing six predictive rules in a knowledge base (shaded 

circles for given facts and white circles for derived facts.). 
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To implement this, a given fact d can be initialised as “g f (C F =
 d )(C R = [])(GF = [ d]) ”, where C F stores the confidence vector of

this fact, C R stores the accumulated confidence vector of rules used

to infer this fact, GF stores the antecedents of this fact. For an in-

ferred fact, its C R is the sum of the C R of all its premises (based

on Formula 1) and its GF is the union of the given facts GF of all

its premises. For the example in Eq. (12) , the reasoning process is

shown in Table 3 from top to bottom. 

Then, we can infer the confidence vector of c as C c = C R + C GF =
 R 1 + (C a + C b ) , and C d = C R + C GF = (C R 1 + C R 2 ) + C [ a,b] ∨ a = (C R 1 +
 R 2 ) + (C a + C b ) . 

In summary, the “over-counting” problem can be avoided by

checking the antecedents of all the premises of a rule and this so-

lution deals in part with the dependencies between premises. 

Interpretation of Formula 2. For the example in Eq. (12) , since

the confidence in Rule 2 suggests the conditional probability P ( d | c,

a ), we can obtain the joint probability P ( c, a ; d ) as 

P (c, a ; d) = P (c, a ) P (d| c, a ) = P (c) P (a | c) P (d| c, a ) (14)

In our system, we consider a premise a to be dependent on a

premise c if a was used for deriving c (i.e a is the antecedent of

c ) and P (a | c) = 1 ; otherwise, we assume that different premises

are independent to each other (e.g. P (a | c) = P (a ) ). Then, the joint

probability can be written as: 

P (c, a ; d) = 

{
P (c) ∗ 1 ∗ P (d| c, a ) , i f a is an antecedent of c 
P(c) P(a ) P(d| c, a ) , i f a is not an antecedent of c 

(15)

In terms of kappa-calculus, the surprise of ( c ∧ a ∧ d ) happening can

be obtained using the kappa values ( Eq. (6) ) and the addition

Eq. (2) as: 

κ(c, a ; d) = κ(c) + κ(a | c) + κ(d| c, a ) 
= 

{
κ(c) + 0 + κ(d| c, a ) , i f a is an antecedent of c 
κ(c) + κ(a ) + κ(d| c, a ) , i f a is not an antecedent of c 

(16)

k (a | c) = 0 means there is no surprise that a happens if we observe

c happens since a is one of the antecedents of c . Let Q denote the

set of independent premises of rule R 2, then the kappa value of

the conclusion (and the premises) happening can be written as: 

κ(c, a ; d) = 

[∑ 

i ∈ Q 
κ(i ) 

]
+ κd| c,a = [( 

∑ 

i ∈ Q 
C i ) + C d| c,a ] ∗ K 

= 

[
〈 ∑ 

i ∈ Q 
V U i , 

∑ 

i ∈ Q 
U i , 

∑ 

i ∈ Q 
L i , 

∑ 

i ∈ Q 
V i 〉 + C d| c,a 

]
∗ K 

(17)

So the corresponding confidence vector of the conclusion can be

derived as: 

 c,a ;d = 

〈 ∑ 

i ∈ Q 
V U i , 

∑ 

i ∈ Q 
U i , 

∑ 

i ∈ Q 
L i , 

∑ 

i ∈ Q 
V i 

〉 

+ C R 2 (18)

This formula is in accordance with Formula 2; moreover the

multi-count problem has also been considered by excluding the

dependent premises. 
.4. Formula 3: Combining confidence levels of the same conclusion 

erived from parallel rules 

Let C F = 〈 V U F , U F , L F , V F 〉 denote our confidence in an inferred

act F . If the same fact F is inferred from two separate rules and

he confidences are C 1 F = 〈 V U 1 , U 1 , L 1 , V 1 〉 and C 2 F = 〈 V U 2 , U 2 , L 2 , V 2 〉 ,
hen C F can be computed by: 

 F = min (〈 V U 1 , U 1 , L 1 , V 1 〉 , 〈 V U 2 , U 2 , L 2 , V 2 〉 ) (19)

here min ( 〈 VU 1 , U 1 , L 1 , V 1 〉 , 〈 VU 2 , U 2 , L 2 , V 2 〉 ) returns the mini-

um of the two arguments as: 

〈 V U 1 , U 1 , L 1 , V 1 〉 < 〈 V U 2 , U 2 , L 2 , V 2 〉 ⇔ 

( V U 1 < V U 2 ) ∨ [ ( V U 1 = V U 2 ) ∧ ( U 1 < U 2 ) ] 

∨ [ ( V U 1 = V U 2 ) ∧ ( U 1 = U 2 ) ∧ ( L 1 < L 2 ) ] 

∨ [ ( V U 1 = V U 2 ) ∧ ( U 1 = U 2 ) ∧ ( L 1 = L 2 ) ∧ ( V 1 < V 2 ) ] 

(20)

or example, in Fig. 5 (a knowledge base with six predictive rules),

odes in the figure represent uncertain variables, and arrows rep-

esent the rules from premises to conclusions. 

Fact a, c and d are observed with confidence vectors C a , C c and

 d . It can be seen from the figure that fact e can be inferred from

wo different rules Rule3 (Definite) and Rule4 (Likely) . Based on the

ropagation Formula 1 defined in Eq. (7) , the confidence vectors

f e inferred separately from the two rules are: 

ule 3 : i f b, then e ; C 1 e,b = C b + C R 3 

ule 4 : i f h, then e ; C 2 e,h = C h + C R 4 

f our confidence in b is C b = 〈 0 , 0 , 0 , 1 〉 and in h is C h =
 0 , 0 , 2 , 1 〉 , based on rules C R 3 = 〈 0 , 0 , 0 , 0 〉 ( De f inite ) and C R 4 =
 0 , 0 , 1 , 0 〉 ( Likely ) , we have: 

 

1 
e = C b + C R 3 = 〈 0 , 0 , 0 , 1 〉 + 〈 0 , 0 , 0 , 0 〉 = 〈 0 , 0 , 0 , 1 〉 
 

2 
e = C h + C R 4 = 〈 0 , 0 , 2 , 1 〉 + 〈 0 , 0 , 1 , 0 〉 = 〈 0 , 0 , 3 , 1 〉 
ased on Formula 3 in Eq. (20) , the confidence vector of e is:

in (C 1 e , C 
2 
2 〉 = min (〈 0 , 0 , 0 , 1 〉 , 〈 0 , 0 , 3 , 1 〉 ) = 〈 0 , 0 , 0 , 1 〉 

Interpretation of Formula 3. For the above example, let the

onjunction of b and e as one event A with P (A ) = P (b ∧ e ) =
 (e | b) P (b) , the conjunction of h and e as one event B with

 (B ) = P (h ∧ e ) = P (e | h ) P (h ) , and b and h are mutually exclusive

as shown in Fig. 5 ). Given two mutually exclusive events A and B

nd assume P ( A ) ≥ P ( B ), we have: 

 (e ) = P (A ∨ B ) = P (A ) + P (B ) − P (A ) P (B ) 

= P (A ) 
[ 

1 + P (B ) 
(

1 

P (A ) 
− 1 

)] 
≥ max (P (A ) , P (B )) (21)

s b (Rule 3) and h (Rule 4) provide two independent reasons to

elieve e , the two observations together should infer e with a be-

ief that is stronger than either component in isolation. So P ( e ) is

lways larger than the maximum probability of individual event. 
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Table 4 

Contradictory confidence levels. 
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Fig. 6. A direct graph representing the predictive rules in a knowledge base. 
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In terms of kappa-calculus, the surprise of e happening is based

n the smaller surprise (kappa value) of A ( e ∧ b ) and B ( e ∧ h ) accord-

ng to Eq. (3) as: 

(e ) = min (κ(e, b) , κ(e, h ) (22)

eplacing the kappa values with confidence vectors ( Eq. (6) ), we

ave 

κ(e ) = min (C e,b ∗ K, C e,h ∗ K) = min (C e,b , C e,h ) ∗ K 

 C e = min (C e,b , C e,h ) 

= min (〈 V U A , U A , L A , V A 〉 , 〈 V U B , U B , L B , V B 〉 ) (23) 

The minimum confidence vector is related to the maximum

robability of A and B and the derived confidence vector is in ac-

ordance with the formula in Eq. (19) . Derivation of the minimum

onfidence vector is detailed in Appendix B . 

.5. Rule base consistency validation with qualitative confidence 

evels 

In this section, a mechanism is proposed to check the consis-

ency of a rule base based on the definition of qualitative confi-

ence levels in Section 3.1.1 . The principle is to ensure that given a

nowledge base and assuming all the rules are satisfied, no contra-

ictory conclusions will be inferred from the same group of facts.

or example, assume both fact p and its negation ¬p are derived

ith confidence levels Definite from the same group of facts, since

¬p is Definite ” implies that “p is Impossible ”, then p (Definite ) and

 (Impossible) are contradictory. Based on the six confidence levels

efined in Table 2 , six pairs of contradictory confidence levels are

efined in Table 4 , such as Definite vs Impossible . 

For example, if we have four rules in a rule base ( Fig. 6 ), and A

s observed with confidence vector 〈 0, 0, 0, 0 〉 (Definite). 

Then the four rules imply that: 

 B ;A = C A + C R 1 = 〈 0 , 0 , 0 , 0 〉; C D ;B = C B + C R 3 = 〈 0 , 0 , 0 , 1 〉 
 C;A = C A + C R 2 = 〈 1 , 0 , 0 , 0 〉; C D ;C = C C + C R 4 = 〈 1 , 0 , 0 , 0 〉 
t can be seen that D is considered to be very likely to happen

hrough Rule 1 and Rule 3 ; but it is also considered to be very un-

ikely to happen through Rule 2 and Rule 4 . If such contradictions

re found in the rule definition phase, an alert will be shown to

omain experts; the experts can either accept these inconsisten-

ies 15 , or add more conditions on the left hand side of the relevant

ules or adjust the confidence levels of these rules. 
15 Note that, as mentioned by our domain experts, inconsistencies are not unusual 

n infrastructure engineering which is one reason for the level of uncertainty ob- 

erved. 

k  

L
 

o  

l  
.6. Extended confidence vector for diagnostic rules 

Rules in the system can be classified as predictive rules or di-

gnostic rules. Predictive rules describe the relationship from cause

o effect ( “If Cause, then Effect”); and diagnostic rules describe the

elationship from evidence to hypothesis (“If Effect, then Possible

ause”). For example, given an observed infrastructure defect, the

onfidence in a predictive rule reflects a stable property of this de-

ect (i.e. the likelihood of a consequence to happen, given the de-

ect). In contrast, the confidence in a diagnosis rule (i.e. the likeli-

ood of a defect, given a consequence) depends on the incidence

ates of that defect and other reasons that may cause the same

onsequence ( Heckerman & Shortliffe, 1992 ). Generally, domain ex-

erts feel more comfortable when asked to formulate predictive

ules than diagnostic rules since the incidence rate of different

auses ( prior probabilities) is often hard to define. 

.6.1. Extended confidence vector with an abduction count 

Although the confidence level of diagnostic/abductive rules are

ard to define, in order to warn users with all possible causes

nd the potential consequences of an observation but not mix the

onfidence in predictive and diagnostic rules, we extend the qual-

tative confidence vectors described in the previous sections by

dding an extra element A to the front of a confidence vector, writ-

en as: 

 = 〈 A ;V U, U, L, V 〉 (24)

or predictive rules, A is fixed as 0 whilst 〈 VU, U, L, V 〉 are defined

y domain experts; for diagnostic rules, A is fixed as 1 whilst 〈 VU,

, L, V 〉 are fixed as 〈 0, 0, 0, 0 〉 . For a fact, A records how many di-

gnostic rules have been used for inferring this fact, whilst 〈 VU, U,

, V 〉 represent its uncertainty (either provided at the beginning of

n inference or propagated from other facts and predictive rules).

 fact is also attached with a list of given facts ( GF ) and abductive

acts ( AF ) for storing the corresponding antecedents from predic-

ive and diagnosis rules. The three formulae ( Eq. (7) , Eq. (10) and

q. (19) ) defined in previous sections also apply to the extended

ordered) confidence vector by adding one element A into the cal-

ulation. 

In our applications, predictive rules are defined by domain ex-

erts and diagnosis rules are automatically generated by revers-

ng the cause and effect. For ease of clarification, in the following

ections, we use 
R → to represent predictive rules, and → 

R 
to repre-

ent diagnostic rules. For example, a road crack could be triggered

y several factors, such as traffic overloading, extreme temperature

e.g. freezing), water infiltration into the road due to nearby road

racks and rainfall, etc. A predictive rule “Surface deformation can

ause road cracks” can be reversed as “Road cracks could be caused

y surface deformation”, the two rules are written: “RoadDeforma-

ion (Active) 
〈 0 ; 0 , 0 , 0 , 0 〉 −−−−−−−→ RoadCracking (Active)” and “RoadCracking 

Active) → 〈 1 ; 0 , 0 , 0 , 0 〉 RoadDeformation (Active)”. 

.6.2. Reasoning with both predictive and diagnostic rules 

In practice, predictive and diagnostic rules are often used seam-

essly. For example, given a defect, we hypothesise what is happen-

ng in the world to explain why this defect appears; then, we ap-

ly the predictive rules to infer all consequences potentially caused

y deterioration of this defect. But if both predictive and diagnos-

ic rules exist in one knowledge base, inter-causal reasoning may

appen. For example, suppose we have one predictive rule “Sprin-

ler (on) 
De f inite −−−−−→ Grass (wet) ‘’ and one diagnostic rule “Grass (wet)

→ 

ike ly 
Rain ‘’ in a conventional rule-base, if we see the sprinkler is

n, chaining forward through the rules, this will increase the be-

ief that the grass will be wet, which in turn increases the belief
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Fig. 7. An example of city infrastructure assessment with diagnosis and predictive inference. Colour scheme: turquoise for input facts, white for inferred facts, and light blue 

for final conclusions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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that it is raining. To mitigate this interaction, pre-defined salience

scores are added to all the rules such that abductive inference (us-

ing diagnostic rules) are performed first to find all possible causes

of observed facts, followed by predictive inference (using predictive

rules) to find all potential consequences. For example, as shown in

Fig. 7 , if road cracks are observed and the ground principal type

is sand, all possible causes of the cracks are inferred based on di-

agnostic rules. The additional potential consequences of these in-

ferred facts are then inferred through predictive rules. 

3.7. Reasoning with missing facts 

In addition to the uncertainty in rules, the domain experts

we consulted also wanted to know what facts were assumed to

be present in the derivation of a potential consequence so they

could conduct further investigations to check whether these miss-

ing facts hold or not ( Mahesar et al., 2017 ). To do this, a mecha-

nism is provided in our system to handle incomplete data, i.e. if

any premises (facts) of an inference rule are missing 16 , the system

will make assumptions of all possible states of the missing facts so

related rules can still be fired. These missing facts (with assumed

values) are also attached to the inferred fact as ( {MF}) , the same

as the given facts and abduced facts. The facts used for inferring
16 Currently, in order to limit the number of assumptions made, at least one 

premise of a rule must be not assumed. 

S  

t  

t  

p  
 consequence will be displayed on the user interface for further

uidance. 

In order to infer all potential consequences, assumed facts are

dded into the knowledge base with all possible states of the miss-

ng facts (e.g. subgrade type = sand/rock/clay/gravel); these facts

re combined with the rule base for reasoning. However, feed-

ng different values of a fact (inconsistent information) into the

ame knowledge base may cause inter-causal problems since one

nferred fact can be used regardless of its justification. For exam-

le, suppose we have one given fact A (Severe) and three rules in

 knowledge base as below: 

ule 1: A is Severe ∧ B is Clay 
Likely −−−→ C increases; 

ule 2: A is Severe ∧ B is Sand 

VeryLikely −−−−−−→ C increases; 

ule 3: C increases ∧ B is Sand 

Unl ikel y −−−−−→ D decreases; 

As A is given, the system will make two assumptions about

he missing fact B as “B is Clay” and “B is Sand”. Ideally, we only

ant rule 1 to fire to infer C ( increases ) or rule 2 and rule 3 to

re together to infer C ( increases ) and D ( decreases ). However, the

 ( increases ) inferred from rule 1 will also cause rule 3 to fire

n which case “B is Clay” and “B is Sand” cannot hold together.

o avoid this, in Truth Maintenance System (Reason Maintenance

ystems), a dependency network is often constructed to record

he dependencies of derived facts so as to retract the inconsis-

ent facts at the end of inference ( Doyle, 1979 ), but this post-

rocessing approach may allow exponentially many subsequent in-
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Fig. 8. A three-layer system architecture of the ATU-DSS prototype. 
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onsistent facts to be inferred during the inference process. There-

ore, in our system, we avoid logically inconsistent derivation

n the fly by checking whether there are any contradictory an-

ecedents in a rule. As shown previously in the example in Table 3 ,

ll given facts are initialised by including themselves in the given

act list, whilst all assumed facts (missing facts) are initialised by

dding themselves in the missing fact list. For the above example,

ince C ( Increases ){ GF [ A ( Severe )], MF [ B ( Clay )]} is not consistent with

 ( Sand ) { MF [ B ( Sand )]}, rule 3 will not fire with the C inferred from

ule 1. This step can guarantee that each derived fact has a consis-

ent antecedents. 

Maximally consistent sets of assumptions. With the conclu-

ions (e.g. consequences in our ATU-DSS) inferred from different

ombinations of given and assumed facts, we need to group con-

istent consequences based on different assumptions: 1) firstly, an

djacency matrix (undirected graph) of all consequences is gener-

ted: two consequences are connected if they are with consistent

ntecedents (i.e. no fact hold different values); 2) then, all maximal

liques in this undirected graph are identified, in each of which

onsequences are consistent and the clique cannot be extended

y including one more adjacent vertex. Whilst typically systems

ould choose a preferred set of assumptions automatically based

n certain criteria, we are looking at all sets simultaneously and

ur user interface in the prototype will let users compare the rea-

oning chains of different consequences and decide which group of

ssumptions is more reasonable ( Fig. 12 ). 

. A prototype decision support system for urban 

nfrastructure inter-asset management 

A prototype has been developed based on the uncertain reason-

ng approach and the ATU ontologies presented in previous sec-

ions. The system architecture is shown in Fig. 8 . It includes a data

ayer, a logic lager and an interface layer. In the following sections,

e will first introduce the ATU-DSS rule base, then present the

ata sources, and finally present the user interface and demon-

trate how to use the system with an example. A video demon-

trating the prototype is available at: http://bit.ly/2MRHMCc . 17 
17 Accessed: 2020-02-23. 
.1. Developing a rule-base for ATU-DSS based on scenarios 

Since the information needed to be encoded as rules in ATU-

SS is very extensive and the time of domain experts is precious,

e adopted a scenario-based strategy for rule base development.

irst, several representative scenarios were selected by our domain

xperts, such as rainfall with road cracking and underground pipe

eakage with active traffic loading. New scenarios can be added

radually subsequently. Then, for each scenario, rules were defined

y domain experts by following the deterioration process of assets

nd considering all contextual possibilities. The flowcharts of these

rocesses were sent to external domain experts and practitioners

or validation. For example, in a scenario about rainfall with road

racking , the relevant variables include road construction proper-

ies, road cracking depth, rainfall duration/intensity and subgrade

ground) type. If the road surface is cracked and the cracks extend

o the underlying road base, then any rainfall event will lead to

nfiltration into the road construction and underlying subgrade; if

he subgrade is clay and the ground water level is low, it is likely

hat the ground water level will rise softening the clay; if the sub-

rade is a soluble rock it is possible that solution cavities could

orm, etc. 

Rules with confidence levels were first created by domain ex-

erts in an agreed format and stored in text files; then they were

utomatically converted to a format recognisable by inference en-

ines using a piece of code written in Python. We used the rule

nference engine Jess 18 in our prototype (this can be interchanged

ith CLIPS 19 or other rule engines) for rule implementation and

easoning. A full-length exemplar code and explanation of the im-

lementation are given in Appendix D . Diagnosis rules were also

utomatically generated by inverting the predictive rules. 

.2. Data sources and spatial criteria for data retrieval 

Informed by the ATU ontologies and rules, various infrastruc-

ure and contextual datasets were sourced from different owners

e.g. UK Met-Office, UK Department for Transport, British Geologi-

al Survey, utility companies) and integrated in the prototype sys-

em to provide instant location/time specific data retrieval. The
18 http://www.jessrules.com/jess/docs/71/ . Accessed: 2020-02-23. 
19 http://clipsrules.sourceforge.net/ . Accessed: 2020-02-23. 

http://bit.ly/2MRHMCc
http://www.jessrules.com/jess/docs/71/
http://clipsrules.sourceforge.net/
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Fig. 9. Workflow in the ATU-DSS (from the left to right) ( Wei et al., 2018 ). 
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sourced datasets are mostly in (or converted to) the form of GIS

tables and stored in a PostgreSQL database. 

The Meteorological data is sourced from the UK Met-Office. 20 

When a trigger is reported through the system user interface, the

30-day weather data (e.g. daily/hourly rainfall, maximum and min-

imum air/concrete/soil temperatures) up to the occurrence day of

the trigger is calculated based on the data from its nearby (less

than 10 km away) weather stations. Historic flood outline map is

also sourced from the UK Environment Agency to provide the in-

formation of flood risk around the site of the trigger. Weather fore-

cast data may also be added in the future. 

The Road and Traffic Information is sourced from the UK Depart-

ment for Transport 21 and Ordnance Survey. For a reported trigger,

its nearest road segment is first retrieved from the road network

database to identify the corresponding traffic counting point for

obtaining the historical traffic data, based on which the weighted

annual traffic on this road is calculated according to the wear fac-

tors of seven types of heavy vehicles (e.g. buses). 22 The road de-

signed traffic loading can be provided by external road datasets

(e.g. the National Street Gazetteer) or added by users. By compar-

ing the traffic volume on a road with the average volume in the

locality, the importance of this road can be assessed, which is also

an indicator of the effect that the trigger and subsequent conse-

quences or mitigation measures could have on the traffic flow. The

past and future planned roadworks on this road are also retrieved

(data from Highways England website 23 ) to help evaluate the vul-

nerability of the road system. 

The Ground Conditions data (e.g. ground water level, geological

faults) is sourced from the British Geological Survey (BGS) and lo-

cal councils. For example, the BGS 50K dataset 24 provides geologi-

cal information like superficial and bedrock geology; the corrosivity

dataset 25 gives an indication as to whether the ground conditions

below the top soil are likely to cause corrosion of underground

iron asset, and the SuDS 26 dataset suggests the potential presence

of geological and hydrogeological hazards that could be initiated

or worsened by water infiltration to the ground. Brownfield infor-

mation sourced from different local councils is also added in the

system. 

Buried utilities data is sourced from different asset owners (e.g.

United Utilities, National Grid, North West Electricity), vectorised

and integrated in a back-end spatial database, 27 in which multiple

attributes of the buried assets are recorded (e.g. utility type, lo-

cation, depth, material, diameter, pressure/voltage, year of installa-

tion, owners, operation status). Based on the location of a reported

trigger, data of buried utilities in the general vicinity of this trigger

(within a 200m radius) is retrieved from the database ( Fig. 11 (a)). 

Nearby Services. Information of the nearby services such as hos-

pitals, schools, banks, is also important for estimating the potential

social and economic impact of a trigger. For example, the people at

schools and hospitals may be more vulnerable to harm and harder

to evacuate in an emergency, such as a gas explosion due to dam-

age to a gas pipe. The data of sensitive services around a trigger

( ≤ 2 km ) is fetched from the OpenStreetMap when a trigger is re-
20 Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface 

Stations Data (1853-current). 
21 UK Department for Transport (DfT) Traffic Statistics. 
22 UK Design Manual for Roads and Bridges (2006). 
23 https://data.gov.uk/dataset/5b3267d8- 4307- 4eef- a9af- 3a4c28224694/ 

planned- road- works- on- the- he- road- network . Accessed: 2020-02-23. 
24 http://www.bgs.ac.uk/products/digitalmaps/digmapgb _ 50.html . Accessed: 2020- 

02-23. 
25 http://www.bgs.ac.uk/products/groundconditions/corrosivity.html . Accessed: 

2020-02-23. 
26 http://www.bgs.ac.uk/suds/ . Accessed: 2020-02-23. 
27 For proof-of-concept purpose only. In the UK, automated retrieval of utility 

statutory records is only available in Scotland with the VAULT system. 
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c

orted ( Fig. 11 (b)). To assess the potential impact on each service,

heir shortest driving distances to the trigger is calculated using

he widely used path planning A 

∗ algorithm. 

Mapping Data to ATU Ontology Concepts. The sourced data is

apped to corresponding ontology concepts based on a predefined

orrespondence table so that it can be used for inference together

ith the logical rules. 

Although automatic methods exist for matching data and on-

ologies ( Munir & Anjum, 2018 ), in our case, all the correspon-

ences were manually defined by experts to guarantee their cor-

ectness. We carefully read the related documents of each dataset,

specially their definitions, the meaning of each table column (or

ttribute, field), the data unit, and how the value in each cell was

erived. Some examples of mapping are given below: 

– For some cases, the name of a data table (or a column) can be

similar to an ontology concept, which gives a hint to find the

correct match. For example, the table column length in the OS

Open Roads Dataset 28 (table uk_road_network ) also suggests the

length of a road segment, thus can be mapped to the ontology

concept RoadLength in the Road Ontology; 

– But for some cases, similar names may not suggest a correct

correspondence. For example, there exists a geological dataset

Depth_to_water_table 29 and an ontology concept GroundWa-

terTableDepth in the Ground Ontology. The two names look sim-

ilar but the depth data cannot be mapped to the ontology con-

cept as the data values were not the real depth but categorised

into [1, 2, 3] (1: > 5 m below ground surface; 2: 3-5m below

ground surface; 3: < 3 m below ground surface); 

– For some cases, there are no similarities between the names,

correspondences can only be established after checking the def-

inition of data and ontology concepts. For example, the table

column Function in the OS Open Roads Dataset can be mapped

to the ontology concept RoadType in the Road Ontology be-

cause both of them give the information of road types such

as A road, B road, etc. Another example is about a geological

dataset called GroundWaterLevels 30 . Its document suggests that

this dataset provides the information of depth to groundwater

level and the unit of its table column Value is in metres which

is the same as the definition of the ontology concept Ground-

WaterTableDepth , therefore, a correspondence is established be-

tween them. 

All these correspondence relations are stored in a predefined

orrespondence table ( Table 5 ). 
28 https://www.ordnancesurvey.co.uk/business-government/products/ 

pen- map- roads . Accessed: 2020-03-01. 
29 http://www.bgs.ac.uk/suds/ . Accessed: 2020-02-23. 
30 https://www.bgs.ac.uk/products/hydrogeology/depthToGroundwater.html . Ac- 

essed: 2020-02-23. 

https://data.gov.uk/dataset/5b3267d8-4307-4eef-a9af-3a4c28224694/planned-road-works-on-the-he-road-network
http://www.bgs.ac.uk/products/digitalmaps/digmapgb_50.html
http://www.bgs.ac.uk/products/groundconditions/corrosivity.html
http://www.bgs.ac.uk/suds/
https://www.ordnancesurvey.co.uk/business-government/products/open-map-roads
http://www.bgs.ac.uk/suds/
https://www.bgs.ac.uk/products/hydrogeology/depthToGroundwater.html
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Fig. 10. User interface for reporting new triggers with a drop-down menu of trigger types (©OSM). 

Table 5 

A predefined correspondence table between data and ontologies. 

externalData_name externalData_column ontologyConcept 

uk_road_network length RoadLength 

uk_road_network Function RoadType 

GroundWaterLevels Value GroundWaterTableDepth 

... ... ... 
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31 Note: as no other causes of pipe leakage is provided by domain experts for the 

current prototype, the abductive reasoning results are not shown. 
.3. ATU-DSS User interface 

For ease or use, a web-based user interface has been devel-

ped using Python Django, Geoserver and openLayers . The workflow

f utilising ATU-DSS is shown in Fig. 9 , including four steps: first

sers can access the system from standard web browsers to report

ew triggers by providing the trigger type and properties; then,

elevant contextual information is retrieved from local or online

atabases; after that, the retrieved data is both displayed on the

ser interface and fed into the rule engine to infer potential con-

equences with their associated uncertainty, severity levels and an-

ecedents. Finally, the system also gives suggestions on how to get

he missing data and supports alternative assessment. 

For example, assuming that: 

A member of the public observes a water pipe leakage and 

phones up the local authority to report it! 

In order to estimate the potential consequences of this trigger,

he local authority first need to report the leakage through the user

nterface: 

– Reporting new triggers . Users can either report a trigger by man-

ually typing the information ( Fig. 10 ), or uploading an XML file

containing the information of triggers. The second option al-

lows ATU-DSS to be connected with other existing information

systems, such as the pothole reporting systems used in a lot of

local councils, and to use external data sources as triggers to

start the decision support process. When manually reporting a

trigger, the trigger type can be selected from a type list (defined

in the Trigger Ontology ) as shown in Fig. 10 . The trigger sever-

ity level ( High, Medium, Low ), geographic location (e.g. postcode,
GPS coordinates, location pinpointed by users on the displayed

map, or an uploaded spatial file, Fig. 10 ) and time should also

be provided. Users can also upload multiple photos of a trigger

at different times to help analyse/monitor the development of

this trigger. 

– Localised Data Retrieval and Automated Reasoning. Then, the rel-

evant localised contextual data of the reported trigger is auto-

matically retrieved based on its occurrence location and time

using different spatial criteria. The retrieved/processed data is

displayed on the user interface ( Fig. 11 ). The data provided

by users (e.g. trigger information) and data retrieved from the

database is written as a fact file (e.g. GroundPrincipalType (Clay),

EnvironmentRainfallDuration (Long) ), then fed into the rule en-

gine for automated reasoning of potential consequences. 

– Identification of Potential consequences. Once the reasoning pro-

cess finishes, potential consequences are identified from the in-

ferred facts. Currently we are looking at four types of conse-

quences in ATU-DSS, including consequences on buried utilities

(e.g. utility fail), on roads (e.g. road collapse), on ground (e.g.

ground collapse) and social/economic/environmental/legal con- 

sequences (e.g. traffic disruption, loss of business, loss of utility

service, damage to property, injury, and loss of life). Each con-

sequence has five attributes attached: uncertainty level, sever-

ity level, given facts { GF }, missing information { MF } and conse-

quence type (e.g. ground, social/economic) 31 

The uncertainty level, given facts and missing facts of a conse-

quence are propagated/accumulated from the uncertainty rea-

soning approach, whilst the severity level ( Negligible, Marginal,

Critical, Catastrophic ) of a consequence is context dependent

and defined in each logical rule. For example, if road defor-

mation happens on a road, the severity of potential traffic

disruption is only marginal; but if a pipe burst happens on

a road, the potential traffic disruption can be critical. Know-

ing the likelihood and severity of potential consequences of

a reported trigger can help users to prioritise their tasks and

take appropriate mitigation measures to reduce the potential

risks, especially for those with higher likelihood and (or) higher

severity. 
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Fig. 11. Snapshots of the user interface with a list of retrieved contextual data (background maps (a) Google Satellite Image, (b) OpenStreetMap). 
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– Visualisation of the Potential Consequences. The uncertainty level

of potential consequences can be shown to users as a confi-

dence vector or using a textual representation. In this work, the

textual representation is obtained by taking the first element in

the 〈 VU , U , L , V 〉 vector with a non-zero value since we assume

an order-of-magnitude semantics for the confidence vectors, i.e.

the left-most component is more surprising than the next un-

less there were a huge number of rules applied to get the first

value ( Appendix A ). For example, for an inferred fact with a

confidence vector 〈 0, 0, 2, 1 〉 , since 2 on the position of Likely

is the first non-zero value, this fact is considered as Likely to

happen. To meet the different needs of users, two views have

been designed in ATU-DSS for visualising the potential conse-

quences: 

The first option is to display the consequences in an impact

matrix table ( Fig. 12 ) according to their severity levels/impact and

uncertainty level/likelihood. The number of missing facts (if there
re any) used for deducing a certain consequence is also displayed

ehind each consequence. As we make assumptions of all possi-

le values of missing facts, multiple instances of the same conse-

uence (e.g. utility fail) could be derived from different sets of facts

nd with different likelihood. To ease the analysis by users, we

ave added several filtering boxes on the right panel of the matrix

iew so that users can either filter consequences based on their

ategories (e.g. social consequences) or combinations of different

ssumptions. When users hover the mouse on one consequence in

he risk table, other duplicate consequences are also highlighted; a

ooltip will also appear to show the facts used to derive the hov-

red consequence ( Fig. 12 ). 

The second option is a list view ( Fig. 13 ) in which consequences

nd their related parameters (e.g. confidence vector, likelihood,

everity, number of missing facts, data used) are displayed in a ta-

le and can be sorted according to different attributes. It should be

oted that by keeping elements in the confidence vectors with the

ame length, the alphabetically sorting algorithm used in an html
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Fig. 12. The impact matrix view for visualisation of the potential consequences of a reported pipe leakage. There are several filtering options on the user interface: (a) users 

can select different combinations of assumptions of the missing facts from the multi-checkboxes on the right panel and the corresponding consequences will be shown in 

the impact matrix table (N.B. colours in the table are assigned based on generic heuristics); the facts used to infer a specific consequence are shown with a mouse-over 

effect in a tooltip; (b) users can also filter the consequences to be displayed by their categories (e.g. road, social/economic consequences); c) users can click on a consequence 

and more details will be shown in a new page. 

Fig. 13. The list view for visualisation of potential consequences of a given trigger. Consequences in the table can be sorted according to different attributes. 

t  

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

able is the same as the formula for confidence vector comparison

efined in Eq. (20) . 

– Reasoning Chain of Potential Consequences. Users can explore the

details of each potential consequence by clicking on the links

in the risk view or the list view. The system can give explana-

tions of each consequence in the form of a sequence of text

descriptions or as a network diagram of nodes and directed

arcs. For example, the reasoning chain of a potential utility sup-

port decrease caused by a reported pipe leakage is illustrated in

Fig. 14 , in which the colour of ellipses indicates whether a fact

is given, assumed or inferred; and the arrows indicate the rea-

soning flow together with the likelihood of each rule. By show-

ing users the reasoning process of arriving at a particular con-

sequence, the system can help users make a more reasonable

and confident decision. Users can also manually update (e.g.

decrease) the confidence and severity levels of a consequence

based on their expert opinion. 

– Investigation Suggestions for Collecting and Updating Missing

Data . As mentioned previously, in cases where real data is miss-
ing in the reasoning process of a potential consequence, the

system will suggest suitable investigation techniques to get the

missing data based on the ATU Investigation Ontology ( Fig. 16 ).

Users can decide whether to accept the assumed value of a

missing fact or to do some investigation and update the data

later ( Fig. 16 ). When new data is added/updated, the whole

reasoning process automatically re-activates. We designed this

function since it is often rare to have complete datasets in

an information system. Even if such datasets do exist, they

are subject to change or the observations from different peo-

ple may vary. For example, the system may suggest that the

ground type at a specific location is Sand , but one user may

suggest the ground type as Clay based on his/her investiga-

tion. In ATU-DSS, the value of a fact can be updated no mat-

ter whether it is retrieved from the database or provided by

a user. The system records which user makes a modification

so that the provenance of all data is recorded. The ability for

users to see alternative results by modifying assumptions can

help users understand better the impact of a trigger in different

context. 
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Fig. 14. Example of a consequence reasoning chain. Colour scheme in the figure: turquoise for given facts, pink for assumed facts (missing facts), white for intermediate 

facts and yellow for the final output. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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– Modification of Rule Likelihood for Case-based Analysis . The same

as we may have different measurements of a fact, different ex-

perts may have different opinions of the content (e.g. likeli-

hood) of a rule. Therefore, our system not only provides a com-

mon rule base for all scenarios, it also allows users to mod-

ify/personalise these rules. As shown in Fig. 15 (a), users can

click on the likelihood of a certain rule; then, a separate page

will be shown ( Fig. 15 (b)). On this page, users can select the

new rule likelihood from a drop-down list and add their com-

ments or explanations. Once submitted, this rule will replace

the original rule in this case study (i.e. this specific trigger) and

the whole reasoning process re-activates. 32 The re-reasoning

step is essential since the modified rule may have also been

used for inferring other potential consequences. User can no-

tice whether a rule has been modified in this scenario by the

colour of likelihood on a reasoning graph: the original ones are

in blue while the modified ones are shown in red. The modifi-

cation history of each rule will be recorded and shown on the

bottom of the page so users can see others’ insights. 

4.4. Computational complexity 

We used the rule inference engine Jess for rule implementation

and reasoning in the prototype. As Jess uses an improved Rete al-

gorithm ( Forgy, 1982 ) for reasoning, the performance is largely in-

dependent of the number of rules/facts, but as we are also dealing
32 It should be noted that when a new trigger is added, only the original rule base 

will be used. 

w  

o  

u  

r  
ith missing facts, the computational time of different scenarios

ill depend on the number of missing facts in the antecedents

f a rule and the possible values of each missing fact, as well as

he similar patterns of rules’ LHS (left hand side) in the knowledge

ase. Therefore, it is always a good practice to put the most spe-

ific patterns near the top of each rule’s LHS. The system currently

omprises 377 predictive rules and each rule has 4 antecedents in

verage; the most complex rule has 12 antecedents and the sim-

lest rule has two antecedents. For the pipe leaking scenario il-

ustrated in Fig. 12 , two facts were provided ( PipeLeaking (Active),

ipeLeakingRate (Severe)), two facts were retrieved ( RoadType (A

lass road), TrafficLoad (Active)), and three missing facts were as-

umed with possible values: PipeDepth (Deep) (Shallow), RoadSlope

High) (Medium) (Slight), Subgrade (Clay) (Sand) (SolubleRock). 235

acts were inferred from different combinations of facts and 65

ere identified as potential consequences. The maximum depth of

nference is 22 and the minimum depth is only one. The inference,

ata tidying and figure rendering process took about 4 seconds on

 laptop with an Intel 2.7-GHz processor. 

.5. Evaluation 

In addition to test the system with several real scenarios (e.g.

he pipe leaking scenario presented in previous sections), we have

lso evaluated users’ acceptance of the system by demonstrating

he ATU-DSS prototype to a wide range of potential users in two

orkshops and collecting their feedback. The first workshop was

rganised in September 2017 to assess the system framework and

ser interface design. The participants included one invited expe-

ienced utility manager, one utility surveyor trainers, and around
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Fig. 15. User interface for displaying and modifying the likelihood of a rule. 
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wenty academics from different UK universities and institutions

with diverse backgrounds such as civil engineering, geotechnical

ngineering, geophysics, computer science). An overview of the de-

ision support system (including the framework, data and underly-

ng semantic technologies) was given at the beginning of the work-

hop, followed by a live demonstration with real data from a his-

oric ground collapse in Manchester which caused major disrup-

ion. After that, feedback from participants was acquired via a ple-

ary discussion. The participants showed great interest and gener-

lly praised the effectiveness of the system, especially the rich data
rovided, the transparency of the reasoning module and the infor-

ative investigation suggestions. Several suggestions were received

egarding the user interface design (e.g. colour in the matrix table,

egend). 

The second workshop was organised in November 2017 and at-

racted attendees from various backgrounds, e.g. local authorities,

tility companies, survey companies, contractors (utility pipe lin-

ng/design), risk managers, sensor manufacturing companies, in-

ividual consultants, academics. The workshop followed the same

rocedure as the first one, except that feedback from participants
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Fig. 16. Interface for suggesting the investigation techniques for obtaining a miss- 

ing fact (e.g. Ground Cavity ), where 0 = Not considered applicable; 1 = limited use; 

2 = used or could be used, but not best approach or has limitations; 3 = excel- 

lent potential but not fully developed; 4 = generally considered an excellent ap- 

proach, techniques well developed. There are also two buttons linking to two dif- 

ferent pages for updating the data value. 
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was acquired via individual questionnaires as well as a plenary dis-

cussion. In the questionnaire (available at http://bit.ly/2oL7MAt ), 33 

participants were asked whether the prototype addressed key

problems in their practice and whether it would fit into their cur-

rent work. 18 questionnaires were collected - some sample re-

sponses from the participants are shown in Table 6 . Among these

questionnaires, ten participants answered the question “Is this use-

ful for you or somebody you can think of ?” and suggested that

this system can be a potentially useful tool for different stake-

holders, such as incident managers, survey company developers,

constructors, asset owners, local authority. Possible tasks included

risk mitigation, prioritisation and justification of asset design and

maintenance expenses and activities. The participants also pointed

out that the system could be useful for the general public and

could have the potential benefits for training novice or junior

staff in streetworks management. Eight people did not answer this

question but their responses in questions “How is this related to

your practice ?” and “Does it address any specific challenges you

are facing ?” indicated that the DSS was not directly relevant to

them because they were from a company selling sensors, were aca-

demics, or in one case because “current practice is so far behind

the presented ideas that it is hard to imagine it in use for xx years

yet”. Regarding the specific functions of the system, the users were

particularly interested in the integrated data platform that brought

various critical contextual data together. The participants suggested

that the automated reasoning module was useful for helping deter-

mine the impact of an incident in a short period of time, identify

potential consequences from seemingly insignificant triggers and

potentially reduce the streetworks disruptions. One participant was

particularly pleased with the visualisation of the reasoning chain,

which could help users to better understand the cause and effect

in relation to understanding spatio-temporal correlation between

utility and road problems. 

As for future improvements of the system, participants sug-

gested to add additional data sources, such as bus routes, agri-

culture data, and archaeological data. It was also recommended

to develop a smart phone application for easier access to the sys-

tem. We are encouraged by the number of new stakeholders inter-

ested in the system since the workshop and are exploring further

case studies (e.g. diagnosing leaking pipes, surveyor training, route

planning for street excavations) under a recently started follow-on

impact acceleration project. 
33 Accessed: 2020-02-23. 
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. Discussion 

In this section, we discuss the key challenges we met and

essons we learned from building the above knowledge-driven de-

ision support system for urban infrastructure inter-asset manage-

ent, as well as the advantages and limitations of the proposed

ramework. 

.1. Distributed and integrated rule base development 

In order to predict the future behaviour of infrastructure as-

ets, in this work, we captured the asset dependencies using rules.

owever, it is not feasible to create an exhaustive rule base for ur-

an infrastructure management, especially when working with few

omain experts whose time is extremely valuable. In this work, we

reated a rule base with two scenarios to demonstrate the appli-

ability of the proposed reasoning and decision supporting frame-

ork. For larger scale applications, rule bases can be created by

ifferent experts or organisations (e.g. industry) for different sce-

arios/applications in a distributed manner. Importantly, the ATU

ntologies can provide a common language to facilitate this pro-

ess. We have discussed the problem of rule base inconsistency in

ection 3.5 by assuming that all rules were created with the same

onfidence levels. However, in practice, different experts may have

ifferent understanding of a probability phrase ( Wallsten & Bude-

cu, 1995 ) and these phrases tend to change their meanings in

ifferent contexts. Future work is required to investigate how to

ombine/align the rules created by several domain experts (inter-

ariances) and the rules created by the same domain experts at

ifferent times (intra-variances) or in different context. Section 3.5

.2. Transferability to other applications 

In this work, we provided a framework for developing

nowledge-driven DSSs based on ontologies and rules with qual-

tative confidences. This framework can be adapted for various en-

ineering applications, which require a system-of-systems think-

ng and qualitative uncertainties. Since users can change data val-

es and compare different alternatives with explanations, the sys-

em framework can also be used for training less experienced en-

ineers to perform complex decision making that requires multi-

ector knowledge. In addition to the above applications, the system

an be used as an evidence base to store all reported triggers, de-

isions/mitigation made by users, and the actual consequences for

haring experiences and lessons learned. 

.3. System maintenance: balancing rule-driven and data-driven 

pproaches in long term 

For building a decision support system for infrastructure man-

gement, both the historic and current data is important. As the

istoric data of infrastructure behaviours is not often available or

an be incomplete, it is practical by starting working with do-

ain experts to identify the key data/knowledge and encode the

ssential process rules (i.e. cause and effect) in representative sit-

ations. It should be noted that these hand-crafted rules are not

mmutable, instead they are only used as the starting points to un-

erstand a domain, especially how a domain expert would evalu-

te the risk/potential consequences from certain observations, such

s the level of details of knowledge they used and the order of

heir inference. As more data is gradually available, especially in

he context of Internet-of-Things as more smart sensors are in-

talled to monitor the cities, the hand-crafted rules could be used

o guide quantitative/logic rules learning and to validate the exist-

ng rules provided by domain experts. Another function our sys-

em provides is to let users to specialise a rule by modifying the

http://bit.ly/2oL7MAt
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Table 6 

Users’ feedback about the ATU-DSS from a user workshop. 

Questions Users’ response 

Category Sample responses from workshop participants 

1. What excites you 

about the ATU-DSS ? 

Integrated data platform “The pool of information on a single platform, from the output his seems 

limitless which is very exciting”

“A one step location for critical information”

“by having a system with the potential to show and provide all records and local 

specific information is a huge benefit”

Help estimate potential 

consequences through 

automated reasoning 

“Ability to determine the impact of an incident in a short period of time and 

consider vulnerability of all assets”

< ddq > ‘Bring expert analysis across a consistent analysis / reasoned 

approach’ < /ddq > 

‘Help to better visualise cause and effect in relation to understanding temporal 

spatial correlation between utility and road problems”

“Identifying real and potential future problems from what may appear an 

insignificant trigger”

“The opportunity for decisions on interventions on different utilities / highway 

authorities assets based on rational reasoning”

Smart city/ Minimise 

disruption 

“Potential tool to help reduce streetworks disruption by improving the decisions 

made to arrive at appropriate responses and associated consequences 

(vulnerabilities)”

“This moves to smart cities, e.g. Barcelona”

Human learning “Opportunities for convergence for expert feedback”

“Useful for training, education”

2. Is this useful for 

you or somebody you 

can think of? 

Practitioners (Local authority/ 

Asset owner/ Survey 

Company/ Consultancy) 

“Incident manager“, “Senior Management”, “survey companies developers”

“The asset owner to prioritise their spend and its justification”

“definitely for our customers; power utilities / water utility, etc., and Highways 

England. Also for constructors. Safety!”

“Business decision makers, contract managers, consultant analysis specialists, 

CDM(Construction, Design and Management) managers”

General public “possibly accountable to member / public who sees a trigger”

“Should this be available to the general public Google disaster?”

3. How is this related 

to your practice? 

Incident and risk management “The ability for risk management to support the delivery validation of the build, 

safety, environment, and all other factors”

Installation design “most likely use is for design; need to acquire knowledge of design decisions”

Utility location, condition 

survey 

“We are surveying practitioner, the more information we have available to use, 

the better judgement and decision we can make”

“We can provide additional local information Use of EM/GPR survey technologies 

to get best outcome data in important, high risk scenarios”

Education/training “‘Useful for training”

4. Does it address any 

specific challenges 

you are facing? 

Yes “Yes, by having a system with the potential to show and provide all records and 

local specific information is a huge benefit”

“Helps consultancy sales / training best practice decision making for customers. 

Leading to ROI decision making in equipment investment decisions”

“Provide different choices for surveying or monitoring approaches, and 

subsequent selection of techniques”

Potentially yes “Not at the present time. Current practice is so far behind the presented ideas 

that it is hard to imagine it in use for xx years yet.”
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s  
ule likelihood (or adding more conditions, deleting a rule) in their

pplications, enabling a case-based analysis. When more feedback

i.e. modifications and comments) is collected from different users,

he users’ feedback will be used to update the original likelihood

f a rule in the knowledge base or to further delineate the rule in

ifferent conditions. 

Moreover, data is also important for inference (or prediction) of

otential consequences. As commented by the stakeholders (deci-

ion makers) participated in the ATU-DSS workshops, bringing to-

ether different types of relevant data on one data platform greatly

implifies the data collection procedure for them, which is par-

icularly useful in emergency situations. However, in practice, the

vailability of relevant datasets is still limited though we have tried

ur best to include as many open datasets and private licensed

atasets as possible. For this reason, our system also provides an

nterface to other existing data warehouses using API 34 and allows

sers to manually upload their previous project data or records

e.g. previous geophysical survey results, private borehole scans)

nto the system for reuse in the future projects. The increase of
34 An external system providing buried utility searching service: https://www. 

inesearchbeforeudig.co.uk/ . Accessed: 2020-02-23. 

m  

p  

b  

w  
ata sources may also lead to another challenge related to data

edundancy, i.e. the same asset information (e.g. buried utilities)

eing provided by multiple data sources. Further investigation is

eeded to decide whether performing data fusion to assert one

nified value into the inference engine ( Dou et al., 2016 ), or resolv-

ng the data redundancy problem inside the inference engine. Fur-

hermore, data can have different granularity and semantics, which

ay not accord with the definition of ontology concepts or rules.

urrently, mapping between the datasets and ATU ontology con-

epts is manually performed to ensure quality but in future work

t would be useful to investigate how to automatically source rel-

vant datasets from the internet and link them to the system on-

ologies to make the system more powerful, although there is a

ossibility that data discrepancy will increase. 

. Conclusion 

In this work we have presented a novel knowledge-based deci-

ion support system for integrated urban infrastructure inter-asset

anagement - it provides a systematic way to handle interde-

endencies between different infrastructure assets and to model

oth the uncertainty and incompleteness of data and knowledge. A

eb-based prototype system has also been developed with several

https://www.linesearchbeforeudig.co.uk/
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Table A.7 

The confidence level of a confidence vector can be approximated with 

the position of the first non-zero value of {VU,U, L, V} from left to right 

unless the above criteria in the first/second columns are satisfied. 

Minimum 

element 

probability 

Threshold criteria Approximate 

confidence level 

a L 2 < a max (1 ,VU) 
1 

U 
max (1 ,VU) 

> l n (a 1 ) /l n (a 2 ) VU (Very Unlikely) 

a V 3 < a max (1 ,VU) 
1 

L 
max (1 ,VU) 

> l n (a 1 ) /l n (a 3 ) VU (Very Unlikely) 

a L 4 < a max (1 ,VU) 
1 

V 
max (1 ,VU) 

> l n (a 1 ) /l n (a 4 ) VU (Very Unlikely) 

a V 3 < a max (1 ,U) 
2 

L 
max (1 ,U) 

> l n (a 2 ) /l n (a 3 ) U (Unlikely) 

a V 4 < a max (1 ,U) 
2 

V 
max (1 ,U) 

> l n (a 2 ) /l n (a 4 ) U (Unlikely) 

a V 4 < a max (1 ,L ) 
3 

V 
max (1 ,L ) 

> l n (a 3 ) /l n (a 4 ) L (Likely) 
visualisation functions so that users can easily access the system

through a standard web browser for reporting new triggers, exam-

ining contextual data and interacting with the system for alterna-

tive analysis of the potential consequences. The collected feedback

from external domain experts suggested that the reasoning pro-

cesses (rules) in ATU-DSS and the estimated consequence are ap-

propriate for current practice. Users’ feedback collected from two

workshops showed that the system is widely recognised as easy

to fit into their current practice and will be helpful for quickly

obtaining contextual data and inferring potential consequences of

triggers based on multi-sector knowledge. 

In summary the paper has made the following novel contribu-

tions: 

• We have presented the first Decision Support System which al-

lows integrated, holistic decision support for streetworks, pre-

senting the user with integrated data and a qualitative risk ta-

ble; 
• We have formalised and developed an inference system for

qualitative confidence levels which can be combined with infer-

ence system which allows assumptions to be made and tracked;
• A set of ontologies for the streetworks domain and related do-

mains (in particular an environment and sensor ontology) were

proposed; 
• A web based system has been built and received positive user

feedback. 

As future work, we will continue to expand the current sys-

tem by considering other scenarios included in the Trigger Ontol-

ogy , such as potholes and different types of construction works.

Since these scenarios share the same contextual information, such

as weather and traffic, the major work to extend the current sys-

tem is to develop relevant rule sets of each scenario by collaborat-

ing with relevant domain experts. More datasets may also need to

be added if more factors are considered in different rule sets. Qual-

itative temporal information will also be added into the knowledge

base for more informative analysis. As anybody could help take re-

sponsibility for maintaining a sustainable street infrastructure sys-

tem, the general public could also get involved into the system as

citizen sensors. 
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ppendix A. Approximate the confidence level from a 

onfidence vector 

Although a confidence vector can already represent the prob-

bility of a fact/rule and is convenient to be used during infer-

nce, for the inferred facts, we may need to convert them to a

oncise textural representation using one of the confidence levels

Impossible, Very Unlikely, Unlikely, Likely, Very Likely, Definite)

o they are understandable to users. As the corresponding prob-

bility of a confidence vector C = 〈 V U , U , L, V 〉 can be calculated as

p = a V U 
1 

· a U 
2 

· a L 
3 

· a V 
4 
, { a 1 , a 2 , a 3 , a 4 } ∈ (0, 1) and { VU, U, L, V } are

on-negative integers, p is smaller than the smallest component of

 

V U 
1 

, a U 
2 
, a L 3 , a 

V 
4 , noted as 

p ≤ min (a x i 
i 
) (A.1)

ince a 1 < a 2 < a 3 < a 4 , when the reasoning chain is relatively

hallow (i.e. VU , U , L , V are small integers), an approximation of p is

o take the left-most element of a i with non-zero value. For exam-

le, in a confidence vector of an inferred fact is C = 〈 0 , 1 , 0 , 0 〉 , the

eft-most non-zero element is 1 in the position of “Unlikely”, so its

onfidence level can be approximated as “Unlikely”. In some occa-

ions, if the reasoning chain is quite deep (i.e. the confidence vec-

or of an inferred fact is with large values), the position of the left-

ost non-zero element may not well present the confidence level

f this fact. For example, in a confidence vector C = 〈 0 , 0 , 0 , 600 〉 ,
he left-most non-zero element is 600 in the position of “Very

ikely”, but as it has accumulated 600 times, it might be better

iewed as “Unlikely”. 

The boundary of shallow and deep chains can be analysed by

electing numerical values for a 1 , a 2 , a 3 , a 4 . For example, when

he “Very Likely” component is actually less likely than the “Likely”

omponent, we can have: 

a V 3 < a max (1 ,L ) 
2 

⇒ ln (a V 3 ) < ln (a max (1 ,L ) 
2 

) (A.2)

 V · ln (a 3 ) < max (1 , L ) · ln (a 2 ) (A.3)

 ln (a 3 ) < 0 ⇒ 

V 

max (1 , L ) 
> 

ln (a 2 ) 

ln (a 3 
) (A.4)

o if V 
max (1 ,L ) 

is larger than ln ( a 2 )/ ln ( a 3 ), the corresponding confi-

ence level of this fact should be “Likely” instead of “Very Likely”.

imilarly, as shown in Table A.7 , when 

L 
max (1 ,U) 

is larger than

https://doi.org/10.13039/501100000266
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100007601
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F  

a  
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n ( a 1 )/ ln ( a 2 ), or V 
max (1 ,U) 

is larger than ln ( a 1 )/ ln ( a 3 ), the corre-

ponding confidence level of this fact should be “Unlikely” in-

tead of “Likely”. When different numeric values are selected for

 1 , a 2 , a 3 and a 4 , the thresholds vary. For example, if we consider

 1 = 0 . 05 , a 2 = 0 . 3 , a 3 = 0 . 7 , a 4 = 0 . 95 for Very Unlikely, Unlikely,

ikely, Very Likely , the criteria in the table can be written as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

V eryUnl ikel y, i f ( U 
max (1 ,V U) 

> 3) ∨ ( L 
max (1 ,V U) 

> 10) 

∨ 

V 
max (1 ,V U) 

> 193 

Unl ikel y, i f ( L 
max (1 ,U) 

> 3 ∧ 

L 
max (1 ,V U) 

< 10) ∨ 

(( V 
max (1 ,U) 

> 59 ∧ 

V 
max (1 ,V U) 

< 193)) 

Likely, i f ( V 
max (1 ,L ) 

> 17 ∧ 

V 
max (1 ,U) 

< 59) 

(A.5) 

n this case, a fact with confidence C 1 = 〈 0 , 1 , 0 , 3 〉 can be consid-

red as Unlikely since its leftmost non-zero element is U = 1 and

he criteria in Eq. (A.5) are not satisfied; but for C 4 = 〈 0 , 0 , 20 , 1 〉 ,
lthough its leftmost non-zero element is L = 20 , as 20 /max (1 , U =
) = 20 > 3 , this vector is considered as Unlikely instead of Likely .

enerally, as mundane reasoning applications are often with shal-

ow reasoning chains, the confidence level of a fact can be approx-

mated by selecting the first non-zero value of {VU,U, L, V} . 

ppendix B. Derivation of the minimum confidence vector 

To find the minimum confidence vector of C 1 =
 V U 1 , U 1 , L 1 , V 1 〉 and c 2 = 〈 V U 2 , U 2 , L 2 , V 2 〉 is to find the

maller corresponding kappa value (i.e. smaller surprise). By

aking the exponentiation of kappa values ( Eq. (6) ) with the

nfinitesimal base ε, κ(1) < κ(2) is equivalent to 

(a V U 1 
1 

· a U 1 
2 

· a L 1 
3 

· a V 1 
4 

) > (a V U 2 
1 

· a U 2 
2 

· a L 2 
3 

· a V 2 
4 

) 

⇐⇒ 

a 
VU 1 
1 

·a U 1 
2 

·a L 1 
3 

·a V 1 
4 

a 
VU 2 
1 

·a U 2 
2 

·a L 2 
3 

·a V 2 
4 

> 1 

⇐⇒ a V U 1 −V U 2 
1 

· a U 1 −U 2 
2 

· a L 1 −L 2 
3 

· a V 1 −V 2 
4 

> 1 

(B.1) 

o at least one of the elements of { a V U 1 −V U 2 
1 

, a 
U 1 −U 2 
2 

, a 
L 1 −L 2 
3 

, a 
V 1 −V 2 
4 

}
hould be larger than 1, which means at least one element of

(V U 1 − V U 2 , U 1 − U 2 , L 1 − L 2 , V 1 − V 2 ) should be negative. Since

0 < a 1 < a 2 < a 3 < 1), this can be approximated from left to

ight as: 

(V U 1 − V U 2 < 0) ∨ 

(V U 1 = V U 2 ∧ (U 1 − U 2 ) < 0) ∨ 

(V U 1 = V U 2 ∧ U 1 = U 2 ∧ (L 1 − L 2 ) < 0) 

(V U 1 = V U 2 ∧ U 1 = U 2 ∧ L 1 = L 2 ∧ (V 1 − V 2 ) < 0) 

(B.2) 

his is equivalent to the definition of minimum confidence vec-

or function in Eq. (20) , which can be used when merging two

onfidence vectors when the reasoning chain is relatively shallow.

hen large number appears in the confidence vector (i.e deep

hain), for example, if a fact C is deduced from two chains and

oted as C1 and C2 : 

 1 = 〈 V U 1 , U 1 , L 1 , V 1 〉 = 〈 0 , 0 , 0 , 70 〉 
 2 = 〈 V U 2 , U 2 , L 2 , V 2 〉 = 〈 0 , 0 , 1 , 1 〉 (B.3) 

sing Eq. (20) or Eq. (B.2) , C 1 would be considered as more

ikely than C 2 since (0 = 0) ∧ (0 = 0) ∧ (0 < 1) . But if we take the

umerical values of a 1 , a 2 , a 3 , a 4 defined in Eq. (A.5) , C 1 should

ctually be considered as “Unlikely” (very surprised) since V =
0 /max (1 , U = 0) > 59 and C 2 is still considered as Likely , so C 2 
hould be selected as the more probable one. As the reasoning

hains in our applications are usually quite shallow, Eq. (B.2) is

sed in the prototype. 
ppendix C. Lower and upper bound confidence vectors 

elating to Formula 2 

For the example in Eq. (12) , since the confidence in Rule 2 sug-

ests the conditional probability P ( d | c, a ), we can obtain the joint

robability P ( c, a ; d ) as 

 (c, a ; d) = P (c, a ) P (d| c, a ) = P (c) P (a | c) P (d| c, a ) (C.1)

he joint probability P ( c, a ) depends on the dependencies between

act c and a . The conjunction of c and a can be considered as one

ompositional fact; then, P ( c, a ; d ) can be calculated using Formula

 ( Section 3.2 ). For the joint probability of P ( c, a ): 

1) Lower bound probability : when the premises of a rule are

ndependent, the joint probability P ( c, a ) can be written as the

roduct of P ( c ) and P ( a ): 

P (c, a ; d) = P (c) P (a | c) P (d| c, a ) ≥ P (c) P (a ) P (d| c, a ) 
(a V U c + V U a + V U R 2 

1 
· a U c + U a + U R 2 

2 
· a L c + L a + L R 2 

3 
· a V c + V a + V R 2 

4 
) 

 C min 
d 

= 〈 V U c + V U a + V U R 2 , U c + U a + U R 2 , 

L c + L a + L R 2 , V c + V a + V R 2 〉 
(C.2) 

) Upper bound probability : when the premises of a rule

re non-independent, especially when all facts are totally de-

endent on one of the premises, e.g. If c happens, a al-

ays happens , we can have P (a | c) = 1 (which implies that

 a ≥ P c since P a = 

∑ 

c P (a | c) P (c) = P (a | c) P (c) + P (a |¬ c) P (¬ c) =
 (c) + P (a |¬ c) P (¬ c) ), so the joint probability of c and a depends

n the minimum of P ( c ) and P ( a ); accordingly, the larger confi-

ence vector of C c and C a . 

P (c, a ; d) = P (c, a ) P (d| c, a ) = P (c) P (a | c) P (d| c, a ) 
≤ min { P (c) , P (a ) } P (d| c, a ) 

min { (a V U c 
1 

· a U c 
2 

· a L c 
3 

· a V c 
4 
) , (a V U a 

1 
· a U a 

2 
· a L a 

3 
· a V a 

4 
) } P (d| c, a ) 

 C max 
d 

= max (C c , C a ) + 〈 V U R 2 , U R 2 , L R 2 , V R 2 〉 
(C.3) 

erivation of the maximum confidence vector function is sim-

lar to minimum confidence vector in Section Appendix B .

his suggests that the upper bound confidence in the con-

unction of facts is only as likely as the most unlikely

onjunct. 

ppendix D. Implementation of rules with confidence levels in 

ess 

As described in Section 3.1.2 , we use an ordered vector of

our numerical elements to encode the confidence level of a rule

r a fact, C = 〈 V U , U , L, V 〉 . For example, a rule “If A hap-

ens, then it is likely that B will happen” is attached with a con-

dence level Likely and the corresponding confidence vector is

 R = 〈 0 , 0 , 1 , 0 〉 . 
1) Implementing a fact with confidence vectors in Jess .

irst, a template is defined in the Jess rule file to describe

 fact with its confidence vector and inferring history as

elow: 



22 L. Wei, H. Du and Q.-a. Mahesar et al. / Expert Systems With Applications 158 (2020) 113461 

 

 

 

 

 

 

 

 

e  

f  

m  

a  

i

Slots are also reserved to store whether a fact is given or as-

sumed, as well as the missing/assumed facts and given/input facts

used for inferring this fact. 

2) Implementing rules with confidence vectors in Jess. Then,

the rules developed by experts are converted to Jess format and

facts are expressed using the defined fact template. For example,

a rule “Rule 1: PipeLeaking is Active ∧ PipeLeakingRate is Severe
De f inite −−−−−→ TrenchBackfillWaterContent increases” is implemented as

below: 
3) Asserting facts and Inference . To assert facts into a knowl-

dge base, a given fact is initialised by including itself in the given

act list, whilst a missing fact is initialised by adding itself in the

issing fact list. For example, a trigger “PipeLeaking is Active“ and

n assumed fact “PipeLeakingRate is Severe“ are asserted in Jess us-

ng the code below: 
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4) Inference . The predefined fact template, functions and rules

re stored in a rule file and are loaded into Jess for reasoning. With

ew facts asserted, Jess will apply all applicable rules to the as-

erted facts using Rete algorithm ( Forgy, 1982 ); the confidence lev-

ls of rules and facts will be propagated during this process. The

ode snippet is attached below: 

Jess will apply all the rules to the asserted facts; the confidence

evels of rules and facts will be propagated during this process. 
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