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1  | INTRODUC TION

Until recently, measures of parents' socioeconomic status (SES) 

have been the most powerful predictors available from birth of 

differences in the normal range of children's educational achieve-

ment. Although typically operationalized by parents' educa-

tional attainment and occupational status (von Stumm, Deary, & 

Hagger-Johnson, 2013), SES captures a multitude of factors that 

interact to shape children's neurocognitive development through 

synergistic biological pathways (Jensen, Berens, & Nelson, 2017). 

In meta-analytic reviews, parents’ SES has been shown to account 

for about 9% of the variance in children's educational achievement 

(Sirin, 2005; Strenze, 2007). In early childhood, children's own in-

telligence test scores begin to predict educational achievement, 
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Abstract
The two best predictors of children's educational achievement available from birth 

are parents’ socioeconomic status (SES) and, recently, children's inherited DNA dif-

ferences that can be aggregated in genome-wide polygenic scores (GPS). Here, we 

chart for the first time the developmental interplay between these two predictors 

of educational achievement at ages 7, 11, 14 and 16 in a sample of almost 5,000 UK 

school children. We show that the prediction of educational achievement from both 

GPS and SES increases steadily throughout the school years. Using latent growth 

curve models, we find that GPS and SES not only predict educational achievement in 

the first grade but they also account for systematic changes in achievement across 

the school years. At the end of compulsory education at age 16, GPS and SES, respec-

tively, predict 14% and 23% of the variance of educational achievement. Analyses of 

the extremes of GPS and SES highlight their influence and interplay: In children who 

have high GPS and come from high SES families, 77% go to university, whereas 21% 

of children with low GPS and from low SES backgrounds attend university. We find 

that the associations of GPS and SES with educational achievement are primarily ad-

ditive, suggesting that their joint influence is particularly dramatic for children at the 

extreme ends of the distribution.

K E Y W O R D S

educational achievement, gene–environment interplay, genome-wide polygenic scores, 

longitudinal, socioeconomic status
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accounting for about 5% of the variance (Honzik, Macfarlane, & 

Allen, 1948). By the school years, children's previous educational 

achievement becomes the best predictor of their later educational 

and occupational outcomes. Educational achievement is highly 

stable throughout the school years, with year-to-year correlations 

of about 0.70, which means that earlier achievement accounts for 

about 50% of the variance of later achievement (Rimfeld et al., 

2018).

In recent years, inherited DNA differences have been identified 

that can also predict educational achievement. For decades, it has 

been known from twin and adoption studies that genetic differences 

taken as a whole account for most of the variance in educational 

achievement, with heritability estimates typically around 60% for all 

subjects at all ages (de Zeeuw, de Geus, & Boomsma, 2015; Rimfeld 

et al., 2018). Two breakthroughs in DNA research have made it 

possible to identify inherited DNA differences responsible for this 

high heritability (Plomin, 2018). The first began over a decade ago 

with the construction of ‘SNP chips’, arrays that are able to geno-

type inexpensively and quickly the most common type of inherited 

DNA difference, a difference in a single nucleotide base, called a sin-

gle-nucleotide polymorphism (SNP).

The second breakthrough was to realize that the tiny effects of 

individual SNP associations from the GWA results for a trait, even 

those that do not individually meet the criterion of genome-wide 

significance, can be aggregated to create powerful predictors of 

a trait, called genome-wide polygenic scores (GPS) (Plomin & von 

Stumm, 2018). Because educational attainment (years of education) 

is obtained as a demographic marker in most GWA studies, it has 

been possible to include more than a million adults in a meta-ana-

lytic GWA study of educational attainment (Lee et al., 2018). A GPS 

derived from this GWA study predicts up to 13% of the variance in 

educational attainment in adults in independent samples (Lee et al., 

2018). We have shown that a GPS for educational attainment pre-

dicts even more variance (15%) in tested educational achievement in 

16-year-old adolescents (Allegrini et al., 2019), making this the most 

predictive GPS for any behavioural trait at present.

Although the expression of the genome is modifiable and influ-

enced by environmental factors, inherited DNA differences do not 

change throughout life. It follows that a GPS can predict 16-year-

old educational achievement just as well at birth as it can at age 16. 

The ability to predict from birth is shared with family SES but not 

with other predictors such as children's intelligence or educational 

achievement. GPS are completely reliable in the sense of test–retest 

reliability, and they are free from the measurement errors that typi-

cally affect data from psychometric tests and self-reports.

Although GPS and SES may be thought of, respectively, as quint-

essential indices of nature and nurture, their prediction estimates 

in fact capture both genetic and environmental effects (Kong et al., 

2018; Krapohl & Plomin, 2016; Selzam et al., 2019). Prediction from 

GPS includes passive gene–environment correlations (prGE) that 

emerge because parents create a family environment that corre-

sponds to their genotypes and, by extension, also correlates with the 

genotypes of their offspring. Because prGE stem from the parents' 

genotype, they are genetic in origin but environmentally mediated 

(Selzam et al., 2019). Similarly, SES is often assumed to represent 

solely environmental advantages of wealth and privilege (Conley & 

Fletcher, 2017), but it is actually just as heritable as most other com-

plex traits, with estimates from twin studies of about 50% (Branigan, 

McCallum, & Freese, 2013; Polderman et al., 2015). The main ingre-

dients in most SES scores are parents’ educational attainment and 

occupational status, both of which are substantially heritable (Tambs, 

Sundet, Magnus, & Berg, 1989; Taubman, 1976). Indeed, adult edu-

cational attainment, specifically the number of years spent in formal 

education, is the target trait for the GWA analysis used to create the 

GPS that predicts children's educational achievement. Therefore, it 

is not surprising that the prediction of educational achievement from 

family SES is in part mediated by GPS (Belsky et al., 2018, 2016; 

Krapohl & Plomin, 2016; Selzam et al., 2019).

Previous research has suggested that the prediction of educa-

tional achievement from both GPS and SES increases during devel-

opment (Allegrini et al., 2019; Selzam et al., 2017; von Stumm, 2017), 

but their relative contribution over time to educational achieve-

ment or their interaction has not been explicitly tested before. 

Longitudinal latent growth curve analysis, which disentangles initial 

effects on a developmental measure (intercept) from systematic 

increases and decreases which follow (slope), is particularly useful 

for this purpose (McArdle, 2009). A growth curve model also allows 

testing for interaction effects of GPS and SES, thereby evaluating 

the gene-by-environment interaction hypothesis that the influence 

of genetic factors on cognitive development is weaker in lower SES 

families (Gottschling et al., 2019; Tucker-Drob & Bates, 2016).

2  | METHODS

2.1 | Sample

The present sample is drawn from the Twins Early Development 

Study (TEDS), a longitudinal twin study that recruited more than 

Research Highlights

• Genome-wide polygenic scores (GPS) and socioeco-

nomic status (SES) account together for 27% of the 

variance in educational achievement from age 7 through 

16 years

• The predictive validity of GPS and SES increases over 

the course of compulsory schooling

• The association of GPS and SES is primarily additive: 

their joint long-term influence is particularly pronounced 

in children at the extreme ends of the distribution

• 77% of children with high GPS from high SES families go 

to university compared to 21% of children with low GPS 

from low SES
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10,000 twin pairs born in England and Wales in 1994 through 1996. 

The recruitment process and the sample are described in detail else-

where (Rimfeld et al., 2019). The TEDS sample was at its inception 

representative of the UK population in comparison with census data 

and remains considerably representative, despite some attrition 

(Rimfeld et al., 2019).

After excluding twins who experienced severe medical com-

plications during the first 2 years of life, the analyses sample 

included 4,890 individuals of European ancestry from TEDS for 

whom genotype data and information on socioeconomic status 

and educational achievement from age 7 through to 16 were avail-

able. This selection includes children from TEDS, who are typically 

developing and comparable in gestational stage, birth weight and 

maltreatment experience. The analysis sample is slightly more ad-

vantaged in terms of SES (mean = 0.14, SD = 0.95) than the full 

TEDS sample at conception (mean = 0, SD = 1). The unadjusted 

GPS for years spent in education differed minimally between the 

analysis sample (mean = 3.12, SD = 0.28) and the all TEDS partic-

ipants with genotype data (mean = 3.11, SD = 0.28). Our analysis 

sample included one twin from each monozygotic twin pair and all 

dizygotic twin pairs. We also confirmed our analyses and findings 

in a smaller sample, which included only one twin from each twin 

pair (N = 3,297) for maximal independence of data (see Table S2 

for descriptive statistics in both samples, and Table S3 for model-

ling results in the smaller sample).

2.2 | Measures

2.2.1 | Genome-wide Polygenic Scores (GPS)

Saliva and buccal cheek swab samples were collected, DNA 

was extracted and genotyped to compute genome-wide poly-

genic scores (GPS) based on the latest genome-wide association 

(GWA) study for years of education, called educational attain-

ment (Lee et al., 2018). Overall, 7,363,646 genotyped and well-

imputed SNPs were retained for the analyses after stringent 

quality control, but to ease high computational demands of the 

software LDpred (Vilhjálmsson et al., 2015) for polygenic scoring 

in large samples, we further excluded SNPs with info <1, leav-

ing 515,100 SNPs for analysis (see Methods S1 for details). GPS 

were constructed using the Bayesian LDpred approach, which 

estimates causal effect sizes from GWA summary statistics by 

assuming a prior for the genetic architecture and LD information 

from a reference panel (Vilhjálmsson et al., 2015). Here, GPS are 

constructed as the weighted sum of trait-increasing alleles for 

each unrelated genotyped individual in the TEDS sample using a 

causal fraction of 1, which assumes that all SNPs contribute to 

the development of the trait. The GPS were adjusted for the first 

10 principal components of the genotype data, chip, batch, and 

plate effects using the regression method, and the standardized 

residuals were used for all subsequent analyses (see Methods S2 

for details).

2.2.2 | Educational achievement

In the UK, compulsory schooling follows a national curriculum that is 

organized into blocks of years called ‘key stages’ (KS). At the end of 

each key stage, teachers formally assessed each child's performance. 

The twins’ teachers recorded their grades in English and mathemat-

ics in the National Pupil Database (NPD) following the UK National 

Curriculum guidelines, which are formulated by the National 

Foundation for Educational Research (NFER; http://www.nfer.

ac.uk/index.cfm) and the Qualifications and Curriculum Authority 

(QCA; http://www.qca.org.uk). KS1 through KS4 were recorded in 

the NPD at age 7, 11, 14 and 16, respectively. The English grades 

assessed students’ reading, writing, and speaking and listening; the 

mathematics grades referred to knowledge of numbers, shapes, 

space, and to using and applying mathematics and measures. At 

age 16, twins' grades in English and mathematics were awarded for 

subtests of the General Certificate of Secondary Education (GCSE) 

exam, a standardized examination taken at the end of compulsory 

schooling in the UK, and recorded in the NPD. For each key stage, 

we built composite scores of children's NPD grades for English and 

mathematics.

2.2.3 | Socioeconomic status (SES)

Families' SES was assessed at the first contact, when the twins 

were 1.5 years old, with parents reporting their educational 

qualifications, their occupational positions and the twins' 

mother's age on the birth of first child. A composite measure of 

SES was calculated taking the mean of the standardized scores 

for mothers' and fathers' educational level, mothers' and fa-

thers’ occupational status, and mothers' age at birth of the first 

child.

2.3 | Statistical analysis

Students' educational achievement at each key stage was adjusted 

for age and gender, and standardized regression residuals were used 

in all subsequent analyses. After testing correlations across all study 

variables, we fitted a series of latent growth curve (LGC) models 

using the R package Lavaan (Rosseel, 2012). LGC models differenti-

ate two components of individual differences in growth. The first 

component, known as the intercept, reflects individual differences 

that are evident at the first assessment of a trait, in our case, perfor-

mance in KS1 at age 7, and remain stable across assessment waves 

(i.e. from KS1 through KS4). The second component, known as slope, 

captures individual differences in the rate of change that occurs over 

time in the same trait, here change in educational achievement from 

KS1 through KS4.

In line with LGC modelling conventions, loadings for the inter-

cept factor were set at 1, while factor loadings for the slope rep-

resented the number of KS (i.e. slope loadings were set at 0, 1, 2 



4 of 8  |     von STUMM eT al.

and 3), thereby defining the starting point of the slope at KS1. We 

first tested two- and three-factor LGC models (i.e. intercept, slope 

and quadratic factor, which was specified by the squared slope load-

ings, i.e. 0, 1, 4 and 9) to identify which best represented the data. 

We then tested the predictive validity of EA3 and SES for educa-

tional achievement at KS1 (i.e. intercept factor) and for change in 

school performance from KS1 through KS4 (i.e. slope factor). We 

also tested whether EA3 and SES interacted in the prediction of ed-

ucational achievement over time.

3  | RESULTS

The prediction of educational achievement from both GPS and 

SES increased steadily throughout the school years, as shown in 

Figure 1. From ages 7 to 16 years, the association of GPS with 

educational achievement increased from 0.22 to 0.36 (i.e. from 5% 

to 14% of the variance) and that of SES from 0.31 to 0.48 (i.e. from 

10% to 23% of the variance). The substantial gains in the predic-

tive power of GPS and SES from age 7 to age 16 are particularly 

noteworthy because educational achievement was highly stable 

across the school years, with longitudinal correlations ranging 

from 0.61 to 0.87 (Table S1). GPS and SES were correlated at 0.35, 

which reflects genetic influences on SES, in the sense that SES 

is partially heritable, as well as influences of SES on GPS, in the 

sense that SES partly mediates the effects of GPS on educational 

achievement, as discussed earlier.

The potential practical implication of the magnitude of these pre-

dictions is especially apparent at the extremes. Dividing the sample 

into 10 equal-sized groups (deciles) from low to high GPS and similarly 

from low to high SES, Figure 2 depicts the mean standardized educa-

tional achievement (GCSE) scores at age 16. The lowest and highest 

deciles differed by more than 1.2 SD for GPS and 1.5 SD for SES. These 

average GCSE scores for the lowest and highest deciles translate into 

grades	of	C+	and	A−,	respectively,	for	GPS,	and	C−	and	A	for	SES.	It	is	
also noteworthy that the association of both GPS and SES with educa-

tional achievement was linear.

The comparatively large mean differences across the decile levels of 

the predictors mask a considerable range of individual differences. Figure 3 

shows the substantial overlap between the distributions of scores within 

the lowest and highest deciles for GPS and for SES (i.e. grey area). For 

example, 9% of the individuals in the lowest GPS decile had higher educa-

tional achievement scores than the mean score of the highest GPS decile 

(Figure 3a). Conversely, 10% of those in the highest GPS decile had lower 

educational achievement scores than the mean of the lowest GPS decile. 

For SES, the analogous overlap is 5% and 3%, respectively (Figure 3b).

The 95% confidence intervals for the decile means in Figure 2 

indicate that accurate estimates of educational achievement can be 

made on average for extreme groups. However, the overlap in dis-

tributions in Figure 3 highlights the limits of prediction at the level 

of individuals.

Our LGC analysis indicated that a two-factor model including 

an intercept and a linear growth factor (i.e. slope) fit worse than 

a three-factor model with an additional quadratic factor (χ2
diff 

(4) = 150.23, p < .001). However, because the quadratic factor 

correlated	−0.86	with	 the	slope	 factor,	we	 retained	 the	more	par-
simonious two-factor solution that differentiated latent factors 

representing individual differences in intercept and in slope for 

educational achievement (model fit: CFI = 0.990; RMSEA = 0.077, 

90% confidence interval = 0.067 to 0.088). Intercept and slope fac-

tors had, respectively, variances of 0.676 (SE = 0.022) and 0.038 

(SE = 0.002), and they correlated r = .08 (p = .018). Their means were 

0, a consequence of adjusting the educational achievement mea-

sures for age and gender (i.e. standardized residuals).

We used GPS, SES and their interaction as joint predictors of the 

two LGC factors of educational achievement from KS1 through KS4. 

GPS and SES were significantly and independently associated with 

latent growth factors representing individual differences in intercept 

and slope of educational achievement, as reported in Table 1. In other 

words, both GPS and SES independently contributed to the predic-

tion of individual differences educational achievement that were ob-

servable at the beginning of school and remained stable over time 

(intercept) but also to systematic increases and decreases (slope) in 

achievement across the school years.

Table 1 also shows that the effects of GPS and SES interacted in 

the predictions of the intercept but not for the slope. These results 

might seem to support the gene-by-environment interaction hypoth-

esis that genetic influences on cognitive development vary across dif-

ferent levels of family SES (Gottschling et al., 2019; Tucker-Drob & 

Bates, 2016). However, the negative beta of the interaction term for 

the intercept is in fact a result in the opposite direction than origi-

nally proposed (Tucker-Drob & Bates, 2016): It appears here that GPS 

scores were more predictive of differences in educational achievement 

at age 7 in children from low SES families than in those from high SES 

backgrounds. That said, the effect size associated with the interaction 

effect was small (i.e. 0.2% of the variance; see also our additional anal-

yses in the Supplementary Materials), suggesting that the influence of 

GPS and SES on educational achievement is primarily additive.

Together, GPS and SES accounted for 15.4% of the variance of the 

intercept and 11.6% of the slope, as indicated by R2 in Table 1. The 

independent effects of GPS and SES, which we estimated by summing 

the squared betas in Table 1, contributed 12.3% (i.e. 2.4% + 9.9%) to 

the variance of the intercept and 8.7% (i.e. 3.3% + 5.4%) to the vari-

ance of the slope. The difference between R2 and these independent 

contributions of GPS and SES represents overlapping prediction by 

GPS and SES: 3.1% for the intercept and 2.9% for slope.

4  | DISCUSSION

The two best predictors of children's educational achievement 

that are available from birth are parents’ SES and children's inher-

ited DNA differences (i.e. GPS). The current analyses showed that 

SES and GPS account together for 27% of children's differences in 

educational achievement across the course of compulsory school-

ing. Furthermore, SES was a stronger predictor of educational 



     |  5 of 8von STUMM eT al.

achievement from age 7 through to 16, accounting independently 

for 15.3% of the variance. By comparison, GPS accounted indepen-

dently for 5.7% of the variance. Also, 6% of the variance in education 

achievement from age 7 through to 16 could be attributed to the 

shared influence of SES and GPS (i.e. common variance).

As noted earlier, SES and GPS capture both genetic and environ-

mental effects (Kong et al., 2018; Krapohl & Plomin, 2016; Selzam 

et al., 2019). Our findings shed light on predictive associations be-

tween SES, GPS and educational achievement but they do not allow 

causal inferences about genetic and environmental influences. Even 

so, the accurate prediction of educational achievement is an essen-

tial component of identifying those children that suffer the great-

est risk for poor educational outcomes. These children are likely 

to have the greatest need for and potential benefit from interven-

tion programmes that seek to improve educational achievement. 

Furthermore, we speculate that this group may be instrumental for 

future research that elucidates the gene-to-behaviour pathways 

and the mechanisms that underlie the associations between SES, 

GPS and educational achievement. We caution, however, that our 

findings may be specific to samples of European ancestry because 

extensive GWA studies, which are required for identifying DNA vari-

ants that are reliably associated with a target phenotype, are at this 

time not available in populations with other ancestries (Mills & Rahal, 

2019). Furthermore, we acknowledge that the assessment of SES in 

our study is coarse and only captures some of its many elements 

(Jensen et al., 2017).

Analyses of the extremes of GPS and SES highlight our devel-

opmental findings. We identified four extreme groups in our sam-

ple using cut-offs of ±1SD in SES and GPS (Figure 4; see also Figure 

S1). Children with high GPS from high SES family backgrounds and 

those with low GPS from low SES families (i.e. high–high and low–

low groups, respectively) differed significantly in achievement at age 

7 and the achievement gap steadily widened between the groups 

throughout the school years. By the age of 16 years, the mean edu-

cational achievement of the two groups differed by 1.9 SD, which is 

equivalent	to	a	grade	of	A−	in	the	high–high	group	and	C−	in	the	low–
low group. In the high–high group, 77% went on to attend university 

at the age of 18 years as compared to 21% in the low–low group.

We found that GPS contributed even more to children's differ-

ences in growth in educational achievement (3.3% of the variance) as 

it did to their differences at the beginning of compulsory schooling 

(2.4%). This is likely to explain why heritability is not much reduced by 

attempts to produce fairer measures of ‘added value’ of schools (more 

recently called measures of ‘progress’ in the UK), which statistically 

F I G U R E  1   GPS and SES correlations 

with educational achievement at 7, 11, 14 

and 16 years. SES = socioeconomic status. 

GPS = genome-wide polygenic score
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adjust current educational achievement for cognitive ability and earlier 

achievement (Haworth, Asbury, Dale, & Plomin, 2011). Specifically, we 

speculate that correcting for ability and earlier achievement does not 

in fact correct for the genetic contribution to growth, which is inde-

pendent of intercepts (von Stumm, 2017).

By comparison, our analyses showed that SES contributed less 

to the growth in educational achievement (5.4%) than it did to 

children's performance differences that are stable throughout com-

pulsory schooling (9.9%). This finding suggests that measures of 

‘added value’ of schools do a better job of controlling for the effects 

of SES than they do for GPS. This interpretation is supported by twin 

analyses that found that estimates of shared environmental influ-

ence, which include the effects of SES, are halved using measures of 

added value (Haworth et al., 2011).

F I G U R E  3   Overlap in the distributions 

of educational achievement (GCSE) at 

age 16 for lowest and highest deciles of 

(a) GPS and (b) SES. GCSE scores at age 

16 were standardised and adjusted for 

age and sex and then binned at equal 

intervals	over	the	range	of	−3.55	to	+1.95.	
Frequencies in these bins are reported 

separately for the lowest and highest 

deciles of GPS and SES

 Beta
i

SE
i

p
i

R
2

i
Beta

s
SE

s
p

s
R

2
s

GPS 0.154 0.014 <.001  0.183 0.004 <.001  

SES 0.314 0.014 <.001  0.233 0.004 <.001  

GPS × SES −0.046 0.013 .003  0.001 0.004 .977  

    .154    .116

Abbreviations: Beta, standardized coefficient; 
i
, intercept; n, 4890; p, p value; 

s
, slope; SE, standard 

error; R2, Adjusted R2.

TA B L E  1   Parameter estimates for GPS, 

SES and their interaction as predictors of 

latent growth factors (intercept and slope) 

of educational achievement
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Turning to the two middle, ‘mixed’ groups in Figure 4, it ap-

pears that high GPS may help compensate for disadvantages in 

school performance in children from low SES families. Our anal-

yses showed that at age 16, children with high GPS from low SES 

backgrounds had mean GCSE scores that were close to average 

(−0.09	standard	score)	and	47%	of	 these	children	went	on	to	at-
tend university, as compared to only 21% in the low–low group. 

We note, however, that to an even greater extent high SES helped 

compensate for the disadvantage of low GPS children. Their mean 

GCSE scores were slightly above average (0.32 standard score) 

and they were much more likely to later go to university (62%). 

Nonetheless, these predictive effects of GPS and SES were largely 

independent and additive (see Figure S2). That is, we found no ev-

idence for an interaction between genes (GPS) and environment 

(SES), in line with a meta-analysis on this issue (Tucker-Drob & 

Bates, 2016).

5  | CONCLUSIONS

Our major finding is that SES and inherited DNA differences ag-

gregated in GPS are powerful predictors of educational achieve-

ment, accounting together for 27% of children's differences in 

achievement across the course of compulsory schooling. The in-

fluence of GPS and SES is particularly dramatic at the extremes of 

the distribution. We suggested, for example, that high GPS par-

tially compensates for the disadvantages of children from low-SES 

families, increasing their chances of going to university from 21% 

to 47%. This raises the possibility of doing more to help this group 

reach its full potential. Nonetheless, the substantial overlap be-

tween the distributions of scores within the lowest and highest 

deciles for GPS and SES indicates the limits of prediction at the 

level of individual students.

The potential application of predictive capacity of the kind demon-

strated here will require complex decision-making. The basis for those 

decisions goes beyond purely scientific criteria to issues of ethics and 

social values. Papers like the present one provide an essential empiri-

cal grounding for discussion. It is our hope that our results and others 

like them can serve to open doors for individual children, not close 

them, by stimulating the development and provision of personalized 

environments that can appropriately enhance, supplement, and reme-

diate educational achievement.
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