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A B S T R A C T

Precise mapping of buried utilities is critical to managing massive urban underground infrastructure and pre-
venting utility incidents. Most current research only focuses on generating such maps based on complete in-
formation of underground utilities. However, in real-world practice, it is rare that a full picture of buried utilities
can be obtained for such mapping. Therefore, this paper explores the problem of generating maps from partial
observations of a scene where the actual world is not fully observed. In particular, we focus on the problem of
generating 2D/3D maps of buried utilities using a probabilistic based approach. This has the advantage that the
method is generic and can be applied to various sources of utility detections, e.g. manhole observations, sensors,
and existing records. In this paper, we illustrate our novel methods based on detections from manhole ob-
servations and sensor measurements.

This paper makes the following new contributions. It is the first time that partial observations have been used
to generate utility maps using optimization based approaches. It is the first time that such a large variety of
utilities' properties have been considered, such as location, directions, type and size. Another novel contribution
is that different kinds of connections are included to reflect the complex layout and structure of buried utilities.
Finally, for the first time to the best of our knowledge, we have integrated utility detection, probability calcu-
lation, model formulation and map generation into a single framework.

The proposed framework represents all detections using a common language of probability distributions and
then formulates the mapping problem as an Integer Linear Programming (ILP) problem and the final map is
generated based on the solution with the highest probability sum. The effectiveness of this system is evaluated on
synthetic and real data using appropriate evaluation metrics.

1. Introduction

When managing massive urban underground infrastructure or to
prevent incidents caused by underground working near utilities, it is
required to have an accurate mapping of buried utilities such as gas
pipes, water mains and telecommunication cables [1,2]. The statutory
records obtained from the utility companies can provide such maps, but
these records are notoriously inaccurate; for example it is reported [3]
that in a survey of 187 incidents where utilities had been struck during
excavation, 52% were not recorded in the utility company plans, and of
the 89 that were on plans, 84% were inaccurately plotted. In the past
ten years, utility incidents during excavation due to lack of record in-
formation caused 98 fatalities, 371 injuries and more than $500 million
total loss in the United States [4]. Moreover, the inaccuracy in the lo-
cations of utilities may also yield a large number of “dry holes” (i.e.

excavations where underground utilities are not found), resulting in
waste of time, human resources and money. Instead of replying on
statutory records, it is desirable to construct a utility map prior to
commencing works based on on-site survey information such as sub-
surface sensor measurements. There has been considerable research
into mapping from sensor data (in particular work on SLAM [5,6]) in
free space, where in principle further data may be collected to improve
mapping. On the other hand, in some applications, it may be very ex-
pensive or technically too challenging to obtain sensor data for an en-
tire scene, for instance, in mapping buried utilities. Hence developing
mapping methods to cope with partial data are needed. We explore this
problem in the context of mapping the underground network of utilities
beneath the streets [7].

https://doi.org/10.1016/j.autcon.2020.103229
Received 19 May 2019; Received in revised form 11 April 2020; Accepted 11 April 2020

⁎ Corresponding author.
E-mail addresses: Z.Lin@leeds.ac.uk (Z. Lin), D.R.Magee@leeds.ac.uk (D.R. Magee), A.G.Cohn@leeds.ac.uk (A.G. Cohn).

Automation in Construction 117 (2020) 103229

Available online 23 May 2020
0926-5805/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2020.103229
https://doi.org/10.1016/j.autcon.2020.103229
mailto:Z.Lin@leeds.ac.uk
mailto:D.R.Magee@leeds.ac.uk
mailto:A.G.Cohn@leeds.ac.uk
https://doi.org/10.1016/j.autcon.2020.103229
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2020.103229&domain=pdf


1.1. Related work

The proposed research relates to several previous works on map
generation, but none of them specifically addresses on our research
focus, i.e. (i) an exploration of the problem in a holistic probabilistic
point of view to represent as many as possible real-world scenarios, (ii)
a uniform framework for data integration and map generation, and (iii)
complete algorithmic approaches for generating probabilities and for
formulating an integer linear program to yield the final map. In addi-
tion, compared with some literature where only artificial data has been
tested, we have both included real-world and synthetic data in our
computational experiments. Where possible, we make comparisons
between our research and the existing work while doing the survey.

First we consider previous work on SLAM [8–11]. A very basic
difference between this work and SLAM is that in SLAM a map of an
unknown environment is updated by keeping the track of an agent's
location, so the sensor data should be recorded and used sequentially in
time. In contrast, in this work, the sensor data can be captured in any
order and the whole map is generated at a single time by combining all
the observations.1 In addition, SLAM focuses on improving the accuracy
of the measurements of sensor data and then obtaining a better map of
the unknown environment while this work focuses on inferring the
connections between utility detections, and their location.

Second, this work is related to existing work in the area of buried
utility mapping [12–14]. [12,13] focus on sensor data fusion and do not
use any information from street furniture surveys in the mapping. The
system proposed by [14] is for creating a map of buried utilities based
on manhole observations. However in [14], only straight pipes between
manholes are taken into account while in the system proposed here,
direct-connections and side-connections are included in the created
map. To the best of our knowledge, this is the first time that utility
properties other than location and direction are taken into account
when generating maps of buried utilities.

An information fusion approach that integrates both sensing and
non-sensing data based on Dempster-Shafer (D-S) evidence theory is
presented in [2]. Their experiments suggest that the integration of
sensing and non-sensing data significantly reduces the error of esti-
mated location and enhance the confidence of the results. There is
potential to also incorporate non-sensing data [1] such as existing re-
cords, utility specifications in our proposed framework, as long as these
data can be represented by appropriate probability distributions.

Our research also relates to other works on underground utility
mapping [15–18]. In [15], the authors present the initial results of a
framework for 3D mapping of underground utilities especially an
overview of methods for primary data capture. A framework is pro-
posed in [16] for utility data governance from the underground utility
data survey to data usage, while [17] proposes an approach that in-
tegrates multiple available utility location datasets to represent geo-
graphical uncertainties. In [18], registration of utility networks in a
cadastre is considered in a 3D + time (=4D) context. Unlike the
aforementioned works, which were mainly focused on data capture and
3D data registration, our work explores the holistic theoretical problem,
gives a comprehensive framework for both data integration and map
generation, as well as proposing a complete algorithmic procedure for
generating the probabilities and formulating the integer programming
model. All this shows the originality of and need for our research from
both a practical and a theoretical point of view.

1.2. Problem statement and methodology

This work presents a framework to construct a most probable map
of buried utilities based on data from street furniture surveys and

subsurface surveys with multiple sensors.
In street furniture surveys, the information of manhole locations and

the depth and direction of each pipe or cable end going through man-
holes is collected. In subsurface surveys, multiple sensors such as GPR
[7,19–21] or a Vibro-acoustic sensor (VA) [22] are used to capture
sensor measurements. For a utility end observed from a manhole, based
on an assumption that utilities follow a linear route, the direction of this
utility is described by a probability field. If a hypothesized detection
(HD) extracted from sensor measurements is a response of a utility, it
also indicates the going direction of this utility. The probability field
related to this utility end is updated by HDs associated with it. In this
work, we employ Integer Linear Programming (ILP) to solve the mapping
problem. ILP can take associations of any utility end with any subset of
the HDs. This use of ILP guarantees that the most probable map is
generated. Algorithms are proposed for computing the probability of
connecting any two utility ends by extending them (referred to as di-
rect-connections) and the probability of extending a third utility end so
as to connect it to a utility segment formed by direct-connection (re-
ferred to as side-connection). Fig. 1 gives two examples of how direct
and side connections can be formed. Besides the locations and direc-
tions of utilities, other properties of them such as type and size are also
used in the probability computation. Hypothesized detection free
measurements (HDFs) are also incorporated into this framework to
modify the probability of connecting two utility directions.

1.3. Structure of the paper

The rest of the paper is organized as follows: The framework of the
proposed method to generate a 3D map of buried utilities is discussed in
Section 2, which is followed by the probability computations for utility
connections in Section 3. The method of generating 3D maps by solving
the formulated ILP is described in Section 4. Experimental results are
shown and analysed in Section 5 and the paper finishes with conclu-
sions in Section 6.

2. Overview of proposed framework

In this section, we give an overview of the proposed framework.

2.1. Manhole observations

From street furniture surveys, the locations of manholes are re-
corded and the manhole covers are lifted to check utilities going
through them. For an observed utility end from a manhole, its depth is
measured and the direction the utility takes as it leaves the manhole is
estimated. Multiple utility ends may be observed from a single manhole
so a manhole with utility ends observed in it can make up multiple
manhole-utility pairs that are used for further processing.

In this work, we assume that the manhole locations and the start
points of the observed utility ends are measured accurately (e.g. using a
total station theodolite). Given a manhole-utility pair, under the line-
arity assumption, a utility goes out from the start point along a certain
direction in a straight line. Since the directions of the utility ends are
observed manually, they are not accurate. The going direction of a
utility is described by a probability distribution (assumed to be
Gaussian in this work).

2.2. Sensor measurements

Sensor measurements captured in subsurface surveys [7,23] can be
incorporated into the proposed framework. From a sensor measurement
hypothesized detections (HDs), which reflect the presence of certain
utilities can be extracted [24–29] from the raw sensor data.

Hypothesized detection free measurements (HDFs) are also in-
corporated in the proposed framework. An HDF is a cross section (see
detailed definition in Section 3) where a measurement was performed

1 This does not exclude the possibility of taking further sensor measurements
and rerunning the framework of course
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but no HD was extracted. Note that even there is no HD, that does not
mean there is no utility, since sensors do not always detect buried
utilities, for example because a GPR signal is attenuated severely in
clay.

2.3. Connection probability calculation and integer linear programming
model

After the data from manhole inspections has been collected and the
HDs from sensor measurements have been extracted, utility ends, HDs
and HDFs are associated to make up udf-combinations. The term “udf”
comes from the three involved entities in such a combination: a utility
end, hypothesized detections and hypothesized detection free mea-
surements.

Based on the proposed algorithms (see details in Section 3), the
probabilities of connecting the utility ends with direct-connections and
side-connections are computed.

Next, we feed the computed probabilities into an Integer Linear
Programming model given in Section 4. By maximizing the sum of
connecting probabilities, a map of the buried utilities is obtained. The
advantage of using integer linear programming is that all theoretically
possible scenarios can be considered in a single model subject to certain
constraints that make sure the resulting optimal mapping also complies
with real-world requirements.

2.4. A flow chart of the framework

Fig. 2 gives a flow chart of the proposed framework. First, the input
data is captured from manhole observations and sensor measurements.
Second, HDs and HDFs are associated to observed utility ends to make
up udf-combinations. After the probabilities of any direct-connections
and side-connections are computed, an integer linear programming
(ILP) model is employed to find the most probable connections.

3. Probability computation for utility connections

The direction uncertainty of a buried utility can be reflected by a
probability distribution of its going direction. The Gaussian distribution
is chosen in this work. One advantage of using Gaussian distributions is
that they can be conveniently combined to form a compound dis-
tribution by taking account of several data sources, e.g. manhole ob-
servations and sensor measurements as in our work. Other types of
sources, such as existing maps, CAD drawings and utility specifications
[2] can potentially be formulated into the proposed framework, as long
as the data sources can be described by an appropriate probability
model. In each of the subsection below this section, we present how to
compute the probabilities of direct-connections and side-connections in
different situations. Alongside the technical exposition of the compu-
tation of these probabilities, we add illustrative figures to help better
explain how these computations can be applied in practice.

3.1. The probability distribution of a utility end

Based on the street furniture survey, the properties recorded for
each utility un, 1 ≤ n ≤ N includes the coordinates of the start point Sn
of the utility end, the direction of the observed utility end represented
by two angles pan and tilt2 as represented by αn and βn in Fig. 3 and
other properties such as its size and type. Since a typical total station
theodolite used for geo-measurement can measure distances with an
accuracy of about 1.5 mm over a distance of up to 1500 m [30], it is
assumed that the start points of the observed utility ends are measured
accurately. On the other hand, the directions of the utility ends, which
are observed manually, are usually not recorded accurately. As can be
seen in Fig. 3, an arrow with a dotted line represents an observed utility
direction and other arrows starting from the same point represents
other possible going directions of this utility. In this work, it is assumed
that the utility direction obeys a Gaussian distribution with respect to
the random vector (pan, tilt) with the observed direction as its most
likely extending direction. For a utility end with observed direction
(αn,βn), the probability of it going along the direction represented by
(α,β) is estimated by the following probability density:

= − − −−pld α β α β
π

A A A A( , , , )
1

2 |Σ |
exp{ ( )|Σ |( ) },n n n

n
u n n u n

T1

(1)

where Au = (α,β), An = (αn,βn) with T representing vector transpose.
Σn ∈ ℝ2×2 represents the covariance matrix of the Gaussian distribution
of the n-th observed utility end. The covariance matrix of each observed
utility end is recorded as a property of it, which reflects how accurately
the utility direction is estimated. In practice, the parameters in the
covariance matrix can be learned in an area with ground truth and then
applied in other areas with similar conditions. Note that the accuracy
may depend on the person performing the estimation, and a learned
model may thus not be as useful if the person using the model has a
different estimation model. This is unlikely to be a problem in practice
though.

3.2. Associating utility ends with HDs and HDFs

Besides the street furniture surveys, the hypothesized detections
(HDs) H = {hm}, 1 ≤ m ≤ M extracted from sensor measurements and
hypothesized-detection-free measurements (HDFs) F = {fk}, 1 ≤ k ≤ K
are also very important in the utility map generation. For each hy-
pothesized detection hm, based on the geo-measurement of the related
sensor measurement and the intrinsic properties of the related sensors,
the location of hm is computed. Given a threshold value θp and the

1

2

3

Direct-connec�on

Side-connec�on

1

3

2

Direct-connec�on

Side-connec�on

Fig. 1. Two exemplary cases (top and bottom) of direct-connection (solid line
joining u1 and u2) and side-connection (dashed line joining u3 to the existing
pipe segment formed by direct-connection between u1 and u2).

2 pan is the horizontal angle of a vector counter-clockwise from the positive
direction of the x-axis and tilt is the vertical angle between a vector and the
positive direction of the z-axis.
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Fig. 2. Flow chart illustrating the framework proposed in this paper (source of the image of a GPR unit: https://en.wikipedia.org/wiki/Ground-penetrating_radar).
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probability field defined by Eq. (1), the probability field with prob-
ability values greater than θp forms a cone with the start point of the
utility as the apex and the observed direction of this utility end as the
axis (see Fig. 4). The HDs inside of the cone generated by a specific
utility end are associated with the related utility, i.e. they are regarded
as potential responses from this utility. Theoretically, ILP can deal with
the associations of any utility ends with any HDs. However, if a HD is
too far from a utility, it does not make any sense to associate them. To
reduce the computation load, we use a utility cone to limit the number
of associations between utility ends and HDs. After all hm ∈ H are as-
sociated with different observed utility ends, a utility end may have
several hm associated with it and at the same time an hm may be asso-
ciated with multiple utility ends.

Among the provided sensor measurements, besides the ones with
some hypothesized detections extracted from them, there are usually
some measurements without any hypothesized detections extracted.
Such measurements are hypothesized-detection-free measurements as
aforementioned. In this work, HDFs are also included in the proposed
system. A HDF is represented by a cross section, which is a rectangle
with one side being the scan line of the sensor and two sides

perpendicular to the ground surface with the length equal to the depth
the sensor can measure. Two examples of HDFs (f1 and f2) are presented
in Fig. 4. With respect to the same probability threshold θp, if the cross
section of an HDF has intersection with a probability cone, the HDF is
associated with the related utility end (e.g. f1 in Fig. 4). A utility end
may have multiple HDFs associated with it and an HDF may be asso-
ciated with multiple utility ends.

If a utility end un has multiple HDs associated with it, due to the
complexity of the utility configuration, the sensor measurement error
and the processing error in the extraction step, an HD associated with a
utility may not be a response of this utility. In this work, among all the
HDs associated with a utility, we test all possible combinations. For
example, if u1 has two HDs h1 and h2 associated with it, there are four
different combinations, i.e. none of them is a response of u1, only one of
them is a response of u1 and both of them are responses of u1. A utility
with any subset of the HDs associated with it and all the HDFs asso-
ciated with it make up a combination called a udf-combination.

3.3. Using extracted hypothesized detections

For a specific udf-combination, the utility end un in this udf-com-
bination generates a probability distribution, which is a Gaussian and
can be computed with Eq. (1).

Suppose there are HDs in this udf-combination, then for a specific
HD hm in this udf-combination, the vector connecting the start point of
un and hm indicates the direction of the utility under the linear as-
sumption. Representing the vector connecting the start point of un and
hm as vmn, similar to the probability distribution of the direction of a
utility generated by an observed utility end, the start point of un with
vector vmn generates a probability distribution with respect to the di-
rections of the related utility end. In this work, a Gaussian is also used
to describe this probability distribution. The covariance matrix set for
the Gaussian distribution reflects the accuracy of the related sensor.
Thus, we have two Gaussians associated with the utility end un. These
two distributions can be merged into an improved estimate by multi-
plying them together [31]. As pointed out by [31], merging two
Gaussian distributions in this way leads to reduced standard deviations.
Since multiplying Gaussian distribution results in a Gaussian distribu-
tion, the operation is symmetric, associative, and can combine any
number of distributions in any order. So for a udf-combination with
multiple HDs, the final distribution of this udf-combination is the pro-
duct of all the probability distributions generated by the utility end and
each HD in this udf-combination. With respect to the final distribution,
the ray, along which the probability has the largest value, is called the
axis of the distribution of a udf-combination.

3.4. Probability of connecting two Udf-combinations based on location and
direction

For two udf-combinations generated from the same utility end, the
probability of connecting these two udf-combinations is obviously 0.
For two udf-combinations generated from different utility ends, based
on the assumptions that the probability distributions of two udf-com-
binations generated from different utility ends are independent to each
other and the utilities are linear, the probability of connecting two
utility ends by direct-connection based on location and direction at a
certain point I is the product of the probabilities of these two utilities
when both of them go through point I. The probability of connecting
two utility ends with a direct-connection based on location and direc-
tion can be defined as follows:

= ⋅pld pld pldmax( )i j I i j, (2)

This means that to compute the probability of connecting two utility
ends ui and uj by direct-connection based on location and direction we
should find the connecting point Ii, j where the product of pldi and pldj

Fig. 3. The direction of a utility is represented by two angles pan and tilt de-
noted as the angles αn and βn in this figure. The observed utility direction is
represented by an arrow with a dotted line and other possible going directions
of the utility are represented by arrows with a solid line.

Fig. 4. This figure illustrates how to associate a utility end (u1) with HDs and
HDFs. Given a threshold value to the probability field generated by an observed
utility end with respect to the going direction, a cone with the start point at the
apex, and observed direction as the axis is formed. HDs inside of the cone such
as h1 are associated with the utility cone. If the cross section defined by an HDF
has an intersection with the cone such as f1, it is also associated with the utility
end.
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obtains its maximum value. In the following section, methods to esti-
mate the location of I in different scenarios are presented with u1 and u2
as the examples.

A scenario often encountered is that the lines passing through the
start points of u1 and u2 along the axes of the related udf-combinations
are skew lines and at the same time there is a common perpendicular of
these two skew lines intersecting with the extensions of u1 and u2 along
the axes at P1 and P2 respectively as represented by Fig. 5. In this si-
tuation, the common perpendicular line segment P1P2 is discretized first
with respect to the resolution of angles used for describing the direction
of the utilities. For each of the disretized points, the probabilities of pld1
and pld2 are computed with Eq. (1) and then their product can be ob-
tained. The maximum product is recorded as pld1, 2, the probability of
connecting two utility ends by direct-connection based on their location
and direction, and the related point is recorded as I1, 2.

Besides the scenario described above, there are several special sce-
narios as represented in Fig. 6. The first one is that two utilities intersect
each other at a point I1, 2 after the utility ends are extended along the
corresponding axes of udf-combinations as represented with Fig. 6(a).
In this scenario the probabilities of pld1 and pld2 have the largest value
with respect to the corresponding probability distributions so their
product has the largest value and the point I1, 2 is recorded as the in-
tersection point of these two utilities. In the scenarios represented in
Fig. 6(b) and (c), the extension of one of the two utility ends along the
axis of the related udf-combination goes through the start point of the
other utility end or intersects at a point on the reverse extension of the
other utility end. In both scenarios, the probabilities of connecting these
two utility ends by direct-connection based on location and direction is
computed with respect to the line segment between the two start points
and the mid-point of this line segment is recorded as the intersection
point. Fig. 6(d) describes a scenario where the lines passing through the
start points and going along the observed directions are skew lines with
one of their common perpendicular intersecting with one on the ex-
tension of the utility end along the axis of the udf-combination and the
other one on the reverse extension of the utility end with respect to the
udf-combination axis. A very special case of the scenario represented by
Fig. 6(d) is that the common perpendicular line intersects with one of
the utilities at its start point. In this scenario, the probability of con-
necting these two utility ends is also computed with respect to the line
segment between the two start points.

3.5. Using hypothesized-detection-free (HDF) measurements

Just as a hypothesized detection indicates the presence of a utility to

a certain extent, HDF measurements correspondingly indicate the ab-
sence of utilities to some extent. If a utility is supposed to pass through
the cross section CS of an HDF with certain probability, since no hy-
pothesized detection is extracted from this HDF, the probability of the
related utility should be reduced. The attenuation ratio reflects our
confidence on the related sensor. In this situation, the smaller the at-
tenuation ratio is, the more confidence we have in the related sensor.

For each related connection, we try to find the maximum prob-
ability value of it to use in the Integer Linear Programming formulation.
For a connection with the largest probability, if the connected utility
segment passing through a CS of an HDF, the probability is attenuated
and then the related connection may not be the one with the maximum
probability value any more. The reason is that, besides the connections
passing through the related CS, there are some connections not passing
through this CS and the related probability values are not attenuated. In
a probability distribution generated by a udf-combination, the max-
imum probability is obtained along the axis of this udf-combination; for
the probability values along other rays, the closer the ray is to the axis,
the larger the probability value that can be obtained. So for the con-
nections not passing through the related CS, the maximum probability
value can only be obtained when the two utilities are connected at a
point on the boundary of the CS. So in this work, if a connection passes
through a CS of an HDF measurement, the attenuated maximum
probability is compared with the probabilities when the utility ends are
connected at any point on the boundary of the CS. If there are some
probabilities larger than the attenuated probability, the largest one is
recorded as the probability of connecting these two utility ends and the
related point on the boundary of CS is recorded as the connection point
as the point B shown in the Fig. 7.

3.6. Using utility properties other than location and direction

From the street furniture survey, besides the start point location and
direction of an observed utility, other properties such as its size and
type may be also recorded. The recorded properties other than location
and direction of the observed utilities are also formulated in the pro-
posed system.

It can be seen that the probability of connecting two udf-combina-
tions by direct-connection given by Eq. (2) is only related to the loca-
tions and directions of the axes of the corresponding udf-combinations.
Obviously, when connecting two utility ends, the other properties such
as their size and type should be taken into account: for example if two
utility ends have different types (e.g. one isWater main and the other on
is Cable), there is no possibility to connect them. Thus we define the
probability of connecting utility ends ui and uj based on their types as
follows:

=

⎧

⎨

⎪

⎩
⎪

pt
k k

1, if types are same
0, if types are different

1/ , if one or both of the types is unknown, where

is the number of unknown types

i j,

(3)

Besides the type of a utility, the size of a utility i.e. the diameters of
the pipes or cables is another important property. Considering that the
Laplace distribution has a sharp peak and heavier tails than a Gaussian
distribution, a Laplace distribution is selected to compute the prob-
ability of connecting two utilities based on the size of them. First, the
sharp peak of Laplace distribution can benefit the connection of two
utilities with similar size. Second, the heavier tails of Laplace dis-
tribution can tolerate large measurement errors. For two utility ends ui
and uj, if the recorded diameters of them are ri and rj respectively, the
probability psi, j can be estimated as follows:

= ⎧
⎨⎩

−
− ⎫

⎬⎭
ps r r b

b
r r

b( , , )
1

2
exp

| |
i j i j

i j
, (4)

where b > 0 is a scalar parameter of a Laplace distribution. The

Fig. 5. A diagram illustrating how to compute the probability of connecting the
utility ends (u1, u2) in two udf-combinations by direct-connection with respect
to a very common situation where the lines passing through the start points of
the utility ends and going along the axes of the probability distributions of the
udf-combinations are skew lines and there exists a common perpendicular line
to these two skew lines intersecting with the extensions of the utility ends along
the axes of the udf-combinations.
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smaller the value of b, the larger is the value of the peak of the Laplace
distribution.

If other properties such as materials of the utilities are recorded, the
associated probabilities can be defined and taken into account. In the
experiments reported below in Section 5, besides the direction and lo-
cation of utilities, only the type and size are taken into account,
therefore only the probabilities of these properties are defined explicitly
in this paper.

3.7. Probability of connecting two utility ends with direct-connection

After the probabilities of connecting the utility ends of two udf-
combinations based on location and direction and other properties are

computed, the probability of connecting two utility ends with direct-
connection pdi, j can be computed. The type of a utility and the location
and direction of this utility are independent to each other and within a
certain type of utility, the size of a utility is independent of its location
and direction, so the probability of pdi, j can be defined as the product of
pldi, j, pti, j and psi, j, i.e.

= = ⋅ ⋅p pd pld pt psl i j i j i j i j, , , , (5)

3.8. Probability of connecting a utility end to a utility segment by side-
connection

After the utility ends of two udf-combinations are connected by
direct-connection to make a utility segment between two manholes, the
connection of the utility end of a third udf-combination to this utility
segment is called a side-connection as represented in Fig. 8.

Let l denote the direct-connection of two utility ends and let c re-
present a side-connection of a third utility end to the utility segment
made by the direct-connection. The probability of connecting a utility
end uk to a utility segment formed by connecting ui and uj with direct-
connection can be represented as follows

= = ⋅→ →p ps p E E p E( | ) ( )c
l

k i j k i j i j i j, , , , (6)

where Ei, j represents the event of connecting ui and uj with direct-
connection and Ek→i, j represents the event of connecting uk to the
segment formed by ui and uj. The probability p(Ei, j) is given by Eq. (5).
When computing the probability of p(Ek→i, j|Ei, j), since ui and uj have
been connected before connecting uk to this segment, the location of
this segment is fixed. Suppose the utility segment formed by ui and uj is
connected at point I as depicted by Fig. 8, and then if utility uk is
connected to the segment formed by ui and uj by side-connection, it
connects to SiI or SjI at some point T. To decide the location of T, the
common perpendicular of the ray starting from uk along the axis of the
corresponding udf-combination and SiI or SjI is computed. If the

Fig. 6. Different scenarios when computing the probabilities of connecting two observed utility ends (u1,u2) with direct-connections based on location and direction.

Fig. 7. A diagram illustrating how to use an HDF measurement. If a connected
utility segment passes through the cross section of an HDF measurement, then
the related probability is attenuated and the attenuated probability is compared
with the probabilities when connecting these two utility ends at any point on
the boundary of this cross section; then the connecting point Ip is chosen ac-
cording to the maximum probability value (see detailed explanation in text).
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common perpendicular, which intersects with the ray and SiI or SjI,
exists as C1C2 depicted in Fig. 8, then the intersection point of this
common perpendicular with SiI or SjI is the connection point T. The
probability p(Ek→i, j|Ei, j) can be computed as

= ⋅ ⋅→ → ∣ → ∣ → ∣p E E pld pt ps( | )k i j i j k i j k i j k i j, , (7)

where pldk→i∣j represents the probability of connecting uk to the segment
formed by ui and uj just based on the location and direction and ptk→i∣j

and psk→i∣j are the probabilities computed based on the type and size
properties of uk and ui or uj. If the common perpendicular line segment,
which intersects with the ray generated by uk and the segment formed
by ui and uj, does not exist, and then the probability pldk→i∣j is set to 0.

4. 3D map generation by integer linear programming

Integer Linear Programming (ILP) [32] is a mathematical optimi-
zation technique that in the general case can be described using the
following canonical form with n variables and m constraints:

∑
=

c xminimize
j

n

j j
1 (8)

∑ ≤ = …
=

a x b i msubjectto , 1, ,
j

n

ij j i
1 (9)

∈ +x .j � (10)

In the above formulation, ∑j=1
ncjxj is called the objective function

and ∑j=1
naijxj ≤ bi, i = 1, …, m are the constraints, both of which

should be linear. The decision variables xj, j = 1, …, n are required to
be non-negative integers. A special case of ILP is when the decision
variables are binary, i.e. xj ∈ {0,1} as is the case in this work.

The goal of ILP is to minimize (as in the canonical form) the ob-
jective function while satisfying all constraints and variable domain
requirements. ILP is known to be NP-hard [33]. However, in our re-
search, the problem sizes are rather small: after removing variable re-
dundancy, our synthetic instance has 3538 binary variables and 3235
constraints, and the real-world instance has 50 binary variables and 22
constraints. Therefore it is sufficient to use a state-of-art commercial ILP
solver to solve the problem by branch-and-bound.

In a solution of the ILP of this work, for a probability value cj of
connecting two utility ends by direct-connection, only if the related
decision variable xj is 1 are the two utility ends then connected by di-
rect-connection. For a probability value cj of connecting a utility end to

a utility segment with side-connection, only if the related decision
variable xj is 1 is this utility end connected to the utility segment. The
final utility map is generated by connecting the utility ends indicated by
all the decision variables with value 1 with the corresponding con-
nection option, direct-connection or side-connection.

To decide which combinations should be used in the connections
and how they are connected to each other, an Integer Linear
Programming formulation is designed for solving the aforementioned
mapping problem.

For any two combinations ci, cj ∈ C, the probability of connecting
them by direct-connection to make a utility segment between two
manholes is computed. A special case is that a udf-combination may not
be connected to any other combinations, but is extended to the
boundary of the working area. For each such udf-combination, it is
assumed that the udf-combination is connected to an artificial
boundary udf-combination, which is denoted as cb. A utility segment
formed by ci and cj by direct-connection is denoted as l(ci,cj) and the set
of all utility segments formed by direct-connection of two combinations
is denoted as L = {l(ci,cj)|ci ∈ C,cj ∈ C ∪ {cb}}. Let pl denote the con-
nection probability of a direct-connection l(ci,cj) ∈ L and C(un) denote
the set of the combinations generated from utility end un. Since two
combinations from the same utility end cannot make a utility segment,
we set pl(ci,cj) = 0 if ci, cj ∈ C(un) for any un ∈ U. If one of ci and cj is cb,
then the related pl is set to a small constant value to ensure the cor-
rectness of the normal cases is not affected. For other situations, the
computation of pl is given in Sections 3.4, 3.6 and 3.7.

After the probabilities of pl are computed for any l ∈ L, the prob-
abilities of pcl of connecting a udf-combination c ∈ C to a direct con-
nection l ∈ L is computed. Details of the computation are given in
Section 3.8.

As for the decision variables, let xl ∈ {0,1}, ∀ l ∈ L be the binary
variables for the direct-connections such that xl = 1 if direct-connec-
tion l is used in the solution and xl = 0 otherwise. Binary decision
variables ycl ∈ {0,1}, ∀ c ∈ C, ∀ l ∈ L are used to determine the side-
connections such that ycl = 1 if a side-connection from c to direct-
connection l is used in the solution, and ycl = 0 otherwise.

We now formally present the ILP formulation for the aforemen-
tioned utility mapping problem, thus:

∑ ∑+
∈ ∈ ∈

p x W p ymaximize
l L

l l
c C l L

c
l

c
l

, (11)

≤ ∀ ∈ ∀ ∈y x l L c Csubjectto: , ,c
l

l (12)

X

Z

Y

O

Si
Sk

Sj

ui

uj

uk

I

C1(T)

C2
(αi,βi)

(αj,βj)

Fig. 8. A diagram illustrating connecting a utility end uk by side-connection to a utility segment obtained by direct-connection of ui and uj. In this figure, Si, Sj and Sk
are the start points of the corresponding utilities.
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∑ ∑ ∑⎛

⎝
⎜ + ⎞

⎠
⎟ ≤ ∀ ∈

∈ ∈ ∪ ∈

x y u U1,
c C u c C c

l c c
l L

c
l

n
( ) { }

( , )
n i b

i
(13)

∈ ∀ ∈x l L{0, 1},l (14)

∈ ∀ ∈ ∀ ∈y c C l L{0, 1}, ,c
l (15)

The objective function (11) maximizes the total probability given by
the connection, including the ones contributed from direct-connections
as well as from side-connections. W is a weight to penalize the influence
from side-connections as usually they are less important than direct-
connections. Constraints (12) make sure that a side-connection to a
direct-connection can only be triggered if the direct-connection is used
in the first place. Constraints (13) state that for each utility end at most
one of its associated udf-combinations can be used in the solution, and
when a udf-combination is used, it can only choose one connection type
either as a direct-connection (i.e. ∑ci∈C∪{cb}xl(c,ci) = 1) or as a side-con-
nection (i.e. ∑l∈Lycl = 1). Finally, (14) and (15) give the domain of the
decision variables.

To generate a map of the selected area, the observed manholes and
the utility ends observed from each manhole are drawn. Once the so-
lution of Objective (11) is obtained by solving the Integer Linear
Programming problem, the direct-connections indicated by parameter
xl are connected at the corresponding connection point I. Then the
parameter ycl is used to pick out the udf-combinations, which are
connected to certain l by side-connections at the related connection
point T. The final map includes the direct-connections and side-con-
nections.

We illustrate how the above ILP model is formulated by a toy ex-
ample given in Fig. 9. Three utility ends u1, u2 and u3 associated with
four udf-combinations c1, …, c5 are given, where u1 is linked with c1
and c2, u2 is linked with c3 and u3 is linked with c4. The five direct-
connections are marked by l1, …, l5 with their corresponding prob-
abilities in the parentheses afterwards. The six side-connections are
listed in the table with their probabilities. For simplicity, the boundary
combination cb is ignored here, which can always be added back if
needed. Based on this toy example, the following ILP model can be
formulated:

Fig. 9. A toy example of how to formulate the ILP model.

1

u
2

u
1

3

u

2

4

u

3

1(0.9)

4, 1(0.9)

Fig. 10. Optimal solution to the model of the toy example.
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Taking W = 0.5, the optimal solution of the above model is x1 = 1,
yc4

l1 = 1 and all other decision variables are zeros, with the objective
value 0.9 + 0.45 = 1.35. Obviously the two most probable connections
(both with a probability of 0.9) are chosen. The optimal solution is also
depicted in Fig. 10.

5. Experimental results

In this section, we present the experimental results with the pro-
posed system on synthetic and real data. We use the F1 score (aka F-
measure) to assess the quality of our experiment results. We regard each
connection pair from the ground truth as a positive result, and each pair
that is not linked from the ground truth as a negative result. Let TP, FP,
TN, FN be the numbers of true positive, false positive, true negative and
false negative connections respectively. The precision Pre and recall Rec
are defined as,

=
+

=
+

Pre TP
TP FP

Rec TP
TP FN

, ,
(16)

and the F1 score is calculated as the harmonic mean of both by,

= × ×
+

F Pre Rec
Pre Rec

2 .1 (17)

The reason for choosing the F1 score is due to the fact that the
distribution of actually connected (TP + FN) and unconnected pairs
(TN + FP) is heavily unbalanced, where we have TP + FN ≪ TN + FP.

In our experiments, the covariance matrix Σn in (1) is set as

= ( )Σ 5 0
0 2n , where the pan and tilt are measured in degrees. The

parameter b used in the Laplace distribution (4) is set as b = 0.5, which
ensures that when ri = rj, the probability density is equal to 1.

5.1. Synthetic data

We first apply the proposed system on a synthetic data set. The
manhole configuration of this synthetic data set is extracted from the
utility records of a real scene. Since there is no depth information in the
utility records, the depths of all pipe ends are set to 1. The directions of
pipe ends are computed based on the known start points of them and
the given intersection points between pipes. Random Gaussian noise of
up to 25 degrees is added to the pan and tilt angles of each of them. The
locations of hypothesized detections (HDs) are computed by finding the
intersection points of CSs with the related pipes and then adding
random noise of up to 0.2 m. Several hypothesized-detection-free
measurements (HDFs) were also added manually. The observations
with respect to this data set are given in Fig. 11 including 22 manholes,

41 utility ends, 5 HDs and 4 HDFs.
Fig. 12 shows two experimental results of using different numbers of

HDs and HDFs. In the experiment with respect to the top image in
Fig. 12 only 4 HDs and 3 HDFs were used and in the experiment with
respect to the bottom image in Fig. 12 all the 5 HDs and 4 HDFs were
used. It can be seen that there are more incorrect connections (cyan
lines) in the top image since fewer HDs and HDFs were used in the
experiment. Compared with the ground truth, the incorrect connections
happen at u4 and u11. In the ground truth, they are connected by a
direct-connection. Because too much noise was added to the direction
of u4 and u11, in the experiment results, they are wrongly connected to
other pipe segments by side-connection. If more HDs are added be-
tween u4 and u11, this wrong connection can be fixed. In both experi-
ments, the weight parameter W in Objective (11) is set as 0.41. In
different applications, this parameter may need to have other values. As
we have mentioned above, to apply the proposed framework on a large
area, this parameter should be learned in a smaller area with ground
truth.

Table 1 gives a summary of all the results from the three datasets in
our experiments in terms of precision, recall and F1 score, as computed
by (16) and (17). It can be observed from the table that precision, recall
and F1 score have all significantly improved after including more HDs
and HDFs.

5.2. Real data

We also applied the proposed system to a real data set captured on a
test scene shown in the left image in Fig. 13. The locations of the
manholes were measured by a total station theodolite. The cover of
each manhole was lifted and the depth and direction of each utility end
observed in the related manhole were measured and estimated. An
example manhole picture after the cover was lifted is given by the top
right image in Fig. 13 and the related estimated directions of the ob-
served utilities are shown by the bottom right image in Fig. 13. It can be
seen that 13 manholes shown by black rectangle windows are observed.
51 utility ends are observed in total from this scene. The utility type and
size are also recorded in the observations. There are three different
kinds of utilities: foul water, surface water and cable. Since the type and
size of the observed utility ends are employed in generating the utility
map of the test scene and at the same time different depth values of
different utility ends provide more discriminations between different
utility segments, the utility map of this scene is generated as expected
without using any sensor measurements. In this experiment, the weight
parameter W in Objective (11) is set as 1. It means we do not give any
bias to direct-connection. Although we do not have the complete
ground truth of this scene a number of pits were dug at carefully chosen
locations to verify the correctness of the map; no inaccuracies were
discovered. The generated utility map is shown in Fig. 14, and its
corresponding precision, recall and F1 score values are shown in
Table 1. In this figure, a top view of this map is shown in the top image
and a side view is shown in the bottom image.

5.3. ILP solver

After the probability values pl and pcl in Eq. (11) were found, the
Integer Linear Programming problems were solved on a 64 bit Xpress-
MP suite (version 8.0), a commercial optimization package produced by
FICO [34], on a Dell workstation with 32G RAM and an Intel Core i7-
4790 CPU in Windows 7 Enterprise. The default Integer Linear Pro-
gramming solver of the suite was used for solving the ILP instances.

All the problem instances were solved within 1 s by the above
package.

Fig. 11. The configuration of the synthetic data set (top) including manhole observations ui, hypothesized detections hm, hypothesized-detection-free measurements
fk, and at the bottom, the ground truth. The spatial unit is in metres.
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6. Conclusions

In this paper we introduce a novel method for accurately mapping
buried utilities based on the manhole observations from street furniture
surveys and sensor measurements. One particular theoretical con-
tribution is the algorithm proposed in Section 3 for calculating the
probabilities of the connections under various scenarios. The mapping
problem is formulated as an Integer Linear Programming model, which
incorporates locations and directions of utility ends, hypothesized
sensor detections, hypothesized detection free sensor measurements
and the properties of utility ends other than location and direction in
the same framework. The experimental results demonstrate the effec-
tiveness and efficiency of the proposed method. In addition, the ex-
perimental results on the synthetic data set indicate that the more
sensor data is used the more accurate a utility map can be achieved
while the experimental results on the real data set demonstrate that
using utility properties other than location and direction makes the
proposed method more robust and accurate.

A disadvantage of the proposed framework is that every generated
segment has to have at least one utility end observed from a manhole,
which may not be always satisfied in practice. We leave for future work

the incorporation of utility segments formed only from sensor mea-
surements into this framework [12]. This should not be difficult for GPR
sensor detections since the estimated direction of a utility can be de-
tected from the sensor reading — thus each GPR detection could be
regarded as a utility end, rather than an HD. However, an uncertainty
would have to be included to represent the possibility that the HD was
not in fact of a utility at all (whereas a manhole observation always
represents one or more actual utility lines).

Moreover, unfortunately, obtaining real world survey data (in-
cluding manhole inspections, sensor readings, and verification pits for
ground truth) requires a large amount of money which thus limited the
size of the real-world instance we could use. We designed the larger
sized synthetic instance to better verify our method for larger sized
cases. We will leave further verification by large scaled real-world cases
to possible opportunities or projects in the future. A third limitation is
the need to convert the information provided by the data source into
appropriate distributions, such that they can be combined into a com-
pound one.

A future research direction could be how the proposed probabilistic
method presented here could be extended to take into account of ex-
isting information (e.g. utility records), such as in the work in [1]. This
can be realized by converting the existing records into corresponding
probability distributions, which is viable and the future work would be
about the details of how this conversion could be achieved. Another
future direction is to update and improve the quality of existing records.
For instance, it might be possible to create a new integer linear pro-
gramming model to minimize the discrepancies between the manhole/
sensor data and the existing records.

Finally, it is worth commenting on the relationship between this

Fig. 12. Two experimental results with different numbers of hypothesized detections and hypothesized-detection-free measurements used (the spatial unit is in
metres). The red lines indicate correct connections while the cyan lines indicate incorrect connections compared with the ground truth. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Accuracy results of all experiments.

Dataset Precision (Pre) recall (Rec) F1

Synthetic 1 71.43% 68.18% 69.77%
Synthetic 2 91.30% 95.45% 93.33%
Real-world 100% 100% 100%

Fig. 13. The deployment of manholes (represented by rectangles) in a test scene where the real data has been captured (left image) and an example of the observation
in a manhole and the related sketch plan of this manhole.
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Fig. 14. The generated utility map of the real test scene. The image at the top shows a top view of this map and the bottom image shows a side view (the spatial unit is
in metres).
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research and the UK PAS 128 standard which is a methodology for
delivering robust utility surveys (https://www.pas128.co.uk). There
are several categories, from D (desktop survey which just uses statutory
records, type C (which uses site reconnaissance to match a type D
survey with street furniture observations), type B (using multiple geo-
physical sensors; each 5 m segments should have a quality level for
vertical and horizontal detection accuracy) and type A (where position
has been verified by trial pits, vacuum extraction etc.). The work pre-
sented in this paper would help construct PAS 128 type C surveys in
particular, although determining the quality level (QL1–QL4) is not
presently supported). The major benefit would be as an automated
method for constructing maps from the manhole surveys and sensor
measurements. Subsequent manual interpretation would be required to
assign quality levels.
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