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The cerebellum is widely implicated in having an important role in adaptive motor control.

Many of the computational studies on cerebellar motor control to date have focused on

the associated architecture and learning algorithms in an effort to further understand

cerebellar function. In this paper we switch focus to the signals driving cerebellar

adaptation that arise through different motor behavior. To do this, we investigate

computationally the contribution of the cerebellum to the optokinetic reflex (OKR), a visual

feedback control scheme for image stabilization. We develop a computational model of

the adaptation of the cerebellar response to the world velocity signals that excite the OKR

(where world velocity signals are used to emulate head velocity signals when studying

the OKR in head-fixed experimental laboratory conditions). The results show that the filter

learnt by the cerebellar model is highly dependent on the power spectrum of the colored

noise world velocity excitation signal. Thus, the key finding here is that the cerebellar filter

is determined by the statistics of the OKR excitation signal.

Keywords: cerebellar, computational model, optokinetic (OKN) system, world statistics, adaptive filter

INTRODUCTION

Eye movements have been used extensively to investigate the functions of the cerebellum in
motor control (Carpenter, 1988; Büttner-ennever, 2006). They are mechanically much simpler than
movements of multi-joint limbs, and the neural circuitry underlying their control is corresponding
less complicated (Robinson, 1986). Historically one type of eye movement has been of particular
interest, namely that made in response to unexpected rotations of the head. The eyes rotate in the
opposite direction to the head so as to stabilize the direction of gaze in space, thus minimizing
the extent of whole image movement over the retina (retinal slip) and consequent loss of visual
information. Since the reflex is driven by information regarding head movement provided by the
vestibular system it is termed the vestibulo-ocular reflex (VOR). One of its key features is that
its gain can be altered (VOR adaptation), and Ito (1970) first appreciated the importance of the
cerebellum on mediating this adaptation, proposing the flocculus as the region of the cerebellum
involved. Subsequent experimental and modeling work on the role of the cerebellum in VOR
adaptation continues to the present (e.g., Inagaki and Hirata, 2017; Voges et al., 2017; Luque et al.,
2019).

Since movements of the eyes have no effect on head position, the VOR is functionally a
feedforward control scheme, and VOR adaptation provides a mechanism that enables the scheme
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to be calibrated. But there is also a feedback control scheme
for stabilizing gaze, which uses retinal slip itself to drive
counter-rotatory eye movements, and is termed the optokinetic
reflex (OKR): the neural substrate of the horizontal OKR is
shown in Figure 1. This reflex works cooperatively with the
VOR to stabilize gaze (Carpenter, 1988). The need for two
control schemes (VOR and OKR) to perform one task (image
stabilization) is explained by the respective operational range of
the VOR and OKR: the VOR does not work effectively at low
frequencies of head movement, due to poor sensing of the head
velocity at those frequencies by the semicircular canals of the
vestibular system. In contrast, the OKR does not function well
at high frequencies of head movement because the retinal slip is
delayed (by ∼100ms) due to visual processing time (Robinson,
1987). Hence, the VOR and OKR combine to stabilize the
full field visual image across a wider frequency spectrum than
might be accomplished individually (Paige, 1983; Godaux and
Vanderkelen, 1984; Boyle et al., 1985; Schweigart et al., 1997).

Here we model how OKR performance is improved by the
contribution of the cerebellar flocculus, using an architecture
based on the detailed descriptions available of the relevant neural
circuitry (Fuchs and Mustari, 1993; Mustari et al., 1994). The
flocculus itself is represented by the adaptive-filter model of the
cerebellar cortical microcircuitry, proposed by Fujita (1982) as
a development of the original Marr-Albus framework to allow
direct processing of temporally varying inputs, and consequent
representation of systems in which current output depends on
input history. Adaptive-filter models have subsequently used
extensively in system-level modeling of cerebellar function (Dean
and Porrill, 2010).

We focus our analysis of the adaptive OKR model on the
retinal slip signal which is used to excite the feedback control
loop. The term “excite” is used in the systems engineering sense
of an excitation signal, which refers to the input signal that
causes the system to generate an output. Excitation signals can
be divided into two classes: predictable and non-predictable. An
example of a predictable signal is a single frequency sine wave,
whilst a non-predictable signal is colored noise. Our analysis on
these two classes of signal reveals the extreme dependence of
cerebellar learning on the predictability of the excitation signal,
in other words on the statistics of the visual world.

The OKR is an exemplar problem of adaptive feedback
control. Hence, understanding how the cerebellum adapts
to optimize eye movements in the OKR is potentially of
great importance for understanding cerebellar involvement in
feedback control throughout the nervous system.

METHODS

The basic circuitry underlying the primate OKR has been
described by Mustari et al. (1994). The box labeled flocculus in
this figure refers to those microzones in the flocculus and ventral
paraflocculus that are concerned with conjugate horizontal
eye movements (i.e., rotations around a vertical axis). These
microzones, and their connectivity, are described in detail by
Voogd and Barmack (2006).

FIGURE 1 | Neural substrate of the horizontal OKR. The retinal slip signal that

drives the OKR arrives at the flocculus via climbing fibers (NOT, dcK) and

mossy fibers (MST, NOT, DLPN, the direct pathway). The retinal slip signal is

also transmitted to the brainstem (NPH, MVN, the indirect pathway). The direct

and indirect pathways both project to the abducens nucleus and from there

combine to drive movements of the eye in order to stabilize the visual image.

From Figure 12 of Mustari et al. (1994). I and II, type 1 and 2 neurons in the

vestibular nucleus; III, oculomotor nucleus; AOS, accessory optic system;

dcK, dorsal cap of Kooy of the inferior olive; DLPN, dorsolateral pontine

nucleus; FTN, floccular target neurons; INN, internuclear neurons; LR, lateral

rectus; LGN, lateral geniculate nucleus; MN, motor neurons; MR, medial

rectus; MST, middle superior temporal gyrus of cerebral cortex; MT, middle

temporal cortex; MVN, medial vestibular nucleus; NPH, nucleus prepositus

hypoglossi; NOT, nucleus of the optic tract.

Here we model this connectivity using the simplified
architecture illustrated in Figure 2, which is based on the
previous model of Waespe et al. (1983) (subsequently referred to
as WRC83), with the vestibular pathways of that model omitted
because in the experimental conditions modeled here the head
is fixed so no vestibular signals are involved. This architecture is
also consistent with other models of the OKR, for instance that
of Buizza and Schmid (1982). We focused on linear analysis of
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FIGURE 2 | Systems level model of the OKR. The OKR functions as an adaptive feedback control loop. World velocity excites the control scheme; error between

world velocity and eye velocity drives the controllers of which there are two: (i) In the indirect pathway there is a fixed controller (located in the brainstem), known as the

velocity storage integrator. (ii) The floccular region of the cerebellum is in the direct pathway of the OKR. The flocculus provides adaptive compensation of the OKR.

The indirect pathway has static non-linearities that affect performance at velocities higher than ∼50 deg/s. The other important feature relating to feedback control is

that the error signal, retinal slip, is delayed in visual processing by about 100ms. Adapted from Figure 10 of WRC83.

the system, and therefore ignored the effects of the static non-
linearities in the indirect pathway, activated at velocities >50
deg/s in primate WRC83.

The input to the feedback loop shown in Figure 2 is “world
velocity,” appropriate for experimental studies that investigate the
OKR under head fixed conditions. Here the subject is typically
sat, head fixed, inside a rotating drum, so that it appears as if
the world itself were moving. In non-experimental conditions the
OKR would be excited by head velocity. However, head velocity
is fixed to zero in experimental conditions when studying the
OKR, in order to keep the eye movement response independent
of the VOR. The world velocity signal is transformed by retinal
and central processing into a retinal slip signal that is utilized
by two main neural pathways, one the “direct” pathway through
the cerebellum, the other the “indirect” pathway through the
brainstem. The indirect pathway incorporates a velocity storage
unit which integrates the retinal slip signal and provides a
slow response component to the OKR, revealed when the
flocculus is inactivated WRC83. The cerebellar contribution to
the OKR is a rapid rise in eye velocity early in the response,
modeled by a filter with a fast time constant, which is the
case here.

The flocculus itself is modeled as an adaptive filter, which
represents plasticity at the parallel fiber/Purkinje cell (PF/PC)
synapse by an anti-Hebbian learning rule (Sejnowski, 1977;
Fujita, 1982): synaptic efficacy changes in response to correlation
in PF and CF firing. Positive correlation in PF/CF firing results
in positive weight change and negative correlation results in
negative weight change. Hence, LTP and LTD are modeled using
this learning rule, both of which occur at the PF/PC synapse (Ito,
1989; Coesmans et al., 2004) (further details below).

The architecture in Figure 3 can be described in terms of three
distinct functional elements using Laplace transforms: (i) a time-
delay operator D(s) = e−ds, of delay d seconds, (ii) the floccular
region of the cerebellum C(s) and (iii) the velocity storage unit
V(s). We can form the closed loop description of the OKRmodel
in Figure 3, which is

Y(s) = D(s)[C(s)+V(s)]
1+D(s)[C(s)+V(s)]R(s) (1)

where Y(s) is the Laplace transform of the eye velocity y(t) and
R(s) is the Laplace transform of the world, or head, velocity r(t)
(note that world velocity excites the OKR in experimental setups
where the head is fixed and the world rotates, whilst head velocity
excites the OKR in natural conditions where the head is free to
move and the world is fixed).

Model of the Velocity Storage Unit
The velocity storage unit in Figure 3 was modeled as a first order
transfer function V(s), of the form

V(s) = Kv
Tvs+1 (2)

where Kv is a gain term and Tv is a time constant.
The gain and time constant of V(s) were estimated by

grid search, minimizing the sum-of-squared error (SSE) fit to
step response data obtained after floccular removal in primate
(flocculectomy) from WRC83, Figure 11D. Note that the closed
loop OKR system given in (1), for the flocculectomy condition
where C(s) = 0, reduces to

Y(s) = D(s)V(s)
1+D(s)V(s)

R(s) = e−dsKv

Tvs+e−dsKv+1
R(s) (3)

where the closed loop transfer function has the steady-state gain
Kss = Kv/(Kv + 1). This means that for a plausible steady-state
OKR flocculectomy gain 0.9 ≤ Kss ≤ 0.95, the velocity storage
gain is approximately 9 ≤ Kv ≤ 20. Therefore, the value of
Kv was estimated by performing a grid search over this range,
9 ≤ Kv ≤ 20, in steps of 0.5. The time constant value Tv, was
estimated by searching across the range 100 ≤ Tv ≤ 300 s, in
steps of 10 s.

Adaptive Filter Model of the Cerebellum
The adaptive filter model of the cerebellum used here is
equivalent to the original implementation by Fujita (1982).
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FIGURE 3 | Adaptive filter model of the cerebellum in the OKR control loop. The adaptive filter models the signal processing in the floccular region of the cerebellum.

Here the adaptive filter model is inserted in the OKR model shown in Figure 2. The velocity storage is modeled here by a linear 1st order transfer function. The output

of cerebellum and brainstem are assumed to sum together to produce the motor command, which here is equivalent to eye velocity.

Hence, for computational expedience we represent a single
Purkinje cell, but mathematically this is equivalent to an arbitrary
number of Purkinje cells, under the assumption that their outputs
sum linearly.

The mossy fiber input to the cerebellum is processed by the
granule cell layer, which is represented by a bank of N linear
filters Gi(s), for i = 1, . . . ,N (see Figure 3). The exact nature
of the filters Gi(s) is not critical: the function of Gi(s) is to act
analogously to a tap-delay line, which can be achieved by using
alpha-functions that have well-spaced time constants, so that

Gi(s) =
K
(i)
G

(

T
(i)
G s+1

)2 for i = 1, . . . ,N (4)

Where T
(i)
G is the alpha-function time constant and KG =

1/
(

T
(i)
G

)2
.

We assume that mossy fibers transmit the OKR error signal
e(t), with Laplace transform E(s), which is processed by the
granule cell layer represented by the filter bank Gi(s), to produce
the PF signal Pi(s), that is

Pi(s) = Gi(s)E(s) for i = 1, . . . ,N (5)

The PF signals, in the context of the OKR, can therefore be
interpreted as a set of retinal slip signals, delayed by varying
amounts by the granule cell layer.

The cerebellar model output, Z(s), is the sum of weighted
PF signals,

Z(s) =
N
∑

i = 1
wiPi(s) for i = 1, . . . ,N (6)

where the plasticity of the PF/PC weights wi is modeled by an
anti-Hebbian learning rule discussed below. The cerebellar filter
C(s) is now conveniently described from mossy fiber input to PC
output by the expression

C(s) =
N
∑

i = 1
wiGi(s) for i = 1, . . . ,N (7)

The expression for C(s) in Equation (7) is a more functionally
realistic representation of the cerebellum in comparison to the
proportional gain model in WRC83 because (i) it can represent
varying gain across the frequency spectrum and (ii) it facilitates
modeling and analyzing plasticity at the PF/PC synapse.

Learning Rule at the PF/PC Synapse
The adaptation at the PF/PC synapse is modeled by the
correlation of delayed PF signal and CF signal,

1wi = −β

〈

e(t)p
(d)
i (t)

〉

(8)

where wi is the i
th weight in the cerebellar filter, β is a constant

term that adjusts the learning rate, e(t) is the error signal on

the CF and p
(d)
i (t) is the ith PF signal, whilst the superscript d
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indicates that the PF signal is delayed by d seconds in the learning
rule. It has been found in amodeling study of the ocular following
response that a delay was required for stable adaptation in the
PF/PC synapse learning rule (Yamamoto et al., 2002) and that is
also the case here as using an un-delayed PF signal in the learning
rule led to unstable adaptation.

We implemented the delay in the learning rule by an
eligibility trace. The eligibility trace is a biologically plausible
representation of a delay mechanism occurring in synaptic
plasticity (Kettner et al., 1997; Wang et al., 2000). The eligibility
trace was dynamically represented here by an α-function L(s),
where the time constant was set to the delay in retinal slip
visual processing,

L(s) = 1

(1+ds)
2 (9)

The input to the eligibility trace is the parallel fiber signal pi(t)
and the output is a filtered version of pi(t) which peaks at
d seconds,

P
(d)
i (s) = L(s)Pi(s) (10)

where P
(d)
i (s) and Pi(s) are the Laplace transforms of p

(d)
i (t) and

pi(t), respectively.

OKR Excitation by Predictable and
Non-predictable Signals
The world velocity signal r(t) was used to excite the OKR model.
The signal r(t) can be defined as either a predictable signal such
as a sine wave, or non-predictable signal such as colored noise
or white noise. We suggest that during the natural operation
of the OKR the excitation signal is well-represented by colored
noise, consistent with head velocity being stochastic and hence
unpredictable at any point in time, but characterized by fixed
statistical properties and structured as suggested by the data in
Carriot et al. (2017). Sine waves are often used in experimental
investigations of the OKR, as well as computational studies and
were therefore also investigated here.

For the colored noise world velocity signal r(t), the power
spectral density was set to

SRR(f ) =
b
f a (11)

where f is frequency in Hertz, a is the spectral exponent and b
is the constant of proportionality. Note that spectral exponent
a = 0 corresponds to white noise, a = 1 corresponds to
pink noise, and a = 2 corresponds to red noise. Here we only
considered a value of a = 1.2, which has been shown to plausibly
represent power in head yaw movements (Carriot et al., 2017).
The scaling parameter b was adjusted by numerical simulation to
fit behavioral data (see Results).

Simulation Details
To simulate the computational model of the OKR depicted
in Figure 3, each of the transfer functions defined above in
the Laplace-domain, time-delay D(s), velocity storage V(s),

TABLE 1 | Parameter values used in the computational simulations.

Parameter Symbol Value

Velocity storage time constant TV 230 s

Velocity storage gain KV 13.5

Number of cerebellar filter weights N 5

Cerebellar filter alpha function time constants T
(1,...,5)

G
0.01, 0.02, 0.1,

0.2, 0.5 s

Cerebellar filter learning rate β 0.001

Initial cerebellar filter weight values w1,...,5(0) 0

Retinal slip delay d 0.1 s

granule layer basis functions Gj(s) and eligibility trace L(s),
were parametrised using the values in Table 1 and defined in
Matlab for simulation. The transfer functions were discretised
using a zero-order hold at a sample time of 0.1 s to produce
the Z-transform equivalents for simulation in discrete-time:
V(z) =

∑

∞

n=0 v (n) z−n, Gj (z) =
∑

∞

n=0 gj (n) z
−n, L(z) =

∑

∞

n=0 l (n) z
−n and D(z) = z−nd (i.e., a pure delay of

nd time-steps).
The colored noise world velocity signal r(t) was created for the

discrete-time simulations by generating samples of a white noise
signal, then taking the discrete Fourier transform of this signal,
applying the b/f a transformation in the frequency-domain, then
taking the inverse discrete Fourier transform to finally obtain the
sampled colored noise world velocity signal r(k).

The algorithm for evaluating the OKR model output is as
follows: at a sample instant denoted by k sequentially evaluate

ed(k) = e(k− nd)
(

delayed retinal slip
)

x(k) =

∑∞

n = 0
v(n)ed(k− n)

(

velocity storage output
)

z(k) =

∑∞

n = 0
c(n, k)ed(k− n)

(

cerebellar output
)

y(k) = z(k)+ x(k)
(

eye velocity output
)

e(k) = r(k)− y(k)
(

retinal slip
)

where the cerebellar filter C(z, k) =
∑

∞

n = 0 c(n, k)z
−n is defined

by the adaptation of the filter weights, using the learning rule in
(7), where

pj(k) =

∑∞

n = 0
gj(n)ed(k− n)

(

PF signal
)

p
(d)
j (k) =

∑∞

n = 0
l(n)pj(k− n)

(

PF signal delayed by

eligibility trace
)

1wj(k) = −βed(k)p
(d)
j (k)

(

PF/PCcerebellar

weight adaptation
)

wj(k+ 1) = wj(k)+ 1wj(k)
(

updated cerebellar

filter weights
)

C(z, k+ 1) =

∑N

j = 1
wj(k+ 1)Gj(z)

(

updated cerebellar

filter
)
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To improve stability of the weight adaptation rule the
cerebellar weights were updated in a batch mode of 10,000
samples (corresponding to 1,000 s of data), over 2,000 batch
iterations. The weight change across batches was monitored to
ensure convergence.

RESULTS

Adaptive Model Describes the OKR Step
Response in Primate
In previous non-adaptive models of the OKR their parameters
were specifically tuned to produce the eye movements observed
experimentally. Here such tuning was used only for the time
constant and gain of the velocity-storage component (Equation
2) and to illustrate the contribution of the cerebellum, in
the time-domain and the frequency-domain (Figure 4). The
experimental setup that the model simulations emulate is shown
in Figure 4A, with the corresponding feedback control loop in
Figure 4B. The response of the OKR model without cerebellar
contribution (flocculectomy condition) to a velocity step input
of 60 deg/s, compared with experimental observations from
WRC83 of OKR performance after floccular removal is shown
in Figure 4C. A reasonable fit has been obtained with a time
constant of 230 s and gain of 13.5, producing a rise time of∼20 s.
The fit shown in Figure 4C suggests that the first order filter
characterization of the velocity-storage element is a reasonable
approximation. The contribution of the cerebellum is illustrated
in Figure 4D using a fixed first order filter. This linear modeling
of the OKR using transfer functions enables the computation of a
Bode plot to compare the flocculectomy and intact characteristics
of the OKR in the frequency-domain (Figure 4E).

To explore the contribution of the flocculus to OKR
performance under learning conditions, the adaptive-filter model
of the cerebellum was initialized to zero, then learning was
driven by exciting the OKR system with a colored noise world-
velocity signal, which indirectly caused parameter adaptation as
a result of the learning rule describing plasticity at the PF/PC
synapse. We found that when the colored noise world velocity
signal spectral exponent was set to a = 1.2, and the scaling
parameter of the noise set to b = 0.017, the adaptive OKR
model converged to a feedback control scheme that produced an
OKR step response closely resembling behavioral data (Figure 5).
The adaptive filter model of the flocculus modified the OKR
dynamics by causing a rapid increase in velocity early in the step
response compared to the flocculectomy condition (Figure 5C)
and correspondingly raising the closed loop OKR gain in the
region of 0.1Hz (Figure 5E).

The Learned Cerebellar Filter Depends on
the Statistics of the Excitation Signal
The adaptation of the OKR is caused by the retinal slip error.
The characteristics of this error signal are directly dependent on
the statistics of the world velocity excitation signal. For instance,
we have shown in Figure 5 that when the scaling parameter
and spectral exponent of the colored noise excitation signal are
appropriately tuned, the excitation signal produces learning that

converges to a system that reproduces behavioral OKR data.
The implication of this result is that the excitation signal can
be manipulated to cause a variety of different OKR responses.
Here we simulated the adaptive OKR model with colored noise
signal in a number of experimental trials, altering both the scaling
parameter, b (Figure 6), and the spectral exponent, a (results not
shown), to observe the effect on the OKR dynamics.

We systematically varied the scaling parameter, b, of the
colored noise world velocity signal to produce varying power
levels of excitation of the OKR model (Figures 6A,B). The
resulting step responses of the OKR model are shown in
Figures 6C,D. The early rapid rise in velocity, due to the
cerebellar filter, increases in amplitude as the scaling parameter
b increases, even leading to overshoot and oscillation in the
eye velocity response (Figures 6C,D). The step responses and
Bode plots of the OKR shown in Figures 6C–E are significantly
different from each other: the implication of this result is that
world velocity statistics have a strong influence on the resultant
learned characteristics of the OKR.

The OKR Performance Improves When
Excited by Simple Predictable Signals
The control of eye movements is often studied by exciting the
oculomotor system with a single frequency sine wave. This would
correspond to causing the full field image to oscillate at a single
frequency in the case of the OKR (Paige, 1983; Boyle et al.,
1985) or a target in the case of smooth pursuit (Deno et al.,
1989). Studies of the OKR and smooth pursuit systems have
revealed that the control performance in terms of gain and phase
improve when excited by predictable signals (Wyatt and Pola,
1988; Deno et al., 1989). Here we investigated this phenomenon
by exciting the adaptive OKR model with both predictable and
non-predictable signals.

The predictable excitation signals in the simulation model
were designed to emulate single frequency sine wave excitation
of the OKR often used in experimental setups (Paige, 1983; Boyle
et al., 1985). The OKR model was initialized to a “natural” state
before each trial: rather than setting the adaptive filter weights
to zero, we initialized the weights using the trained the OKR
model after adaptation driven by the colored noise excitation
signal with scaling parameter b = 0.017 and spectral exponent
a = 1.2, which reproduced behavioral data shown in Figure 5.
The OKR model was then excited in each sine wave trial for
just 600 s (sequential adaptation was used in the cerebellar filter
not batch adaptation). To a certain extent this setup emulates
the somewhat artificial experimental conditions where a normal
subject undergoes excitation of the OKR using single frequency
sine waves.

The closed loop performance of the OKR model greatly
improved, in terms of closed loop gain and phase, when exciting
the system with single frequency sine waves (a predictable
signal) rather than colored noise (an unpredictable signal)
(Figures 7A,B). The implication of this result is that cerebellar
model is able to rapidly learn to compensate for the specific and
fixed characteristics of the predictable sine wave signal. It is also
apparent that the modeling results are qualitatively similar to the

Frontiers in Systems Neuroscience | www.frontiersin.org 6 March 2020 | Volume 14 | Article 11

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Anderson et al. World Statistics Drive Cerebellar Learning

FIGURE 4 | A simple linear model of the OKR for flocculectomy and intact flocculus conditions. (A) Illustration of a typical OKR experimental setup, where the subject

sits, head-fixed, in a rotating drum that has alternating vertical black and white stripes on the interior. (B) Simplified linear OKR feedback control loop with floccular

region of the cerebellum modeled by a fixed transfer function C (s)=KC/(TCs+1). (C) Identification of the velocity storage transfer function. Left panel: OKR

flocculectomy step response (C (s) = 0) to a step of 60 deg/s where the data (dots) were extracted from Waespe et al. (1983), Figure 11D, with simulation of the

estimated best model fit (solid line) in closed loop, where Tv = 230 s and Kv = 13.5. Right panel: Grid search cost function (color map) for the optimal velocity storage

(Continued)
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FIGURE 4 | parameters (red lines), Kv and Tv. (D) Identification of the fixed cerebellar filter modeled as a first order transfer function, C (s) = KC/(TCs+ 1). Left panel:

OKR step response with intact cerebellum where the data (dots) were extracted from WRC83, Figure 11B, with simulation of the feeback loop in (B) with best

cerebellar model fit (solid line) where TC = 4.3 s and gain KC = 1.04. Right panel: Grid search cost function (color map) for the optimal cerebellar filter parameters (red

lines), KC and TC. (E) OKR closed loop Bode plot for both flocculectomy and intact flocculus conditions derived from the model in panel B, using the transfer functions

identified in (C,D). The cerebellum contributes a rise in gain toward one, and phase toward zero, in the region of 0.1Hz (indicated by the arrows), which improves

control performance.

experimental results from Paige (1983) and Boyle et al. (1985)
(Figure 7B), which suggests that experimental results reporting
OKR characteristics using single frequency sine waves do not
reflect “normal” operation.

DISCUSSION

Consistency With Experimental Data
Predictability and the OKR
Improvements in OKR performance related to stimulus
predictability were initially described by Yasui and Young (1984)
and Wyatt and Pola (1988) in humans, and subsequently in a
wide range of species (Miki et al., 2018). Optokinetic adaptation,
in which simple exposure to a sinusoidally moving wide-field
stimulus increases OKR gain, is a well-studied example (e.g.,
Inoshita and Hirano, 2018).

Delay: Stable and Convergent Adaptation Requires a

Delayed PF Signal in the Learning Rule
The PF signal requires a delay in the learning rule to ensure
that learning is stable and convergent. It is well-known from
the systems engineering literature that stability in correlation
based learning rules is dependent on the correlating signals being
within +/−90 degrees of the correct phase with each other
(Vaudrey et al., 2003).We observed instability in the learning rule
when the PF signal was not delayed, similarly to Yamamoto et al.
(2002). Evidence for a delayed error signal (∼120ms) has come
from studies of cerebellar long-term depression (Suvrathan et al.,
2016; Suvrathan and Raymond, 2018), which show that this delay
occurs in the flocculus that deals with theOKR, while other delays
are found elsewhere in the cerebellum.

Computational Framework
It has long been recognized that while the structure of cerebellar
cortex is relatively uniform, different regions of cortex have
different connections to external structures such as the deep
cerebellar nuclei and inferior olive. This has given rise to
the “chip” metaphor (e.g., Ito, 1997; Porrill et al., 2013),
in which the cerebellar cortex is cast as a set of identical
chips that can be used for a wide variety of purposes. In
this context there are two aspects to a cerebellar model,
one its representation of the microcircuit, and the second its
external connectivity.

Microcircuit Model
Early modeling studies of the OKR in rabbit (Collewijn, 1969,
1972), cat (Buizza and Schmid, 1982; Gillis et al., 1984) and
primate (Buizza and Schmid, 1982; Waespe et al., 1983) have
represented the cerebellar OKR function as a single fixed gain.

Here we use the much more powerful adaptive-filter model of
the cerebellar microcircuit. First proposed by Fujita (1982), this
model extends the original Marr-Albus framework to cope with
dynamic time-varying signals, and is thus very well-suited to
the construction of internal models of dynamic processes (Dean
et al., 2010; Porrill et al., 2013).

Connectivity
The floccular connectivity illustrated in Figure 1 is simplified in
two main ways. First, as described in Methods, the box labeled
flocculus in this figure refers to those microzones in the flocculus
and ventral paraflocculus that are concerned with conjugate
horizontal eye movements (i.e., rotations around a vertical axis).
These microzones, and their connectivity, are described in detail
by Voogd and Barmack (2006). Secondly, only those connections
relevant to the OKR are shown: thus, vestibular inputs are
omitted. These simplifications are the ones usually made in
linear-system modeling of the OKR (e.g., Carpenter, 1988).

In the circuit shown in Figure 3, the flocculus is placed to
learn an internal model incorporating any structure that may be
present in the world velocity input. This structure may be present
either in the external world itself (exafference), for example
water currents, or derive from the organism’s own movements
(reafference). Successful learning enables the floccular output
to alter eye-movement commands, making them more effective
in reducing retinal slip. This procedure has similarities with
predictive noise cancellation, which acts to remove interference
(noise) from sensory signals (e.g., Anderson et al., 2010, 2012;
Porrill et al., 2013).

Time Delay, the Smith Predictor, and Internal Models
Time delay in feedback control loops creates a significant
problem regarding stability (aside from the adaptation problem
described above). The OKR is no exception to this due to the
delay in visual processing of the retinal slip signal (St.-Cyr
and Fender, 1969; Waespe and Henn, 1987). Therefore it is
reasonable to question whether speculation on the action of the
cerebellum as a Smith predictor is relevant to this study (Miall
et al., 1993). Young and Robinson have separately proposed
control schemes where the cerebellum acts as a forward model
of oculomotor plant dynamics in smooth pursuit and OKR,
implicitly constructing a control architecture that was closely
related to the Smith predictor (Young, 1971; Robinson, 1977;
Robinson et al., 1986). The approach we have taken here is to
construct the adaptive model with no assumptions regarding the
functional role of the cerebellum. On completion of learning
we examined the dynamic behavior of the cerebellar model,
investigating the internal model hypothesis (Wolpert et al.,
1998) in the context of the OKR. We found that the cerebellar
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FIGURE 5 | Cerebellar adaptation in the OKR driven by a colored noise world velocity signal. (A) Example of a single batch of world velocity (blue line) and eye velocity

(green line) simulation data, where world velocity has a spectral exponent of a = 1.2 and scaling parameter b = 0.017. (B) Batch root mean square (RMS) error (where

error is the difference between world velocity and eye velocity). (C) OKR step response where experimental data (dots) is from WRC83, Figure 11B, OKR model step

response with intact flocculus (solid green line) is from training on 2,000 batches of simulation data with colored noise world velocity signal, and OKR flocculectomy

model response (solid red line) is without a cerebellar contribution. (D) Batch cerebellar filter weight change demonstrating convergence of the adaptive cerebellar filter

in the OKR control loop. The adaptation rule is stochastic hence does not go to zero but note the log scale, which shows very small numerical change in the weights

by batch 2,000. (E) OKR closed loop Bode plot for both flocculectomy and intact flocculus conditions, where the Bode plots are obtained from the same models as

the step responses in (C).

filter model did not resemble oculomotor plant dynamics so
much as a generic lag compensator and that functionally such
an internal oculomotor plant model did not logically fit into
the control scheme (however, this is a simplified model so no
definitive conclusions can be drawn). Instead we observed that
the cerebellar filter acted to directly raise the gain of the closed

loop system in the frequency region around 0.1Hz and improve
the phase response in the same region.

Future Work
Ahrens et al. (2012) investigated the neural substrates of an
optomotor behavior related to the OKR in larval zebrafish. The
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FIGURE 6 | World velocity colored noise statistics drives adaptation of the cerebellar filter. (A) Examples of world velocity colored noise signals used to drive

adaptation of the cerebellar filter in the OKR control loop (note that each signal is successively offset for plotting by 10 deg/s for clarity, and that each signal had zero

mean). Each signal has the same spectral exponent a = 1.2, but different scaling parameters b. The power spectrum scaling parameters, b, were obtained from

testing 10 values log-spaced in the amplitude range kb ∈ [0.01, 0.1], where b = k2b , but only the results from values two to eight are shown here, i.e., where b values

were set to 0.0003, 0.0008, 0.0022, 0.0060, 0.0167, 0.0464, 0.1292. (B) Power spectrum of the world velocity signals shown in (A). (C) Step response of the closed

loop OKR system after 2,000 batches of cerebellar training updates. (D) Step response of the closed loop OKR system after 2,000 batches of cerebellar training

updates, zoomed on the time axis. (E) OKR closed loop Bode plots corresponding to the OKR step responses in (C,D).

behavior involved swimming in the direction of translational
optic flow, thereby stabilizing the fish’s position in the presence
of water currents. Motor output rapidly adapted to changes
in visual input. This behavior was accompanied by neural

activity in multiple brain regions including the cerebellum and
inferior olive, and its adaptation prevented by lesions of the
inferior olive. Portugues et al. (2014) subsequently extended this
investigation to whole-brain mapping of the networks involved
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FIGURE 7 | OKR performance after training on predictable and non-predictable signals. (A) Predictable sine waves signals (frequencies were six log-spaced values

from 0.01 to 0.5Hz) used as the world velocity signal to excite the OKR control loop. Also shown are the corresponding eye velocity output signals after cerebellar

adaptation, from 600 s of online training (non-batch), zoomed to the final 50 s of adaptation. (B) OKR closed loop Bode plots from OKR sinusoidal experimental data

(Paige, 1983; Boyle et al., 1985), the original OKR flocculectomy model from this paper, the OKR model with intact cerebellum, and the Bode plot reconstructed from

the individual sinusoidal excitations shown in (A).

in rotational OKR, as modeled here. The circuits discovered
resemble those described in mammals, include the cerebellum,
and show little variation between individual fish. These studies
suggest that the larval zebrafish’s small and transparent brain
offers the opportunity of further investigating the basic circuitry
underlying OKR adaptation, and of exploring the neural
mechanisms underlying the effects of stimulus predictability and
the formation of internal models.

Summary
We have developed an adaptive model of the OKR based
on the adaptive filter representation of cerebellar cortex

proposed by Fujita (1982). The model demonstrates how the
cerebellum improves the disturbance rejection characteristics
in this exemplar problem of an adaptive feedback control
task. The model describes behavioral data, specifically the step
response of the OKR in primate. Our results have shown
that the adaptation of the OKR is extremely sensitive to
the world velocity signal used to excite the OKR feedback
control loop. When the world velocity signal is a predictable
single frequency sine wave the feedback control performance
is much improved compared to an unpredictable colored
noise signal. Finally, the nature of the world statistics were
shown to be crucial in driving adaptation of the cerebellar
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model to an OKR loop that described experimental step
response data.
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