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&Host–Guest Chemistry |Hot Paper |

Coordination-Cage-Catalysed Hydrolysis of Organophosphates:
Cavity- or Surface-Based?

Christopher G. P. Taylor,[a] Alexander J. Metherell,[b] Stephen P. Argent,[a] Fatma M. Ashour,[b]

Nicholas H. Williams,*[b] and Michael D. Ward*[a]

Abstract: The hydrophobic central cavity of a water-soluble

M8L12 cubic coordination cage can accommodate a range of

phospho-diester and phospho-triester guests such as the in-

secticide “dichlorvos” (2,2-dichlorovinyl dimethyl phosphate)

and the chemical warfare agent analogue di(isopropyl) chlo-

rophosphate. The accumulation of hydroxide ions around

the cationic cage surface due to ion-pairing in solution gen-

erates a high local pH around the cage, resulting in cata-

lysed hydrolysis of the phospho-triester guests. A series of

control experiments unexpectedly demonstrates that—in

marked contrast to previous cases—it is not necessary for

the phospho-triester substrates to be bound inside the

cavity for catalysed hydrolysis to occur. This suggests that

catalysis can occur on the exterior surface of the cage as

well as the interior surface, with the exterior-binding cataly-

sis pathway dominating here because of the small binding

constants for these phospho-triester substrates in the cage

cavity. These observations suggest that cationic but hydro-

phobic surfaces could act as quite general catalysts in water

by bringing substrates into contact with the surface (via the

hydrophobic effect) where there is also a high local concen-

tration of anions (due to ion pairing/electrostatic effects).

Introduction

The cavities of self-assembled molecular container molecules

provide a fertile environment for the study of catalysis in con-

fined spaces.[1–7] The relatively rigid, hydrophobic cavities arise

from the self-assembly process of relatively simple metal and

ligand components into hollow, pseudo-spherical arrays and

show some similarities to the binding pockets of enzyme

active sites. As the size and shape of these cavities can be pre-

dicted to some extent, it is possible to design a cavity of

known dimensions which will accommodate complementary

guests.

The size and shape of the cavity not only determines which

guests can bind but can also affect catalysis of their reactions.

Raymond and Bergman have demonstrated remarkable exam-

ples of unimolecular cyclisation reactions that are catalysed be-

cause the dimensions of the host cavity are ideal for stabilisa-

tion of folded transition states or intermediates.[3] In other

cases, the combination of two substrates binding in one cavity

accelerates their reaction based on the higher effective con-

centration they experience relative to their bulk concentrations

in solution.[4] Much of the work on catalysis of reactions in syn-

thetic cavities has therefore focussed on the structural aspects

of the containers.

A less obvious contribution to catalysis that we have recent-

ly exploited is an electrostatic effect that can arise from

charged containers when the catalysed reaction involves ions.

We recently reported an example of the highly efficient (2V

105-fold rate acceleration) catalysis of the Kemp elimination

(base-promoted reaction of benzisoxazole to form 2-cyanophe-

nolate) in the cavity of an octanuclear, approximately cubic, co-

ordination cage Hw (Figure 1) which has a charge of 16+ .[5]

The catalysis was attributed to the accumulation of hydroxide

ions from aqueous solution around the highly positive surface

of the cage, such that the bound benzisoxazole experiences a

very high local concentration of base even when the bulk pH

is relatively low. This ion-pairing effect also allows other anion-

ic bases (phenolates) to participate in the cage-catalysed Kemp

elimination as they are less well solvated than hydroxide ions

and so preferentially accumulate around the cage surface.[6] Re-

lated examples come from Raymond and Bergman using a tet-

rahedral cage with tris-catecholate vertices that has a 12@

charge: the high negative charge on the host facilitated

protonation of bound guests, such that acid-catalysed reac-

tions can occur in the cage cavity even under basic condi-

tions.[7]

This electronic contribution to the catalysis of reactions in

cage cavities has received less attention than the more obvi-

ous factors associated with recognition and binding of specific

guests but is of potentially equal significance. It is similar to
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the effect which operates when reactions are catalysed in ionic

micelles by accumulation of counter-ions in the Stern layer

around the charged surface.[8] The cage-catalysed reaction that

we described of cavity-bound benzisoxazole with surface-

bound basic anions[5, 6] is potentially general, as it relies on two

orthogonal interactions: hydrophobic binding of the substrate

in the cavity,[9] and accumulation of the anionic reaction part-

ners (hydroxide[5] or a phenolate[6]) around the cationic cage

surface by ion-pairing. In principle, any hydrophobic electro-

phile which binds in the cavity can be brought into close con-

tact with a high local concentration of any desired anion as a

reaction partner.

In order to investigate the generality of this further we have

investigated the ability of our cage host to catalyse hydrolysis

of a range of different substrates: specifically, organophos-

phates. Given the toxicity of these substrates, which has led to

their use in insecticides and their obvious relationship to some

chemical warfare agents, the ability of a synthetic host to bind

and catalyse their destruction is clearly of interest. Indeed

there have been a few other reports of catalysed destruction

of organophosphates in the cavities of a metal-organic[10a,b]

and covalent organic[10c] frameworks, and a tetrahedral coordi-

nation cage.[11] We have reported recently the binding of a

range of alkyl phosphonates—relatively unreactive and benign

simulants of G-series chemical warfare agents—in the cavity of

one of our cages in water,[12] and this work follows on from

that but exploits the catalytic activity of the cages to destroy

the more reactive phosphotriester substrates. In the course of

this work we have discovered—entirely unexpectedly—that it

is not necessary for the substrates to be bound inside the

cavity for catalysed hydrolysis to occur, but that observable

catalysis can occur at the external surface, albeit with less effi-

ciency than occurred in the Kemp elimination reaction of a

cavity-bound substrate.[5] The interesting implication of this is

that surfaces which combine cationic and hydrophobic charac-

ter have the potential to act as quite general catalysts in water

by bringing substrates into contact with the surface (via the

hydrophobic effect) where there is also a high local concentra-

tion of anions (due to ion pairing/electrostatic effects). If cata-

lysed reactions can occur at the external surface in this way,

the high shape/size selectivity associated with guest binding in

cavity will be lost. However, the catalysis, based on bringing

together two components in water using orthogonal interac-

tions, will be potentially general and could be used for a very

wide range of substrate/anion combinations.

Results and Discussion

Choice of substrates

The species that we initially investigated as possible guests

(Scheme 1) were 2,2-dichlorovinyl dimethyl phosphate (‘di-

chlorvos’), 2-nitrophenyl dimethyl phosphate (2NDP) and

di(isopropyl) chlorophosphate (DICP). Dichlorvos[13] is an insec-

ticide that has been banned in the EU since 1998 due to its

toxicity—it is an acetylcholinesterase inhibitor,[14] and is toxic

to far more than just insects—but is nonetheless still in wide-

spread use in developing countries. 2NDP is an isomer of “par-

aoxon-methyl” (4-nitrophenyl dimethyl phosphate) (4NDP)

which is the active metabolite of the insecticide parathion and

is also an acetylcholinesterase inhibitor.[14] 4NDP would be an

obvious choice of substrate for this work but we initially ruled

it out because molecular modelling revealed that the p-nitro

group on the phenyl substituent would clash with the cage in-

terior surface and prevent binding in the cavity. This issue was

alleviated by use of the o-nitro substituted analogue 2NDP. Di-

alkyl chlorophosphates are similarly reactive and of interest as

simulants for G-series chemical warfare agents,[15] and we se-

lected the di(isopropyl) member of the series, di(isopropyl)

chlorophosphate (DICP), for investigation: compared to the

methyl or ethyl analogues the higher hydrophobic surface area

of the isopropyl groups should afford stronger binding in the

cage cavity in water.[9]

Solution studies of guest binding and cage/guest crystal

structures

The host cage H is shown in Figure 1; it is the cubic M8L12
system, with a CoII ion at each vertex and a bis(pyrazolyl-pyri-

dine) bridging ligand spanning every edge,[16] that has been in-

Figure 1. The host cage [Co8L12]
16+ , abbreviated as H (R=H, used in this

paper as its chloride salt) and Hw (R=CH2OH, used in related work, for exam-

ple, ref. 5). (a) A sketch emphasising the cubic array of CoII ions and the dis-

position of a bridging ligand; (b) a view of the complex cation of H from a

crystal structure with each ligand coloured separately for clarity, emphasis-

ing the entwined ligand set and the windows in the centre of each face.

Scheme 1. Top: the phospho-ester guests / substrates used in this work.

Bottom: the ligand Lph which is used in the tetrahedral cage T (Figure 9).
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volved in our other recent work on cage-based catalysis[5,6] and

host–guest chemistry.[9, 17, 18] The water solubility that is essen-

tial for its function is provided by the chloride counter-ions.[6]

As a precursor to investigating any hydrolysis of the bound

guests we attempted to measure their binding constants in

the cage using 1H NMR titrations, but the fact that the guests

showed clear signs of decomposition during the NMR titrations

in the presence of H, partly due to the catalysis effect we were

seeking, made this difficult. Dichlorvos proved to be in fast ex-

change between the free and bound states, resulting in a sys-

tematic shift in some of the paramagnetically-shifted 1H NMR

signals associated with the high-spin CoII cage as more dichlor-

vos was added (see Supporting Information, Figure S1). How-

ever, a 1:1 binding isotherm fitted the resultant data poorly

due to progressive decomposition of the dichlorvos during the

experiment and after several attempts we could only estimate

the binding constant to be of the order of 10m@1 at 298 K.

This is small compared to the best-binding guests, which have

K values several orders of magnitude higher,[9, 17] and could

arise from the hydrophilicity of the P=O group and/or the

shape of the guest. Whilst the molecular volume of dichlorvos

(170 a3) is substantially below that required for optimal bind-

ing as predicted by Rebek’s “55% rule“,[20] (the cage cavity has

a volume of ca. 400 a3), its elongated shape due to the dichlo-

rovinyl substituent, with a bulky tetrahedral terminus, is not

ideally matched to a pseudo-spherical cavity. Similar difficulties

prevented the measurement of the binding constants of the

other two guests.

Accordingly we decided to estimate binding constants using

the molecular docking program GOLD, for which we recently

developed a custom scoring function that provides quantita-

tive prediction of guest binding inside the cavity of H in

water.[17,18] Analysis of the binding of our three guests using

GOLD produced predicted binding constants (to two signifi-

cant figures) of 31m@1 for dichlorvos, 14m@1 for 2-nitrophenyl

dimethyl phosphate and 310m@1 for DICP. Reassuringly the cal-

culated value for dichlorvos has the same order of magnitude

as the crude estimate of 101
m

@1 that we obtained from the
1H NMR titrations.

We could obtain crystal structures of the H·(dichlorvos)1.56
and H·DICP complexes by immersing pre-formed crystals of H

(as its tetrafluoroborate salt)[16] in a methanolic solution of the

appropriate guest for two hours, which resulted in uptake of

the guest without loss of crystallinity, in a manner analogous

to the “crystalline sponge“ method used by Fujita and co-

workers[19] and which we have also found effective.[5, 6, 9b, c, 18]

The crystal structure of the cage/guest complex of H·(dichlor-

vos)1.56 is shown in Figures 2 and Figure 3. The crystalline

sponge methodology has resulted in dichlorvos molecules

being taken into the crystals of H in two different positions.

One of the guests (Figure 2) does, as expected, lie inside the

cavity, along with a molecule of methanol. The cavity is not

large enough to occupy two molecules of dichlorvos, whose

combined volume would be 85% of the cavity volume. The

two guests are docked into the two opposed corners of the

cage associated with the fac tris-chelate vertices, where a con-

vergent set of CH protons close to a region of positive charge

provided by a CoII ion provides an H-bond donor site compara-

ble in strength to phenol.[21] The site occupancies of the two

guests are 0.36 (freely refined) for dichlorvos and 0.5 (fixed) for

MeOH per asymmetric unit. The asymmetric unit is however

half of the cage, which lies across an inversion centre, such

that the two guests display twofold disorder between the two

binding pockets, with each pocket at one end of the cage

cavity therefore being occupied by a disordered mixture of 0.5

MeOH and 0.36 dichlorvos molecules, with a complete cavity

therefore containing one MeOH and 0.72 dichlorvos guests

overall.

Figure 2 shows the complete cage with the dichlorvos guest

shown in space-filling mode; Figure 3 shows a view of the two

H-bond donor vertices of the cage[21] and their interactions

with the dichlorvos and MeOH guests. As we have consistently

observed in crystal structures of other inclusion complexes

Figure 2. A view of the structure of H·(dichlorvos)1.56, with the cage H [in

wireframe, with CoII ions shown as orange spheres] containing a molecule of

dichlorvos in the cavity (Co=orange, Cl=green, P=purple, O= red,

C=black, N=blue) shown in one of its two disordered positions. The MeOH

guest is not shown for clarity.

Figure 3. A view of the hydrogen-bonding interactions between the dichlor-

vos and MeOH guests with the H-bond donor pockets of H associated with

the two fac tris-chelate metal vertices at either end of a long diagonal of

the cubic cage host. Selected H atoms are shown in yellow; the H-bonding

interactions discussed in the main text are shown as green dotted lines.
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with this cage,[5,6, 9b, c, 18] the electron-rich region [atom O(11G)

of the P=O bond] is directed into the H-bond donor pocket

and lies 5.48 a from Co(4). There is a set of six P=O···HC con-

tacts with H···O separations of <3 a, involving the convergent

set of methylene CH2 and naphthyl CH protons in this pocket,

with the shortest being 2.64 a to H(54C) and 2.65 a to H(61D).

The bulky dichlorovinyl substituent on the P atom is directed

towards one of the portals in a centre of a square face on the

opposite side of the cage. The MeOH guest in the diagonally

opposite fac tris-chelate H-bond donor pocket is docked via a

similar network of CH···O interactions. The host cage itself has

the same structure that we have reported before.[16]

Figure 4 shows how the dichlorvos guest at the second site

(occupancy 0.42, freely refined) lies outside the cage cavity, in

the space between two cage complexes. This also shows

CH···O hydrogen bonding interactions with the cage exterior

surfaces; four such contacts with distances <3 a are shown in

Figure 3, with the shortest being 2.31 a between the P=O

oxygen atom O(11H), and the externally-directed pyrazolyl H4

proton H(44B) of an adjacent cage molecule. There is also a

CH···Cl contact of 3.06 a involving Cl(1H).

The crystal structure of H·DICP is in Figure 5 and Figure 6.

The process of treating crystals of H with DICP has clearly gen-

erated traces of HCl from hydrolysis of DICP as several of the

fluoroborate anions have been replaced by chloride in addition

to the guest being taken up into the cavity (we have noted

before that anion-exchange can also be performed on single-

crystalline samples of H without loss of crystallinity).[6] Al-

though there is the usual disorder of anions, the site occupan-

cies of the anions that could be located suggest the presence

of eight tetrafluoroborate and nine chloride ions per complete

cage. As only sixteen anions are required for each cage, this

suggests that one of the water molecules located in the lattice

is really H3O
+ and the crystallographic formulation has been

assigned on that basis. The important point is that one mole-

cule of the DICP guest occupies the H-bond donor pocket at

one end of the long diagonal of the cage and one molecule of

MeOH occupies the other (Figure 6), exactly as in the previous

structure with dichlorvos.

The electron-rich O atom of the P=O bond forms a similar

collection of short P=O···HC contacts (there are seven such in-

teractions in the distance range in the range 2.40–3 a) as was

seen with dichlorvos, and the MeOH guest in the opposed

pocket behaves similarly. Attempts to isolate X-ray quality crys-

tals of H with the final guest studied (2NDP) were unsuccess-

ful.

Hydrolysis reactions

On the basis of the ion-pairing model we proposed for the cat-

alysed Kemp elimination,[5, 6] we predicted that the high local

concentration of hydroxide ions around the cage cavity at

modest pH values should result in accelerated hydrolysis of di-

chlorvos: the expected products from this are the dimethyl

phosphate anion and dichloroethanal, both of which are too

Figure 4. A view of the dichlorvos molecule in H·dichlorvos that is not

bound in the cage cavity but lies on the outside of the cages in the space

between two complex units. The range of CH···O and CH···Cl interactions be-

tween the dichlorvos molecule and the exterior surface of the cages are

shown by dashed lines with separations given in a (Cl=green, P=purple,

O= red, C=black, N=blue). Selected H atoms are shown in yellow.

Figure 5. A view of the structure of H·DICP, with the cage H [in wireframe,

with CoII ions shown as small orange spheres] containing one molecule of

DICP and one of MeOH in the cavity (Co=orange, Cl=green, P=purple,

O= red, C=black, N=blue). The MeOH guest is not shown for clarity.

Figure 6. A view of the hydrogen-bonding interactions between the DICP

and MeOH guests with the H-bond donor pockets of H at either end of a

long diagonal of the cubic cage host. Selected H atoms are shown in yellow;

the H-bonding interactions discussed in the main text are shown as green

dotted lines.
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small and hydrophilic to bind significantly in the cage cavity.

This means that the products should readily dissociate from

the cavity into the aqueous phase, affording the possibility of

catalytic turnover.[5, 22] The experiments were monitored using
31P NMR measurements in D2O at 298 K, buffered at pD values

in the range 7.5–9.0 using borate buffer. We note that our orig-

inal studies on the catalysed Kemp elimination were conduct-

ed in the presence of borate buffer; the excess of borate

anions clearly does not prevent accumulation of hydroxide

ions around the cationic cage surface.[5, 6] A 16 mm solution of

dichlorvos was monitored under these conditions, either with

or without added H (as the chloride salt): the hydrolysis of di-

chlorvos was readily followed by disappearance of the signal

at @3 ppm for dichlorvos and the appearance of a new signal

at +3 ppm for dimethylphosphate.[23]

Typical results are shown in Figure 7. The observed first-

order rate constant for the hydrolysis of dichlorvos in the ab-

sence of cage H, kuncat, is 1.0V10
@6 s@1 at pD 7.7 (298 K). Under

the reaction conditions used, in the presence of 0.64 mm H as

catalyst, the first order rate constant for appearance of product

is an order of magnitude faster, at 1.4V10@5 s@1. This enhance-

ment scales linearly with concentration of H, showing that the

reaction is also first-order in catalyst, and so the second-order

rate constant for the catalysed reaction k2= (1.4V10@5 s@1)/

(0.64 mm)=0.02m@1 s@1 (Table 1, line 1). These observations are consistent with having a low binding

constant (estimated as ca. 30m@1) for formation of the H·di-

chlorvos complex, as this means that most of the H is not

bound to dichlorovos under the conditions of the experiment

and that the rate of decrease in dichlorovos concentration

should therefore obey the first order rate law. If we make the

assumption—which was true for our previous work on the

Kemp elimination[5, 6] and is clearly possible as demonstrated

by the structural data described above—that the catalysed re-

action occurs via the cavity-bound guest (and non-bound

guest reacts at the background rate), then by taking the frac-

tion of bound guest into account we find that the rate con-

stant for the cage-catalysed reaction, kcat, would be 7V10@4 s@1:

a rate acceleration kcat/kuncat of about 700 fold for the cage-cat-

alysed reaction under these conditions.

Very similar behaviour was observed for catalysed hydrolysis

of 2NDP, again following the reaction by 31P NMR spectroscopy.

At a pD of 7.8 the background hydrolysis (no cage present)

had an observed rate constant kuncat of 6.0V10@7 s@1. In the

presence of 0.78 mm H under the same conditions the rate of

appearance of the product was an order of magnitude faster

at 6.6V10@6 s@1, giving k2=0.008m@1 s@1 (Table 1, line 2) Taking

into account the calculated binding constant of 14m@1 this

would afford a kcat value of 6V10@4 s@1—apparently giving a

similar rate enhancement (kcat/kuncat&1000 fold) as was ob-

served with dichlorvos as substrate—again based on the as-

sumption that the catalysis is occurring only on the small frac-

tion of guest that is bound in the cage cavity. Representative

reaction profiles and curve fittings to rate constants are shown

in Supporting Information, Figures S2–S5.

DICP proved more difficult to analyse because its greater re-

activity means that the background hydrolysis rate is already

high, so any enhancement arising from cage-based catalysis

Figure 7. Cage-catalysed hydrolysis of dichlorvos [16.6 mm dichlorvos in

borate-buffered D2O at pD 7.7 and 298 K, in the absence of cage H (blue

traces) or the presence of H (0.64 mm ; red traces)] . Top: evolution of
31P NMR spectra showing consumption of dichlorvos (@3 ppm) and appear-

ance of dimethylphosphate (+3 ppm); a known amount of dimethyl methyl-

phosphonate (d=39 ppm) was present as a calibrant to allow quantitative

integration of the 31P signals. Bottom: comparison of rates of product ap-

pearance in the absence and presence of H.

Table 1. Summary of catalysed reactions rates using the range of cages

and substrates discussed in this paper. For more detail see Supporting In-

formation.

Catalyst Conditions[a] Substrate k2
[m@1 s@1]

+ /@

[%][b]

H

(0.64 mm)

A dichlorvos (16.6 mm) 0.02 2

H

(0.78 mm)

A 2NDP (15.5 mm) 0.008 3

H

(0.21 mm)

B 2NDP (0.5 mm) 0.019 1

H

(0.21 mm)

B 2NDP (0.5 mm)+ 62.5 mm

NaCl

0.0075 1

H

(0.95 mm)

C 4NDP (17.5 mm) 0.0068 2

T

(0.95 mm)

B 2NDP (1 mm) 0.021 1

T

(0.95 mm)

B 4NDP (1 mm) 0.015 1

[a] Conditions A : 31P NMR spectroscopy, D2O, pD 7.7, 298 K. Conditions B :

UV/Vis spectroscopy with a micro-plate reader monitoring formation of 2-

or 4-nitrophenolate products, H2O, pH 8.5, 303 K. Conditions C : 31P NMR

spectroscopy, D2O, pD 8.5, 298 K. [b] Calculated uncertainty in k2 value

arising from the fitting, rounded up to the nearest 1%.
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was more difficult to detect. In addition, hydrolysis of DICP

generates additional chloride which—as we established recent-

ly—has a substantially inhibiting effect on the cage-based cat-

alysis.[6] Accordingly this was not pursued further.

Control experiments: Investigation of catalysis at the exteri-

or cage surface

In order to confirm that catalysis of the hydrolysis reactions for

dichlorvos and 2NDP requires the substrates to be bound

inside the cage cavity, an essential control experiment is to

block the cavity with an unreactive but strongly binding inhibi-

tor. For this purpose we use cycloundecanone whose high hy-

drophobicity and ideal match for the cavity size afford very

strong binding in water.[9b] In our studies on the Kemp elimina-

tion, addition of this inhibitor resulted in complete loss (within

experimental error) of the catalytic rate enhancement,[5,6] with

the reaction rate reverting to the uncatalysed background

level.

With dichlorvos and 2DNP as substrates we were surprised

to find that addition of cycloundecanone to the reaction mix-

ture resulted in no significant change in the reaction rate, de-

spite the cycloundecanone being bound in the cage cavity (as

observed by 1H NMR spectroscopy which shows clear para-

magnetically shifted signals between 0 and @10 ppm for

bound guests).[24] Reactions investigated in parallel with and

without cycloundecanone under otherwise identical conditions

showed the same reaction progress profiles within experimen-

tal error ; and addition of cycloundecanone to a reaction after

it was underway showed no noticeable discontinuity in the

progress profile, with the reaction continuing unchanged (see

Supporting Information, Figure S6). Clearly, in these cases,

binding of the substrates in the internal cavity is not necessary

for catalysis.

We rationalise this behaviour by assuming that the substrate

can also interact with the cage via association with the cage

exterior surface, which displays the same hydrophobic compo-

nents as the interior cavity, and the substrate is thereby

brought into the region around the cage which experiences

ion pairing with hydroxide ions, providing a higher local con-

centration. This exterior-binding pathway becomes the default

under the experimental conditions used, in contrast to the

Kemp elimination reactions where much stronger binding of

the substrate benzisoxazole inside H meant that the cavity-

based reaction dominated and could be switched off by dis-

placement of the guest using cycloundecanone.[5, 6] Our data

implies that the small fraction of internally bound substrate

(ca. 1%) does not contribute significantly to the observed hy-

drolysis reaction as this overall rate does not change when in-

terior binding is excluded, and so reaction in the cavity interior

is clearly less efficient than on the exterior surface. Possibly,

the electrophilic phosphorus of the substrate is not positioned

to allow successful attack by hydroxide through the windows

in the cage sides. Given this, the kcat/kuncat values of around 103

calculated above based on the assumption that catalytic hy-

drolysis only takes place through the cavity-bound species are

not meaningful.

The possibility of catalytic activity at the exterior surface of

the cage facilitated by weak interactions that bring cage and

substrate together suggested three additional sets of experi-

ments, as follows. For these experiments we focussed particu-

larly on the catalysed hydrolysis of 2NDP, as the liberation of 2-

nitrophenolate is easily followed by its characteristic intense

UV/Vis absorption at 420 nm which allows experiments under

many different conditions to be conveniently performed in

parallel by UV/Vis spectroscopy using a plate-reader (all plate-

reader experiments were performed at 303 K due to the oper-

ating temperature inside the machine which made 298 K diffi-

cult to maintain).

For the next control experiment we investigated inhibition

of the catalysed hydrolysis by excess chloride (Figure 8). As

chloride ions are easier to desolvate than hydroxide, they bind

to the cage surface more readily and thereby displace hydrox-

ide. For the Kemp elimination on cavity-bound benzisoxazole,

addition of a large excess of chloride to the reaction complete-

ly switched off catalysis and reduced the reaction to the back-

ground rate, even though the benzisoxazole remained in the

cage cavity, consistent with loss of hydroxide from the vicinity

of the cage surface.[5] In contrast, with 2NDP as substrate, addi-

tion of a large excess of chloride had only a modest inhibiting

effect on the hydrolysis: for example addition of 62.5 mm NaCl

to an experiment containing 0.21 mm H (and hence 65.9 mm

chloride including the 16 counter-ions already associated with

H), and 0.5 mm 2NDP (at 303 K, pH 8.55) resulted in a reduc-

tion in the rate of 2-nitrophenolate formation by only 60%

(see Table 1, entries 3 and 4, and Supporting Information, Fig-

ure S7). This is again consistent with an exterior-surface bind-

ing model : the 2NDP will be exposed to the bulk solvent in a

way that it is not when cavity-bound, so that it can be at-

tacked by hydroxide. The displacement of hydroxide ions

bound to specific sites at the faces of the cage has a smaller

effect, as other weakly associated hydroxide ions can still par-

ticipate. If the substrate is in the cavity, only the anions at key

Figure 8. Cage-catalysed hydrolysis of 2NDP. Top: evolution of UV spectra

showing production of product 2-nitrophenolate in the presence of cage H :

its appearance was measured by absorbance at 420 nm (dashed line).

Bottom: comparison of rates of product appearance (conditions: 0.5 mm

2NDP in borate-buffered H2O at pH 8.55 and 303 K) in the absence of cage

H (black line) or the presence of H (0.21 mm ; orange dots).
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locations can participate—and substitution with chloride then

leads to a much more substantial loss of activity.

Finally, we investigated some cage/guest combinations in

which the substrate cannot bind in the cavity. The substrate

4NDP—as noted earlier—is not expected to bind in the cage

cavity of H according to molecular modelling. 4NDP showed a

very similar enhancement of its rate of hydrolysis in the pres-

ence of H as did 2NDP. For example using 0.95 mm H and

17.5 mm 4NDP at pD 8.55 the rate constant for appearance of

product is 7.8V10@6 s@1, compared to 1.3V10@6 s@1 in the ab-

sence of catalyst, giving k2=0.0068m@1 s@1 (Table 1, line 5; and

Supporting Information, Figure S8): as this substrate does not

bind in the cavity this, again, can only be an exterior surface

effect.

The implication of this is that a smaller cage with a smaller

cavity—incapable of binding any substrates of this size—could

act as a catalyst for organophosphate hydrolysis in weakly

basic solution, and so it proved in the final control experiment.

The smaller tetrahedral cage [Co4(L
ph)6](BF4)8 was reported by

us some time ago[25] and has an internal cavity only large

enough to bind a tetrafluoroborate (or perchlorate) ion. This

could be converted to the water-soluble chloride salt (abbrevi-

ated hereafter as T, for tetrahedron) by anion exchange with

Dowex resin, and an aqueous solution of T as its chloride salt

catalysed hydrolysis of both 2NDP and 4NDP to a similar

extent. Using 0.95 mm T and 1 mm substrate (pH 8.55, 303 K)

hydrolysis of 4NDP was accelerated from 3.0V10@6 s@1 with no

catalyst to 1.7V10@5 s@1 with catalyst present: and the rate

constant for hydrolysis of 2NDP was accelerated from 5.0V

10@6 s@1 with no catalyst to 2.5V10@5 s@1 with catalyst present.

These give rate constants for the cage-catalysed reaction of

k2=0.015 and 0.021m@1 s@1 for cage T with 4NDP and 2NDP,

respectively, under these conditions (Table 1, lines 6 and 7; see

also Supporting Information, Figure S9). Interestingly the small-

er cage T is a comparably good catalyst to H for the same sub-

strate under the same conditions (compare lines 3/6, and 5/7,

in Table 1): the smaller surface area and lower overall charge

imply a similar charge density and hence ability to accumulate

anions, and the surface composition is similar between the

two types of cage structure (T and H) implying a similar hydro-

phobic character to the exterior surface.

Whilst investigating the hydrolysis of 2NDP by T, a solution

left standing for three days in an NMR tube produced a crop

of X-ray quality crystals which proved to be the tetrahedral

cage that had co-crystallised with both 2NDP substrate and

the hydrolysis product 2-nitrophenolate (Figure 9). Whilst such

a structure is not in itself an indication of the catalytically rele-

vant species in solution, it nevertheless provides a pleasing in-

sight into the structures available to the catalyst, starting ma-

terial and product in a single assembly. The complex cage

cation [Co4(L
ph)6]

8+ is the same edge-bridged tetrahedral as-

sembly that we have reported before, with four fac tris-chelate

metal ion vertices all having the same chirality and overall T

molecular symmetry.[25] The small central cavity contains a dis-

ordered mixture of a BF4
@ anion and a chloride ion: the essen-

tially complete encapsulation of the cavity by the cage—there

are no portals in the faces—mean that the central, tightly

bound anion[25] has not fully exchanged for chloride. The chan-

nels between the cage cations are occupied by a mixture of ni-

trophenolate anions and unreacted 4NDP molecules which

form a variety of contacts with the cage exterior surface. In

particular the H-bond accepting P=O oxygen atom [O(12G)]

forms CH···O contacts with the CH hydrogen atoms C(35E) and

C(36E) from a pyridyl ligand (the H···O separations are 2.62 and

2.99 a respectively).

Comparison of cavity-based and exterior surface-based cat-

alysis

In our earlier work concerning the cage-catalysed Kemp elimi-

nation,[5] the ratio of the second-order rate constants for cataly-

sis by the cage and by hydroxide is 440:1. Assuming that it is

hydroxide associated with the cage that is involved in the reac-

tion, this gives a measure of the effect of the cage on the tran-

sition state relative to water (as the two reactions share a

common ground state). Taking the same approach for the re-

action of 2NDP with hydroxide, the second order rate constant

for the background reaction in the absence of cage (measured

by us) is 0.1m@1 s@1, which can be compared with the value of

0.008m@1 s@1 for the cage-catalysed reaction (see earlier). Ac-

cordingly, the ratio of the second-order rate constants for cat-

alysis of 2DNP hydrolysis by the cage and by hydroxide is now

0.08: less effective by a factor of around 5000 compared to the

Kemp elimination reaction. Given that the idea of a saturating

rate is not applicable here as the substrate is almost entirely

not in the cavity, this factor of 5000 difference between the

rate acceleration we observed for the Kemp elimination[5] and

for 2DNP hydrolysis (this work), provides a way to compare the

effectiveness of cavity-catalysed and surface-catalysed reac-

tions under the prevailing conditions.

We need to take account of the fact that in this work we

have used H as its chloride salt (with 16 equivalents of chloride

to balance the cage charge). This in itself has a substantially in-

hibiting effect: we showed recently that use of the chloride

Figure 9. View of the structure of T·(4-nitrophenolate)3·(4NDP)2 showing the

presence of both starting material (4NDP) and product (4-nitrophenolate

anions) around the exterior surface of the tetrahedral cage cation

[Co4(L
ph)6]

8+ (Co=orange, Cl=green, P=purple, O= red, C=black,

N=blue).
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salt of the cage, for synthetic convenience and good water sol-

ubility,[6] slowed down the Kemp elimination by a factor of ap-

proximately 100 compared to the original cage-catalysed reac-

tion in which water solubility was provided by external sub-

stituents.[5] Taking account of this, we can suggest that the

effect of exterior surface catalysis compared to cavity-based

catalysis results in an additional reduction in the catalysed

second-order rate constant by a factor of around 50, which

can reasonably be ascribed to the beneficial effect of the

cavity in positioning the substrate at the centre of a shell of

desolvated, surface-bound anions that can access the reaction

site of the substrate. This positioning effect can also be inhibi-

tory, if the mode of substrate binding prevents the surface-

bound anions from reaching the required reaction site.

Conclusions

This work leads to the clear conclusion that, whilst the coordi-

nation cage H can act as both (i) a host which encapsulates a

range of small molecule organophosphate guests and (ii) a cat-

alyst for their hydrolysis by surface-bound anions, these two

phenomena need not go together. The substrate/guest associ-

ates with the cage surface—interior or exterior—via the hydro-

phobic effect, and possibly additional polar interactions (cf. the

crystal structures in which substrates show hydrogen-bonding

interactions with exterior cage surfaces) ; and—as shown in

earlier work—hydroxide anions accumulate around the cage

surface because of its high positive charge. It is not necessary

for the substrate to be located inside the cavity, however, to

be in close proximity with the high local concentration of

anions. As one face of the cage surface (interior or exterior) is

chemically similar to the opposite one, a catalysed reaction be-

tween substrate and anions can occur even when the cavity is

blocked by a strongly binding inhibitor, or when the substrate

is too large to bind inside the cage cavity. However, if the sub-

strate does bind well in the cavity it will be fully encapsulated

by the shell of anions and experience a higher local concentra-

tion of anions than a substrate in contact with the exterior sur-

face; and therefore undergo particularly effective catalysis if

the favoured orientations are suitable for reaction to occur.[5]

We note that there have been other examples of host/guest

chemistry associated with coordination cages in which guests

interact with the exterior surface of cages. These include tet-

raalkylammonium cations binding to the exohedral surface

sites of an anionic tetrahedral cage;[26] perchlorate anions occu-

pying surface sites rather than an internal cavity site in a pen-

tagonal-bipyramidal assembly;[27] and binding of tetraphenyl-

borate anions to the exterior surface of a cubic cage acting to

prevent uptake of smaller guests into the cavity via an alloste-

ric effect.[28]

The importance of this observation is that any surface that

combines the two properties of being both hydrophobic and

cationic[29,30] may be able to act as a catalyst for reactions of

hydrophobic organic species with anions in a similar way by

co-location of the two reaction partners using orthogonal in-

teractions. This combination of characteristics underpins the

cation-pi interaction in water,[29] for example, and has been

suggested as contributing to molecular recognition and cata-

lytic processes involved in the origin of life[30] as well as molec-

ular recognition in a range of supramolecular systems[31] and

examples of catalysis at the surface of ionic micelles.[32] The

loss of the selectivity associated with cavity binding in a cage

means that this type of catalysis will be undiscriminating in

terms of substrate size and shape: but the converse is a poten-

tially broad applicability to a wide range of substrates. In par-

ticular this type of catalysis may be applicable not just to the

surfaces of cationic cages but to metal/ligand nanosheets—ex-

foliated 2D layers derived from metal-organic frameworks—

which have been recently become of interest for their solution

chemistry.[33] Exploring the scope and generality of this cataly-

sis will be the focus of future work.

Experimental Section

All experimental details are in the Supporting Information; this in-
cludes details of kinetic analyses, tables of reaction rate data under

a range of different conditions, and crystallographic data for the

three structures.
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