

This is a repository copy of *Electronic structure*, ion diffusion and cation doping in the Na4VO(PO4)2 compound as a cathode material for Na-ion batteries.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/159356/

Version: Supplemental Material

Article:

Aparicio, PA and de Leeuw, NH orcid.org/0000-0002-8271-0545 (2020) Electronic structure, ion diffusion and cation doping in the Na4VO(PO4)2 compound as a cathode material for Na-ion batteries. Physical Chemistry Chemical Physics, 22 (12). pp. 6653-6659. ISSN 1463-9076

https://doi.org/10.1039/c9cp05559b

© the Owner Societies 2020. This is an author produced version of an article published in Physical Chemistry Chemical Physics. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary Information

Electronic Structure, Ion Diffusion and Cation Doping in the Na₄VO(PO₄)₂ Compound as a Cathode Material for Na-ion Batteries

Pablo A. Aparicio^a and Nora H. de Leeuw^a

^a School of Chemistry, Cardiff University, Main Building Park Place, Cardiff CF10 3AT, United Kingdom

^b School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom

Email:

*apariciosanchezp@cardiff.ac.uk

*n.h.deleeuw@leeds.ac.uk

Buckingham: $Ae^{-r/\rho} - Cr^{-6}$	A (eV)	ρ (Å)	C (eV Å ⁶)	Cut-off (Å)
Na ^{0.6} -O ^{-1.2}	2010.33	0.261901	28.1687	$r_{min} = 0.0/r_{max} = 15.0$
$P^{3}-O^{-1.2}$	28357	0.178335	68.0998	$r_{min} = 0.0/r_{max} = 15.0$
V ³ -O ^{-1.2}	2306.19	0.228157	0	$r_{min} = 0.0/r_{max} = 15.0$
V ^{2.4} -O ^{-1.2}	2306.19	0.228157	0	$r_{min} = 0.0/r_{max} = 15.0$
O ^{-1.2} -O ^{-1.2}	2067.72	0.342846	214.2	$r_{min} = 0.0/r_{max} = 15.0$

Table SI1. Pedone interatomic potential parameters of NaVOPO₄ polymorphs.¹ The V-O parameters were optimized using the GULP software.²

	β-Na ₄ VO(PO ₄) ₂		
	Comp.	Exp. ^a	
V-O	1.749	1.845	
	1.940	1.868	
	1.966	1.945	
	1.977	1.950	
	1.989	1.967	
	2.043	1.992	
Р-О	1.527	1 518	
	1 542	1.510	
	1.5 12	1.51)	
	1.564	1.529	
N. (1) O	2.207	1.013	
Na(1)-O	2.297	2.260	
	2.324	2.336	
	2.394	2.431	
	2.432	2.452	
	2.433	2.478	
	2.459	2.507	
Na(2)-O	2.243	2.223	
	2.247	2.234	
	2.312	2.285	
	2.329	2.414	
	2.712	2.657	
	2.816	2.853	
Na(3)-O	2.271	2.309	
	2.332	2.323	
	2.372	2.369	
	2.410	2.492	
Na(4)-O	2.325	2.301	
. /	2.460	2.489	
	2.470	2.536	
	2.517	2.600	
	2.617	2.623	
	2.624	2.698	
	2.823	2.756	

Table SI2. Computed and experimental bond lengths of β -Na₄VO(PO₄)₂ compound (in Å).

Figure SI1. Mean square displacement (MSD) *vs.* time for the $Na_4VO(PO_4)_2$ compound at 300 and 600 K.

References

- 1 A. Pedone, G. Malavasi, M. C. Menziani, A. N. Cormack and U. Segre, *J. Phys. Chem. B*, 2006, **110**, 11780–11795.
- 2 J. D. Gale and A. L. Rohl, *Mol. Simul.*, 2003, **29**, 291–341.
- 3 J. Kim, H. Kim and S. Lee, *Chem. Mater.*, 2017, **29**, 3363–3366.