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A novel wave-energy device with enhanced
wave amplification and induction actuator

Onno Bokhove, Anna Kalogirou, David Henry, and Gareth P. Thomas

Abstract—A novel wave-energy device is presented. Both
a preliminary proof-of-principle of a working, scaled labo-
ratory version of the energy device is shown as well as the
derivation and analysis of a comprehensive mathematical
and numerical model of the new device. The wave-energy
device includes a convergence in which the waves are
amplified, a constrained wave buoy with a (curved) mast
and direct energy conversion of the buoy motion into
electrical power via an electro-magnetic generator. The
device is designed for use in breakwaters and it is possible
to be taken out of action during severe weather. The new
design is a deconstruction of elements of existing wave-
energy devices, such as the TapChan, IP wave-buoy and
the Berkeley Wedge, put together in a different manner
to enhance energy conversion and, hence, efficiency. The
idea of wave-focusing in a contraction emerged from our
work on creating and simulating rogue waves in crossing
seas, including a “bore-soliton-splash”. Such crossing seas
have been recreated and modelled in the laboratory and
in simulations by using a geometric channel convergence.
The mathematical and numerical modelling is also novel.
One monolithic variational principle governs the dynamics
including the combined (potential-flow) hydrodynamics,
the buoy motion and the power generation, to which the
dissipative elements such as the electrical resistance of the
circuits, coils and loads have been added a posteriori. The
numerical model is a direct and consistent discretisation
of this comprehensive variational principle. Preliminary
numerical calculations are shown for the case of linearised
dynamics; optimisation of efficiency is a target of future
work.

Index Terms—water-wave focussing, wave-energy buoy,
electro-magnetic generator, monolithic variational princi-
ple, finite-element modelling

I. INTRODUCTION

MOTIVATED by previous research on shallow-
water and shallow-granular flows through con-

tracting channels, and by water-wave impact against
sea walls, a series of ad-hoc experiments have been
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performed of water-wave impact in a channel with
a V-shaped and closed contraction at its end. This
work will be reviewed briefly, as well as the water-
wave impact phenomenon, before demonstrating how
it inspired the novel wave-energy device presented
here.

First, in these shallow-layer flows, multiple through-
flow states emerged under (quasi-)steady flow, includ-
ing a subcritical reservoir flow state with much higher
layer depths, typically four to six times higher than
the depths in the fast supercritical flow state [1], [13].
Second, water-wave impact against sea walls involves
impulsive forces and very high collapsing jets [14].
Third, these effects have been combined in the channel
with a V-shaped end in which a series of solitons has
been generated (a high one, an intermediate-height one
and a low one) by a finite-time removal of a lock gate
between two water levels at rest at the beginning of the
channel. In the experiments, the first soliton travelled
fastest and was about 0.35m in height when it entered
the V-shaped channel contraction. As it progressed,
it broke into a hydraulic bore, diminished slightly
in amplitude due to turbulent wave breaking and
emerged as a smooth soliton again upon entering the
contraction. It subsequently reflected in the V-shaped
contraction, with minor amplification, to draw a deep
trough in which the second unbroken soliton exactly
crashed, to create a wave or jet of about 3.5m in height.
Hence, the abnormality index AI used for rogue waves,
defined as the rogue-wave height over the ambient
wave height, was about AI = 10 [2].

While our set-up has been engineered, it has rela-
tions with rogue-wave generation at sea, either mid-
ocean in crossing seas with two or even three main
wave directions under a certain angle, or at the coast
by incoming waves interacting with a V-shaped sub-
merged or topographical convergence lying under as
well as above the water surface. A simplified mod-
elling environment for water waves in crossing seas
or with crossing solitons consists of the Kadomtsev-
Petviashvilli equation [6], [9], in which maximum am-
plifications of two or three solitons interacting under
an optimal angle can lead to wave amplification of 4
to 8.6 times, using analytical solutions [5], [6].

Several existing wave-energy devices have been in-
spired by such wave-amplification phenomena, ob-
served by crossing seas under mid-ocean conditions
or by sea walls or topography-induced coastal conver-
gences. These devices will be described below since
they are related to our novel wave-energy device, re-
ferring to Falcão [4] for more details. First, in the well-
known TapChan device a natural convergence along
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the coastline is used to amplify the wave height. At the
end of this natural convergence there is an engineered
channel end which lets waves run over a man-made
wall leading into a higher-level reservoir. Hydropower
is used at the other end of the reservoir to generate
electricity by making use of the difference in water lev-
els. Second, oscillating water columns (OWCs) consist
of an enclosed contracting cavity in which a rising or
falling water surface compresses or decompresses air
driving a Wells turbine placed in a nozzle at the end
of the curved cavity for power generation. OWCs have
been installed at the coast or on floating or anchored
platforms in deeper waters. The IP wave buoy (IPWB)
is a different type of device, in which one pipe segment
has been anchored to the sea bottom to stay relatively
fixed in the vertical direction, while an insert bobs up
and down under the wave motion, thus generating
energy via a power-take-off (PTO) device. The energy
is often used in-situ to power the navigation lights
placed on the buoy. Our novel wave-energy device
is a deconstruction of the above three together with
the Berkeley wedge [12], and a reconstruction using
different aspects of the above four devices [2], [7], [8].
A proof-of-principle of the device has been built; this
was tested in 20131 and is shown in figure 1.

The device consists of a V-shaped contraction with
vertical walls and a flat bottom, in which a simplex-
shaped wave-buoy is placed constrained to move in
one direction only, either along a slight arc or along
the vertical. It has a straight or curved mast, on top
of which there are a series of magnets that move
through induction coils. The movement of the wave-
buoy by the incoming waves leads to magnetically-
induced power generation. In the sketch of figure 2a,
a more robust version is shown (compared to that in
figure 1b), wherein the buoy pivots around a point
of rotation such that it can also be rotated out of the
contraction during a storm.

The outline of the paper is as follows. In §II a com-
plete mathematical model is given of the fully coupled
nonlinear water-wave motion, the buoy motion and
the induction motor, with the dissipative loads and
losses in the electrical circuits involved. In an accom-
panying Appendix A, it is shown that the conservative
dynamics follows from a variational principle. In §III
the linearisation is introduced, with a compatible finite-
element discretisation stated in Appendix B, which is
by construction fully consistent with the constraints
involved. Simulation results using this discretisation
are shown in §IV, followed by a discussion in §V.

II. MATHEMATICAL MODEL OF THE DEVICE

The complete mathematical model consists of three
components:
• the nonlinear potential-flow water-wave motion in

the wave tank and its contraction;
• the constrained buoy motion induced by the water

waves; and,

1See https://www.youtube.com/watch?v=SZhe SOxBWo&t=254s
and [2].

(a)

(b)

Fig. 1. A proof-of-principle of the scaled wave-energy device is
shown: (a) a zoom-in of the electro-magnetic generator showing the
hollow tube (covered in red tape) with its coils and the LED; the
magnets on top of the buoy-mast move through the coils; and, (b) a
view in the contraction with the buoy and a blinking LED light (top
left).

• the power generated through electro-magnetic in-
duction. This generator comprises the magnets
attached to a mast on the buoy moving through
fixed induction coils, and the loads consuming the
power generated, here modelled as LEDs.

The wave tank ranges from a piston wavemaker at
y = R(t) up to the convergent point of the linear con-
traction at y = Ly . The contraction starts at y = Ly−Lc
and the width of the main channel is Lx, with the
channel centre line at x = Lx/2, cf. figure 2b. Hence,
the wavetank has the horizontal extent x ∈ [0, Lx] and
y ∈ [R(t), ly(x)], with ly(x) = Ly − Lc|1− 2x/Lx|.

The water waves are modelled using classical po-
tential flow with a free surface. The velocity u of the
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Fig. 2. (a) Sketch of our wave-energy device with its horizontal
axle at the contraction entrance, and its three-dimensional tetrahedral
buoy in the corner of the contraction. The buoy is attached to an
induction motor, consisting of magnets on the arc moving through
the hollow cylindrical coils indicated in yellow, while the LEDs are
shown with green and red. (b) Top-view schematic of the wave-
energy tank used in the simulations, and (c) the finite-element mesh.

water is approximated by u = ∇φ using a velocity
potential φ = φ(x, y, z, t), with horizontal coordinates x
and y, vertical upward coordinate z and time t. Gravity
acts downwards with acceleration g. The bottom of the
channel is horizontal at z = 0 and the free surface lies
at z = h(x, y, t), with water depth h(x, y, t), assuming
a single-valued non-overturning free water surface.
Luke’s variational principle [11] can be used to model
and derive the equations for three-dimensional water-
wave motion, cf. [3].

The buoy is a tetrahedral simplex with a flat top face,
two vertical faces aligned with the linear contraction
walls, and a slanted face focussing in a point at the
bottom, cf. [2]. The combination of buoy, its vertical
mast and the magnets has an overall mass M and
vertical coordinate Z = Z(t), whose rest position Z̄
is determined by Archimedes’ principle. The top of
the mast above Z is Hm, and z = Z + Hm lies at the
centre of the magnet. The vertical velocity of the buoy
is W = Ż ≡ dZ/ dt. The time-dependent position of
the buoy is given by

z = hb (x, y;Z(t)) = Z(t)−Hk − tanα (y − Ly), (1)

with α a buoy angle and Hk the depth of the buoy’s
keel such that z = Z − Hk is at the apex or bottom
point of the buoy at y = Ly . At rest, the depth in the

main wavetank is h = H0, while under the buoy it
is H(y) = hb(y; Z̄). The waterline at y = yb(x, t), here
assumed to be single-valued in y, is located where the
water depth just equals the buoy depth, i.e. where

h (x, yb(x, t), t) = hb (x, yb(x, t);Z(t)) . (2)

In general, (2) is an implicit relation defining the water-
line yb but for the simplex-shaped buoy it is an explicit
relation since hb is linear in y and independent of x,
even though the nonlinear waterline position yb(x, t) is
a function of x and t.

The electro-magnetic induction generator consists of
a circuit with induction coils and inductance Li, and a
series of parallel circuits with LEDs as loads. The re-
sistance of the inductance coils is Rc and the resistance
of the rest of the circuit is Ri. The induction coils have
a radius a, length L and N turns. The magnetic dipole
momentum of the magnet is µ, the magnet’s length is
Lm and its radius Am < a since the magnet can move
freely through the coils. The magnet lies in the time-
dependent range z ∈ [Z(t) +Hm − Lm/2, Z(t) +Hm +
Lm/2], while the induction coils lie in the fixed range
z ∈ [Z̄+(1+αh)Hm−L/2, Z̄+(1+αh)Hm+L/2], with
0 < αh < 1.

Two sets of LEDs are circuited in parallel in opposite
directions such that one set of LEDs is always operating
under the AC-currents generated. The two unknowns
in the model are the charge Q = Q(t) and the current
I = I(t) = Q̇ ≡ dQ/dt through the circuit. A straight-
forward adaptation of Shockley’s equation for LEDs
then yields

Vs(I) = −sign(I)nqVT ln (|I|/Isat + 1), (3)

with the sign(I)–function and absolute value |I| used
to model each set of two LEDs in parallel. Here, nq is
the quality factor, VT is the thermal voltage and Isat
is the saturation current. Rather than modelling the
current I(t), the variational modelling puts priority to
a variable PQ(t) conjugate to Q(t). Due to the intrinsic
coupling of the electro-magnetic generator and the
buoy, PQ is then defined as follows [2]

PQ = LiQ̇−K(Z), with K(Z) =

∫ Z

γG(Ẑ) dẐ, (4)

where γ = 2πa2µN/L and function G(Z) is defined by

G(Z) =
1

πA2
mLma

∫ L/2

−L/2

∫ 2π

0

∫ Am

0

F (z) dr dθ dq, (5a)

with

F (z) = f(−z)− f(z), (5b)

f(z) =
r(a− r cos θ)

(r2 + (Lm

2 + z)2 + a2 − 2ra cos θ)3/2
, (5c)

z = q + Z̄ + αhHm − Z. (5d)

Here we will consider an approximation of the function
G(Z), valid in the far field of the magnet and given by

Gapprox(Z) ≈ 1(
a2 + (Z̄ + αhHm − Z − L

2 )2
)3/2
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Fig. 3. Function G(Z) (defined in (5)) and its approximation
Gapprox(Z) in the far field of the magnet (defined in (6)). The circle
denotes the value G(Z̄) at the rest position Z̄ = 0.18. The values
used for the rest of the parameters are taken from the table found
in the appendix of [2].

− 1(
a2 + (Z̄ + αhHm − Z + L

2 )2
)3/2 . (6)

A plot of γG(Z) for the full function in (5) and its
approximation in (6) is shown in figure 3; the two
functions clearly lie close to each other, especially at
the rest position Z̄ that will be used later (shown with
a circle in figure 3), which confirms that the far-field
approximation is appropriate in the present study.

The representation of the coupled system concerning
the nonlinear water waves, the buoy motion and the
electro-magnetically induced currents will be obtained
using variational methods. In the absence of the dis-
sipative effects caused by the resistance of electrical
circuits, induction coils and LED loads, the dynamics
can be derived from a single variational principle (VP),
detailed in Appendix A. With each respective variation
indicated, variations of this VP (17) then yield the fol-
lowing governing equations and boundary conditions,

δφ : ∇2φ = 0, (7a)
(δφ)|z=h : ∂th+ ∇Hφ ·∇h− ∂zφ = 0 on z = h, (7b)

δh : ∂tφ+
1

2
|∇φ|2 + g(h−H0)

+ λΘ(y − yb) = 0 on z = h, (7c)
δλ : h− hb = 0 for y ≥ yb, (7d)

δW : Ż = W, (7e)

δZ : MẆ = −Mg − γ
(
PQ +K(Z)

)G(Z)

Li

+ ρ0

∫ Lx

0

∫ ly(x)

0

λΘ (y − yb) dxdy, (7f)

δPQ : Q̇ =
(
PQ +K(Z)

)
/Li, (7g)

δQ : ṖQ = 0 (7h)

with ∇H = (∂x, ∂y)T , ∇ = (∂x, ∂y, ∂z)
T and Heaviside

function Θ(y − yb) being nonzero/unity where its ar-
gument is positive, i.e. for y > yb(x, t), with yb(x, t)
the waterline under the buoy. The Laplace equation

(7a) describes the incompressible dynamics ∇ · u =
∇ · ∇φ = 0 of the water under the free surface, in
terms of the velocity potential φ = φ(x, y, z, t). The free-
surface dynamics is governed by a kinematic equation
(7b) for the water depth h(x, y, t) as well as Bernoulli’s
equation (7c) for ∂tφ or φ (x, y, h(x, y, t)) evaluated at
z = h(x, y, t). The motion of the vertical position Z(t)
of the buoy is given by (7e) and its acceleration, pro-
gressing velocity W (t), by (7f). The charge Q(t) in the
electrical circuit is governed by (7g) and its conjugate
momentum PQ(t), related to the current I(t), by (7h).
Water-wave and buoy motion are coupled using a
Lagrange multiplier λ = λ(x, y, t) such that the shape
h(x, y, t) of the water surface is forced to equal the
shape hb (x, y;Z(t)) of the buoy on the wetted surface
of the buoy. It is shown in [2] that λ is the pressure on
the buoy; moreover, at the waterline this pressure is
zero, i.e. λ (x, yb(x, t), t) = 0. Hence, it is only defined
under the time-dependent wetted surface of the buoy,
i.e. for y > yb(x, t). This coupling Lagrange multiplier
appears in both the Bernoulli equation (7c) as well as
the equation for the vertical acceleration (7f). In the
latter equation, this integrated pressure on the buoy
yields the force imposed by the water pressure on the
buoy. Buoy motion and electro-magnetic currents are
coupled through the connecting function G(Z) defined
in (5), which appears in the equation (7f) for the vertical
acceleration. Note that the constrained equation (7d)
needs to be maintained over time to ensure consistency.
This consistency issue will be analysed in a simplified
model set-up in the next section.

Finally, when the resistance of the electrical circuit,
the induction coils and the loads in (3) are added, then
the last equation (7h) is extended to the following

ṖQ = −(Rc +Ri)I − sign(I)nqVT ln
( |I|
Isat

+ 1
)
. (8)

Given that PQ = LiI − K(Z), its time derivative is
ṖQ = Liİ − γG(Z)Ż and hence (8) can be rewritten as

Liİ = γG(Z)Ż − (Rc +Ri)I

− sign(I)nqVT ln
(
|I|Isat + 1

)
. (9)

Equation (9) describes the change of the current in time;
the electrical resistance terms and the loads are clearly
seen to result in dissipation of the current.

III. LINEARISATION AND DISCRETISATION

Rather than considering the fully nonlinear system
of equations, it was decided to first consider its lin-
earisation in the shallow-water limit (see [2]), using the
following decomposition of the variables into a basic
state at rest and perturbations

φ(x, y, z, t) = φ̃(x, y, z, t),

h(x, y, t) = H(x, y) + η(x, y, t),

λ(x, y, t) = Λ(y) + λ̃(x, y, t),

yb(x, t) = Lb + ỹb(x, t), (10)

Z(t) = Z̄ + Z̃(t),

W (t) = W̃ (t),

Q(t) = Q̃(t),
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PQ(t) = −K(Z̄) + P̃Q(t),

with H(x, y) the rest-state depth, which is H0 for the
free surface-at-rest for y < Lb and H = H(y) under
the buoy for y > Lb, and Λ(y) the hydrostatic pressure
under the buoy at rest.

Considering (9) for small loads, one notes that
sign(I)nqVT ln

(
|I|/Isat + 1

)
≈ nqVT I/Isat ≡ RlI , with

an effective resistance Rl = nqVT /Isat of the LED loads.
When the change of I in time is also small, such that
İ ≈ 0, one thus finds that

(Rc +Ri +Rl)I ≈ γG(Z)Ż. (11)

Consequently, the vertical momentum equation (7f) for
the buoy, mast and magnet approximately becomes

MẆ = −Mg − γ2G2(Z)

Li(Rc +Ri +Rl)
W

+ ρ0

∫ Lx

0

∫ ly(x)

0

λΘ (y − yb) dxdy. (12)

Hence, as expected, the resistance and loads combined
are seen to act as a drag on the buoy-mast-magnet unit
in this partial linear limit.

By only keeping terms to leading order in the
perturbation and taking the depth-avaraged shallow-
water limit, cf. [2], a simplified shallow-water system
is obtained in which all fields are functions of the hori-
zontal coordinates and time only. Hence, η = η(x, y, t),
φ = φ(x, y, t) and λ = λ(x, y, t). The gradient is likewise
redefined as the horizontal operator ∇ = (∂x, ∂y)T . The
ensuing system becomes

η − Z̃ = 0 for y ≥ Lb, (13a)

Ṙ = ∂xφ̃ at x = 0, (13b)

∂tη + ∇ · (H∇φ̃) = 0, (13c)

∂tφ̃+ gη + λ̃Θ(y − Lb) = 0, (13d)
˙̃Z = W̃ , (13e)

M ˙̃W + γG(Z̄)

(
P̃Q + γG(Z̄)Z̃

)
Li

− ρ0
∫ Lx

0

∫ ly(x)

0

λ̃Θ(y − Lb) dy dx = 0, (13f)

˙̃Q =

(
P̃Q + γG(Z̄)Z̃

)
Li

, (13g)

˙̃PQ = −
(
Rc +Ri +Rl

)(P̃Q + γG(Z̄)Z̃
)

Li
, (13h)

∇ · (H∇λ̃)− ρ0
M

∫ Lx

0

∫ ly(x)

0

λ̃Θ(y − Lb) dy dx =

−∇ · (gH∇η)− γ

M
G
(
Z̄
)
Ĩ for y ≥ Lb, (13i)

where a consistency requirement has been added
which arises by taking twice the time derivative of
the constraint η − Z̃ = 0, (13a), while using other
equations in (13) to eliminate the time derivatives. It
leads to the elliptic equation (13i) for the Lagrange
multiplier λ̃, the perturbation pressure under the buoy.
Now one can either solve the system (13) excluding
the last consistency equation (13i), or solve the system

(13) excluding the first constrained equation (13a).
Otherwise, the system (13) is seen to be overspecified.
In either case, it can be shown that one subset is and
has to be equivalent to the other subset. Note also that
the linearised effect of a piston wavemaker is added at
x = 0, with Ṙ driving the wave motion.

A consistent discretisation in space and time needs
to mimic the consistency requirement discussed above.
A continuous C0–Galerkin finite-element discretisation
has been used in space with standard linear tent func-
tions of second-order accuracy, with an extra trick. To
ensure consistency in time, it was necessary to weakly
extend the basis function at y = Lb, the linearised
waterline position, into y < Lb. Otherwise, it is as
yet unclear how to obtain a stable and consistent
time discretisation. A consistent time discretisation
now involves a combination of forward and back-
ward Euler discretisations in time, essentially forming
a constrained symplectic-Euler time discretisation, cf.
[10]. The final space-time discretisation is given in
Appendix B.

IV. RESULTS

The space-time discrete system of linear equations
(18) in Appendix B has been solved using an in-
house code developed by employing the finite-element
method described in the previous section. The numer-
ical domain uses Lx = 0.2m and Ly = 2m, corre-
sponding to a physical domain of horizontal extent
Lx×Ly . The water depth at rest is taken to be H0 = 0.2
m and the buoy-mast-magnet unit was considered to
have a total mass of M = 0.08 kg. Also defined is a
computational grid consisting of Nx = 10 and Ny = 50
elements in the x– and y–directions, respectively. A
sample coarse-resolution grid can be seen in figure 2c,
with yellow marks denoting the nodes in the contrac-
tion.

The initial, rest state is disturbed by the motion of
the piston wavemaker at one wall of the wavetank.
The wavemaker has amplitude A = 0.0616m and
frequency ω = 8.8s−1. The generated waves propagate
along the channel and take approximately 1.3 seconds
to reach the contraction and impact upon the wave-
energy device. They are then amplified along the wall
of the contraction and obtain a maximum amplification
in the corner, simultaneously forcing the buoy to shift
upwards. Representative snapshots of the simulation
at different times can be seen in figure 4.

Various quantities are tracked as simulation outputs,
including the wave profile, velocity potential, vertical
displacement and velocity of the buoy, as well as the
electrical current, voltage and power generated due to
the motion of the magnet through the coils as a result
of the wave impact on the buoy. In the linearised limit
considered here, the (mean) total power generated P̃g
and the (mean) power lost P̃l are determined over the
course of one simulation for 0 ≤ t ≤ T , as follows

[P̃g] =
1

T

∫ T

0

P̃g(t) dt and [P̃l] =
1

T

∫ T

0

P̃l(t) dt. (14)

with P̃g(t) = RlĨ
2(t) and P̃l(t) = (Rc + Ri)Ĩ

2(t).
In figure 5, some of these outputs are shown and
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Fig. 4. Snapshots of the numerically computed free surface
h(x, y, t) = H(x, y) + η(x, y, t) (colour denotes height in meters,
with initial still water levelH0 = 0.2m), as it evolves in the wavetank
with V-shaped contraction (times shown on the pictures). The buoy
resides in the corner of the contraction and is shown using orange
colour.

are illustrating the motion of the buoy, the power
generation and the losses in the circuit. In particular,
it can be seen that once the waves reach the con-
traction at around 1.3 seconds, then the wave-energy
device follows an oscillatory motion in response to the
incoming waves. The oscillating motion of the buoy
and the resulting movement of the magnet, which is
attached on a mast on top of the buoy, through the
induction coils, generates current and hence produces
power. Part of the generated power is lost due to
circuit resistance and the rest is used to illuminate
one of the LEDs. The effect of wavemaker amplitude
A and frequency ω on the amount of total (mean)
power generated or lost (calculated through (14)) was
further investigated and is demonstrated in figure 6.
For the frequencies and amplitudes tested here, it
can be seen that the power increases monotonically
with the wavemaker amplitude, while increasing the
frequency leads to a non-monotonic behaviour in the
power generation/loss. The mean power generated
[P̃g] scales like 0.00124A2. The optimal frequency, for
which the maximum amount of power is generated,
is observed to be ωc ≈ 15.4s−1. Further tests are
required to determine whether this critical frequency
ωc is related to the resonant frequency of the setup
employed here.

Fig. 5. Output of the numerical simulation demonstrating the
response of the wave-energy device to the incoming waves (panels
on top row; left: vertical displacement, right: velocity). The energy
generated is also shown in terms of current (middle panel) and
power (bottom panel). The power output depicted in the bottom
panel is divided into two parts: the power output to the LEDs (solid
purple line) and the power lost in the electrical circuit (dash-dotted
yellow line).

Fig. 6. Variation of the total mean power generated (in
Volt×Ampere) against the wavemaker amplitude or frequency. The
mean power is calculated from (14) over the duration of one simula-
tion with T = 10s. Top panel: varied wavemaker amplitude A (in m)
with fixed frequency ω = 8.8s−1. Bottom panel: varied wavemaker
frequency ω (in s−1) with fixed amplitude A = 0.0616m.

V. DISCUSSION

The innovative wave-energy device presented in
this paper was developed following the observation
of wave-amplification phenomena realised in bore-
soliton-splash experiments, described in [2]. This de-
vice is targeted primarily for placement in a breakwater
where incident wave conditions are most suitable.
Amongst the principal novel features are the use of
a contraction to enhance the wave-buoy motion and
magnetically-induced energy generation. A laboratory
proof-of principle shows that the wave-energy device
operates in a satisfactory manner.

A fully nonlinear wave-to-wire mathematical model
has been developed for the combined (potential-flow)
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hydrodynamics, the buoy motion and the power gen-
eration by magnetic induction. An important building
block in the construction of the model is the utilisa-
tion of a single variational principle, from which the
equations of motion emerge. A finite-element discreti-
sation for both the simplified and linearised versions
of the resulting nonlinear system has been formulated;
this yields a consistent space-time discrete system of
equations. The model also identifies the losses in power
generation.

Preliminary numerical simulations of the linearised
wave-energy system have been presented, demonstrat-
ing the motion of the waves, the response of the wave-
energy device and the generation of energy. It has
been found that the total amount of power gener-
ated increases monotonically for higher wavemaker
amplitudes. However, this finding does not hold for
increasing wavemaker frequencies and it was found
that the generation of power increases only up to a
critical frequency ωc, beyond which the power genera-
tion decreases. This latter finding is very similar to the
establishment of a resonant frequency at ωc and lying
at the peak of a bandwidth curve but without the a
priori determination of these quantities.

Future work plans include the development and im-
plementation of a fully nonlinear numerical model, the
performance of complementary laboratory experiments
for comparison and further simulations for validation
purposes. Optimisation studies are planned to improve
device performance. Initially these will concentrate
upon the geometrical features of the contraction, such
as angle and length, and the shape and weight of
the wave buoy. Parallel studies will focus upon the
importance of the resource, which will be associated
with the wavemaker amplitude and wave frequency,
and the number of loads and induction coils. When
these component optimisations have been completed
and understood, then an attempt to tackle the very
difficult problem of complete device optimisation will
be considered.
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APPENDIX A
VARIATION PRINCIPLE

In the absence of any losses in the electrical circuits
and without any loads, i.e. in the limits Rc → 0, Ri → 0
and VT → 0, the dynamics of the water waves, buoy
motion and the electrical currents are succinctly de-
scribed via one variational principle (VP). This VP is
the sum of the three VPs of the three separate subsys-
tems, augmented with the underlined term coupling
the dynamics of the water waves to the buoy as well as
the coupling terms between the buoy and the generator
involving K(Z) (or G(Z)). The VP reads

0 = δ

∫ T

0

L[φ, h, Z,W,Q, PQ, λ] dt

≡ δ
∫ T

0

ρ0

∫ Lx

0

∫ ly(x)

0

∫ h(x,y,t)

0

∂tφ dz dy dx

−MWŻ − PQQ̇+H dt (15a)

≡ δ
∫ T

0

ρ0

∫ Lx

0

∫ ly(x)

0

∫ h(x,y,t)

0

∂tφ+
1

2
|∇φ|2

+ g (z −H0) dz dy dx

+ ρ0

∫ Lx

0

∫ ly(x)

0

λ(h− hb)Θ (y − yb) dxdy

−MWŻ − PQQ̇+
1

2
MW 2

+MgZ +
1

2

(
PQ +K(Z)

)2
Li

dt, (15b)

in which a Lagrange multiplier λ = λ(x, y, t) is used
imposing that the shape of the free surface equals
the dynamic shape of the buoy, thus imposing that
h−hb = 0 weakly [7] (underlined in (15)). Furthermore,
an extension of Luke’s VP has been derived in [2] to
show that the Lagrange multiplier λ is the pressure
under the buoy and that, consequently, at the waterline
the Lagrange multiplier λ(x, yb, t) = 0, by taking the
pressure above the free surface to be zero. Note that the
energy H defined in the VP (15) consists of respective
“kinetic” and “potential” energies of the water, buoy
and the electro-magnetic induction generator plus one
constraint. Here, the wavemaker R(t) = 0 and its
contribution was added in the linearised shallow-water
model used in the simulations.

If the vector of unknowns is defined by U =
(φ, h, Z,W,Q, PQ, λ)T , with transpose (·)T , then vari-
ations of (15) are defined as follows

δ

∫ T

0

L[U] dt = lim
ε→0

∫ T

0

(L[U + εU]− L[U])

ε
dt, (16)
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with Lagrangian density L comprised of functions
depending only on time, and fields depending on space
and time. Variation of (15) yields

0 = δ

∫ T

0

L[φ, h, Z,W,Q, PQ, λ] dt

=

∫ T

0

ρ0

∫ Lx

0

∫ ly(x)

0

∫ h(x,y,t)

0

∂tδφ+ ∇φ ·∇δφ dxdy dz

+ ρ0

∫ Lx

0

∫ ly(x)

0

(
∂tφ+

1

2
|∇φ|2 + g (z −H0)

+λΘ(y − yb)
)
|z=hδh

+ (h− hb)Θ(y − yb)δλ dx dy

+M(W − Ż)δW − PQδQ̇

− ρ0
∫ Lx

0

∫ ly(x)

0

λΘ(y − yb) dx dy δZ

+

(
−MWδŻ +Mg + γ

(
PQ +K(Z)

)G(Z)

Li
δZ

)
+
(
−Q̇+

(
PQ +K(Z)

)
/Li

)
δPQ dt. (17a)

Herein, end-point conditions δφ = δQ = δZ = 0 at
t = 0, T have been used. The underlined terms require
further manipulation using Gauss’ law and integration
by parts in time. Integration by parts in time involves
dealing with the time-dependent location of the free
surface z = h(x, y, t). Gauss’ law yields a contribution
at the free surface z = h(x, y, t) with its outward
normal n̂ = (−∇h, 1)T /

√
1 + |∇h|2 and free surface

element dA =
√

1 + |∇h|2 dxdy. In addition, the vari-
ation of the Heaviside function has cancelled under the
imposed condition λ(yb, t) = 0. These manipulations of
(17a) lead to the final result

0 =

∫ T

0

ρ0

∫ Lx

0

∫ ly(x)

0

∫ h(x,y,t)

0

−∇ · (∇φ)δφ dxdy dz

+ ρ0

∫ Lx

0

∫ ly(x)

0

(
∂tφ+

1

2
|∇φ|2 + g (z −H0)

+λΘ(y − yb)
)
|z=hδh

+ (∂zφ− ∂th−∇h ·∇Hφ)z=h (δφ)z=h

+ (h− hb)Θ (y − yb) δλ dxdy

+M(W − Ż)δW + ṖQδQ

+

(
MẆ +Mg + γ

(
PQ +K(Z)

)G(Z)

Li

−ρ0
∫ Lx

0

∫ ly(x)

0

λΘ (y − yb) dx dy

)
δZ

+
(
−Q̇+

(
PQ +K(Z)

)
/Li

)
δPQ dt, (17b)

with the system of equations (7) following because the
variations δh etc. are arbitrary.

APPENDIX B
COMPATIBLE, CONSISTENT NUMERICAL

DISCRETISATION

Given the space-time discretisation procedure out-
lined in the main text and [2], the final space-time
discrete system corresponding to (13) (not provided in

[2]) becomes the following

NT
k̃l

(ηn+1
l − 1lZ̃

n+1) = 0, (18a)

Mkl
(φn+1
l − φnl )

∆t
= −gMklη

n
l −Nkl̂λ

n
l̂
−Nkb̃λ

n
b̃
,

(18b)

Mkl
(ηn+1
l − ηnl )

∆t
= Sklφ

n
l + TkṘ, (18c)

(W̃n+1 − W̃n)

∆t
= C0Q̃l̂λl̂ + C0Q̃b̃λ

n
b̃

− C1G(Z̄)(P̃nQ + γG(Z̄)Z̃n),
(18d)

(Z̃n+1 − Z̃n)

∆t
= W̃n+1, (18e)

(Q̃n+1 − Q̃n)

∆t
=

(P̃n+1
Q + γG(Z̄)Z̃n)

Li
, (18f)

(P̃n+1
Q − P̃nQ)

∆t
= −C2(P̃n+1

Q + γG(Z̄)Z̃n), (18g)(
S̃k̃l̂ + C0Q̃k̃Q̃l̂

)
λn
l̂

= −gSk̃lηl − C0Q̃k̃Q̃b̃λb̃

−S̃k̃b̃λb̃ + C1Q̃k̃G(Z̄)(P̃nQ + γG(Z̄)Z̃n),
(18h)

λn
b̃

= g(ηn
b̃
− Z̃n), (18i)

with abbreviating constants C0 = ρ0/M , C1 =
γ/(MLi), C2 = (Rc +Ri +Rl)/Li as well as mass and
“Laplace” matrices [2]

Mkl =

∫ Lx

0

∫ ly(x)

0

ϕk(x, y)ϕl(x, y) dxdy, (19a)

Skl =

∫ Lx

0

∫ ly(x)

0

H(y)∇ϕk(x, y) ·∇ϕl(x, y) dxdy,

(19b)

S̃k̃l̃ =

∫ Lx

0

∫ ly(x)

0

H(y)∇ϕk̃(x, y) ·∇ϕl̃(x, y) dxdy,

(19c)

Q̃k̃ =

∫ Lx

0

∫ ly(x)

0

ϕk̃(x, y) dxdy, (19d)

Nkl̃ =

∫ Lx

0

∫ ly(x)

0

ϕk(x, y)ϕl̃(x, y) dx dy, (19e)

Tk =

∫ Lx

0

H(0)ϕk(0, y) dy, (19f)

with finite-element tent-shaped, test and basis,
Galerkin functions ϕk(x, y). In the entire horizontal
domain, nodal indices k, l are used, while nodal
indices under the buoy are denoted by k̃, l̃ and indices
of the finite-element nodes lying on the linearised
waterline y = Lb are denoted by b̃.
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