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In Brief

The proteome, phospho-pro-
teome, and solubility-fraction-
ated proteome was character-
ized using a fluorescent cell
cycle reporter system (Fucci).
Applying dimensionality-reduc-
tion, the data sets were system-
atically compared. This revealed
novel patterns between mRNA
and protein expression, cell-cy-
cle related activity of kinases,
and allowed for a search for pro-
teins changing solubility
throughout the cell cycle. The
nuclear translocation of the
S-adenosylmethionine synthase
MAT2A during S-phase was
confirmed.
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Highlights

• A cell cycle resolved comparison between the proteome and the transcriptome.

• Integrative analysis using phospho-proteome and dynamics of solubility.

• Mechanistic validation of MAT2A as a nuclear translocator in S-phase.
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Cell Cycle Profiling Reveals Protein Oscillation,
Phosphorylation, and Localization Dynamics*□S

Patrick Herr‡§‡‡, Johan Boström¶‡‡, Eric Rullman¶, Sean G. Rudd‡,

Mattias Vesterlund‡, Janne Lehtiö‡, Thomas Helleday‡§, Gianluca Maddalo�,
and Mikael Altun¶**

The cell cycle is a highly conserved process involving the

coordinated separation of a single cell into two daughter

cells. To relate transcriptional regulation across the cell

cycle with oscillatory changes in protein abundance and

activity, we carried out a proteome- and phospho-pro-

teome-wide mass spectrometry profiling. We compared

protein dynamics with gene transcription, revealing many

transcriptionally regulated G2 mRNAs that only produce a

protein shift after mitosis. Integration of CRISPR/Cas9

survivability studies further highlighted proteins essential

for cell viability. Analyzing the dynamics of phosphoryla-

tion events and protein solubility dynamics over the cell

cycle, we characterize predicted phospho-peptide motif

distributions and predict cell cycle-dependent translocat-

ing proteins, as exemplified by the S-adenosylmethionine

synthase MAT2A. Our study implicates this enzyme in

translocating to the nucleus after the G1/S-checkpoint,

which enables epigenetic histone methylation mainte-

nance during DNA replication. Taken together, this data

set provides a unique integrated resource with novel

insights on cell cycle dynamics. Molecular & Cellular

Proteomics 19: 608–623, 2020. DOI: 10.1074/mcp.

RA120.001938.

The mechanism of cell division has been extensively stud-
ied for many decades resulting in a very detailed picture of the
genes and proteins involved and their temporal function within
the dividing cell. Historically, the cell cycle is divided into a
DNA synthesis phase (S-phase) and a cell division phase
(Mitosis; M-phase), with these two phases separated by two
gap phases, G1 and G2.

To date, many large-scale studies addressing the cell cycle
focus on the transcriptional control of cell cycle regulated
genes. Transcription can be used as a proxy for protein abun-
dance and transcript dynamics translated to protein abun-
dance on a larger scale for systems at the steady state (1), but

extrapolation between different mRNA-protein pairs has very
little explanatory power (2).

Aside from translational control, allowing for regulation of
protein turnover that is not reflected in mRNA levels, regula-
tion by the Ubiquitin-Proteasome-System (UPS)1 can also
influence protein abundance, causing a rapid decline in pro-
tein levels through ubiquitin-mediated degradation, an effect
that is not reflected by mRNA levels. In addition, many cellular
functions are regulated not by protein abundance at all, but
rather by protein activation through post-translational modifi-
cations (PTMs), such as phosphorylation, or differential local-
ization within the cell (3).

Proteomic and transcriptomic analyses of cell cycle have
previously been reported, often using chemical synchroniza-
tion of cells. The disadvantage of synchronization-based cell-
cycle analysis is the disruption of the natural cell cycle. Stud-
ies investigating cell cycle proteomics on asynchronous cells
has been performed by Lamond and colleagues. In 2014 they
used centrifugal elutriation to separate fractions enriched for
cell cycle phases. They identified 358 cell-cycle dependent
proteins, of which 31 also had cell-cycle dependent mRNA (4).
In a 2017 follow-up study, they segmented cells based on
DAPI- and phospho-histone-H3 antibody staining on para-
formaldehyde-fixated cells. This study included a phospho-
proteomic analysis, and a further focus on mitotic subphases
(5).

We aimed to further dissect the complex and dynamic
process of the cell cycle at the protein level in asynchronous
cells. Unlike previous studies that relied on chemical synchro-
nization of cells or centrifugal elutriation, (4, 6, 7) we used the
Fucci system, a fluorescent cell cycle probe based on the
ubiquitin-mediated degradation of CDT1 and Geminin (8), to
sort HeLa cells into three cell cycle phases. CDT1 and Gemi-
nin are each degraded by the cell cycle regulating complexes
APC/C and SCF, which exhibit oscillating activity during the
cell cycle. The respective target sequences of CDT1 and
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Geminin are fused to a red and a green fluorescent protein,
creating an oscillation of colors from red, to double-positive,
to green, throughout the cell cycle. We combined this system
with fluorescence-activated cell sorting (FACS), cellular frac-
tionation, proteomics and phospho-proteomics analyses.
Furthermore, we integrated our data set with a cell cycle
transcriptomics expression profile (9) and in vitro essentiality
data summarized from ten different CRISPR/Cas9 survivabil-
ity cell line experiments (10).

Aside from identifying a great number of novel cell cycle
regulated proteins, we employed novel methods to reduce
dimensionality to be able to compare these different data sets
and could further study the overlying patterns and dynamics
between transcription and protein turnover. Using motif-rec-
ognition methods on the phospho-proteomic data set, we
could characterize kinase activity patterns over the cell cycle.
Finally, by identifying cell cycle changes in the proteomic data
separated by solubility, and focusing on diametrically oppo-
site patterns, we can present a shortlist of proteins that
change solubility phase during the cell cycle, either through
translocation between cellular compartments, or by changing
their binding configuration. We furthermore uncovered a
strong correlation between the level of regulation in a group of
proteins (oscillation of abundance, phosphorylation, and
translocation), to their essentiality score in CRISPR/Cas9 sur-
vivability assays.

Among the essential translocators, we identified the S-
adenosylmethionine synthase MAT2A, which is involved in the
synthesis of S-Adenosyl-Methionine, a major methyl donor.
Methylation is a well-established epigenetic mark and sus-
pected to be highly correlated to the etiology of hepatocellular
carcinoma among other cancers (11). We show for the first
time that nuclear localization of MAT2A is cell cycle depend-
ent in proliferating cells.

Together, we provide an integrated resource database
combining cell cycle dynamics of proteomics, transcriptom-
ics, phospho-proteomics, and fractionation proteomics. We
also integrate mathematical methods to compare the dynam-
ics between the different modes of data and to essentiality
data extracted from CRISPR/Cas9 survivability assays.

MATERIALS AND METHODS

Contact for Reagent and Resource sharing—Further information
and requests for resources and reagents should be directed to and
will be fulfilled by the Lead Contact, Mikael Altun (mikael.altun@ki.se).
For HeLa Fucci cells, we refer to the RIKEN Cell Bank. Supplemental
Table S5: Key Resources Table contains details of all Antibodies, Cell
Lines, Software, and data sets used in this study.

Cell Culture—HeLa-Fucci cells (obtained from Riken Cell Bank,
Japan) were cultured in DMEM with 10% FBS, penicillin (100 �g/ml),
streptomycin (100 �g/ml) at 37 °C containing 5% CO2, in a humidified
incubator. Cells were regularly checked for Mycoplasma contamina-

tion (Lonza, MycoAlert, Lonza, Switzerland). This cell line was the
same as used in Boström et al. to generate the transcriptomic data
that we compared our data with and was thawed up from freezing
vials from a similar passage number (9).

Western Blotting—Western blotting was carried out following
standard protocols with Bio-Rad SDS gradient gels and the Trans-
Blot Turbo transfer system (Bio-Rad, CA). Cells were lysed in RIPA
buffer for 20 min on ice in presence of protease inhibitor mixture
(Roche, Switzerland), followed by sonication with a needle sonicator
(Hielscher UP100H, 70% amplitude, 0.7 cycle, 10 cycles, (Hielscher,
Germany)). Protein concentration was measures according to BCA
(Pierce, MA). Images were taken at a LI-COR Odyssey FC.

Cell Fractionation—The soluble fraction was isolated based on a
protocol published by (12). Lysis buffer to isolate the cytosolic (solu-
ble) fraction contained 42 �g/ml Digitonin, 2 mM DTT, 2 mM MgCl2,
150 mM NaCl, 0.2 mM EDTA, 20 mM Hepes-NaOH at pH 7.4. Protease
and phosphatase inhibitors (including 1 mM sodium orthovanadate)
were added fresh. The insoluble fraction was separated by centrifu-
gation. The remaining insoluble fraction containing nucleus, chroma-
tin, larger organelles, and membranes was isolated according to a
protocol by (13). Lysis buffer contained 8 M Urea, 20 mM HEPES pH
7.5, 1 mM b-glycerophosphate, 2.5 mM Sodium pyrophosphate, 1 mM

Na3VO4. Protease and phosphatase inhibitor were added fresh. Ly-
sate was sonicated.

FACS—HeLa-Fucci cells were seeded on 10 cm2 dishes and
grown to 70–80% confluency. Cells were washed in 10 ml 37 °C
PBS. PBS was removed and replaced with 1 ml Trypsin for 4 min until
cells were in single cell suspension. Cells were then collected in 10 ml
warm DMEM and counted. Cells were spun down for 3 min at 300 g
at 4 °C. Media was removed and cells were washed in 10 ml of cold
PBS. Cells were spun again for 3 min at 300 � g at 4 °C. The cell
pellet was diluted in cold PBS with 5 mM EDTA to 3 million/ml and
strained through a cell strainer FACS tube. Cells were sorted on a BD
Influx. After every 30 min the sorted cells were snap frozen and pellets
were stored at �80 °C.

Immunocytochemistry and Image Analysis—Cells were grown on
96 well plates, washed in PBS and fixed in 4% PFA in PBS for 20 min.
Samples were permeabilized for 10 min with 0.3% Triton X-100 in
PBS. Samples were blocked in 3% BSA in PBS for 40 min and
incubated with primary antibody (1:500 in PBS 3% BSA) over night at
4 degrees. After 4 � 10 min washes with PBS samples were incu-
bated with fluorescent secondary antibody for 1 h at RT. After another
4 � 10 min washes with PBS samples were stained with DAPI for 5
min at RT. After another 4 � 10 min washes with PBS samples were
imaged. High-content imaging was performed with an ImageXpress
XLS (Molecular Devices, CA) and data was analyzed with CellProfiler
(v2.1.1) Cell cycle classifications were performed using R and nuclear
localization classifications were performed using the Classifier tool in
CellProfiler Analyst (v2.2.1) using information only measured in the
MAT2A antibody channel, trained on a separate manually classified
training set.

For the analysis in supplemental Fig. S2D–S2F, cells were incu-
bated with 10 �M EdU 30 min prior to fixation, and stained with 2 �M

Alexa FluorTM 647 Azide (Thermo Fisher, MA), 4 mM Copper(II)Sulfate,
10 mM ascorbic acid in PBS for 10 min. Fixation and analysis were
done as described above except prior to DAPI incubation, cells were
treated with 10 �g/ml RNase A in PBS for 1h at 4 °C in order to
enhance DAPI quantification, and images were acquired on a Evos
M5000 Imaging System (Thermo Fisher).

Proteomic Analyses—For the unfractionated proteome and phos-
phoproteome analyses of each of the three FACS sorted phases (G1,
S, G2/M), cell pellets were harvested and resuspended in lysis buffer
(1% Sodium deoxycholate, 100 mM Hepes pH 8, 1 mM sodium
orthovanadate, 1 tablet of Complete mini EDTA-free mixture (Roche

1 The abbreviations used are: UPS, Ubiquitin-Proteasome-System;
PTM, post-translational modifications; FACS, fluorescence-activated
cell sorting.
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Applied Science) and one tablet of PhosSTOP phosphatase inhibitor
mixture per 10 ml of lysis buffer (Roche Applied Science). Cells were
then lysed by 10 rapid passages through a 23-gauge hypodermic
syringe needle and by sonication on ice. After centrifugation
(20,000 � g 30 min at 4 °C), the protein concentration was deter-
mined by Bradford assay (Pierce). The protein lysates of the three
different phases (G1, S, G2/M) (total/soluble/insoluble fractions) were
reduced by 2 mM DTT at room temperature for 1 h and alkylated by 4
mM chloroacetamide for 30 min at room temperature in the dark. A
first enzymatic digestion was performed using Lys-C (1:75 w/w) at
37 °C overnight; a second enzymatic digestion was performed using
Trypsin (1:75 w/w) at 37 °C overnight. Fifty micrograms of each sam-
ple was labeled by TMT10plex according to the manufacturer instruc-
tions (Thermo Fisher Scientific, Germany): G1 replicate 1 (126), G1
replicate 2 (127N), G1 replicate 3 (127C), S replicate 1 (128N), S
replicate 2 (128C), S replicate 3 (129N), G2/M replicate 1 (129C),
G2/M replicate 2 (130N), G2/M replicate 3 (130C), Pool of all sample
(131) (Fig. 1A).

Two hundred �g of peptide mixture were fractionated using a
Waters XBridge BEH300 C18 3.5 �m 2.1 � 250 mm column on an
Agilent 1200 series operating at 200 �l/min. Buffer A consisted of 20
mM NH3, whereas buffer B of 80% ACN/20 mM NH3. The fractionation
gradient was: 3–88% B in 63 min; 88% B for 15 min; and ramped to
100% B in 2.5 min; 100% B for 13.5 min. Fractions were collected into
a polypropylene V-96 well microtiterplates (Microplate, 96 well PP,
V-Bottom, IO-ONE, Grainer, Austria). At 97 min, fraction collection
was halted, and the gradient was held at 3% B for 20 min. The
concatenated fractions were collected in a plate, dried at room tem-
perature using a SpeedVac (SPD 111V, Thermo), and stored at
�20 °C until LC-MS/MS analyses.

Phosphoproteomics Analysis—For phosphoproteomics analyses,
one hundred �g of tryptic digest of each cell sorted population and
their respective replicates were labeled by TMT10plex as described
above. Each sample underwent TiO2 phosphopeptide enrichment
step as previously described (14); mixed 1:1; desalted by reverse
phase using Waters Pak 1 cc (50 mg) cartridges (WAT054960; Wa-
ters, Milford, MA); and analyzed by LC-MS/MS using a Fusion Or-
biTrap (Thermo Fisher, Germany). The mass spectrometer was con-
nected to a Dionex UHPLC system (Thermo Fisher Scientific,
Germany).

LC-MS/MS Analyses—Each sample was analyzed on a HF Q-
Exactive Orbitrap (Thermo Fisher) (full proteome samples) or a Fusion
Orbitrap (Thermo Fisher) (soluble and insoluble fraction samples)
using a data dependent acquisition mode and in both cases the
instruments were connected to a Dionex UHPLC system (Thermo
Fisher Scientific). The UHPLC was equipped with a trap column
(Acclaim PepMap 100, 75 �m � 2 cm, nanoviper, C18, 3 �m, 100 Å;
Thermo Fisher Scientific) and an analytical column (PepMap RSLC
C18, 2 �m, 100 Å, 75 �m � 50 cm; Thermo Fisher Scientific). Mobile-
phase buffers for nLC separation consisted of 0.1% FA in water
(solvent A) and 80% ACN/0.1% FA (solvent B). The peptides were
eluted during a 2 h gradient and directly sprayed into the mass
spectrometer. The flow rate was set at 250 nl/min, and the LC gra-
dient was as follows: 3–6% solvent B within 3 min, 6–35% solvent B
within 117 min, 35–47% solvent B within 5 min, 47–100% solvent B
within 5 min and 100% B for 8 min and 1% solvent B for 5 min. Nano
spray was achieved with an applied voltage of 1.8 kV. For the anal-
yses on HF Q-Exactive Orbitrap the mass spectrometer was pro-
grammed in a data-dependent acquisition mode (top 10 most intense
peaks) and was configured to perform a Fourier transform survey
scan from 370 to 1600 m/z (resolution 60,000), AGC target 3 e6,
maximum injection time 250 ms. MS2 scans were acquired on the 10
most-abundant MS1 ions of charge state 2–7 using a Quadrupole
isolation window of 1 m/z for HCD fragmentation. Collision energy

was set at 34%; resolution � 30 000; AGC target 2e5, maximum
injection time 200 ms; dynamic exclusion 15 s. For the analyses on
Fusion Orbitrap the mass spectrometer was programmed as follows:
Fourier transform survey scan was set from 350 to 1550 m/z (resolu-
tion 120,000), AGC target 2e5, maximum injection time 50 ms; MS2
scans were acquired in data-dependent mode. For the MS1 analysis
ions of charge state 2–7 were isolated using a Quadrupole isolation
window of 1.4 m/z for HCD fragmentation; collision energy was set at
35%; resolution � 30 000; AGC target 1e5, maximum injection time
100 ms; dynamic exclusion 30 s.

Proteomic and Phosphoproteomic Data Analyses—The raw data
were analyzed using MaxQuant 1.5.3.30 (15) and Andromeda (16) was
used to search the MS/MS data against the UniProt Homo sapiens

database (containing canonical and isoforms_42145 entries down-
loaded on 15th September 2016) complemented with a list of common
contaminants, the two fluorescent proteins used in the Fucci system,
and concatenated with the reversed version of all sequences. In total
the searched database contained 42,168 entries. TMT10plex was
chosen as quantification platform. Trypsin/P was chosen as cleavage
specificity allowing for two missed cleavages. Carbamidomethylation
(C) was set as a fixed modification, whereas oxidation (M) (and
phosphorylation of STY in the case of the phosphoproteome analysis)
were used as variable modifications. The database search was per-
formed with a mass deviation of the precursor ion of up to 4.5 ppm
(main search). The mass tolerance for fragment ions was 0.5 Da. Data
filtering was carried out using the following parameters: peptide and
protein FDRs were set to 1%, minimum peptide length was set to 7
and Andromeda minimum score for modified peptides was set to 40,
min reporter precursor ion fraction � 0.75. The reverse and common
contaminant hits were removed from the output as well as those with
localization probability �0.75. Phosphopeptide motif prediction was
performed using Perseus (1.5.3.2) with Perseus’ integrated motif list,
additionally provided in supplemental Table S3. Motif enrichment
analysis was performed with R using Fisher’s exact test or a simu-
lated Fisher’s test.

To account for changes in total cell content during the cell cycle,
normalization was deemed very important. Aside from using equal
weight amounts of tryptic digest for TMT10plex-labeling, logarithmic
reporter intensity values were normalized by subtracting the median
logarithmic intensity for each sample prior to further analysis.

Experimental Design and Statistical Rationale—All experiments
were performed on three replicates from each of three cell cycle
stages. This was deemed adequate to identify the magnitude of
differences intended in this study.

In the fractionation proteomic experiment, two insoluble fraction
samples were excluded between peptide mapping and ANOVA anal-
ysis. After mapping, all proteomic samples (from full proteomics,
insoluble fractions, soluble fractions) were hierarchically clustered in a
heatmap, which independently clustered all triplicates of samples
together except for two individual samples, one replicate for G-
phase-Insoluble and one for S-phase-Insoluble. Therefore, the
ANOVA for the insoluble data was performed on 8 total samples
(3vs2vs2).

All enrichment analyses were performed using either Fisher’s exact
test for comparing two different distributions (simulated if too large to
calculate) using the fisher.test function in base R, or Log-Likelihood-
Ratio analysis for comparing a distribution relative to its parental
distribution, using the xmulti (xmonte for simulation) function in the
XNomial package in R.

All data sets with three groups underwent ANOVA analysis in R
(3.4.2) to generate p values for each protein/phosphopeptide. For a
few proteins with one or two replicates missing data (Overall pro-
teomics: 5/7527 proteins, Soluble Fraction: 6/4609, Insoluble Frac-
tion: 2/4466), were exchanged for the minimal measured value.
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FDR-values were calculated in R using the “qvalue” package.
All cutoffs of significance were based at the point where
�Expected False Positives

�Hits
� 0.05, i.e. where the next hit would have

more than a 5% chance of being a false positive, contrary to classical
FDR-cutoff strategies (FDR� 0.05) where the entire data set contains
5% false hits. This method yielded classical FDR-value cutoffs rang-
ing from FDR � 0.0073 to FDR � 0.017. The regression model used
to generate the model determining the cutoffs was 8-polynomial and
was performed in R using the “polynom” package. All final regression
models are shown in supplemental Fig. S1E, supplemental Fig. S2C,
and supplemental Fig. S4C respectively.

Data Analysis—As the cells studied are unsynchronized and con-
stantly dividing, any significant difference in protein or phosphopep-
tide amount between the cell cycle phases in the study indicates a
cell-cycle-dependent change in abundance. We thus classify these as
exhibiting oscillatory behavior. For visualization of oscillatory patterns
and to be able to compare patterns of oscillation between experi-
ments, the algorithm TriComp was used according to (9). A general-
ized version of the TriComp code in R script can be found in supple-
mental File S1.

TriComp first calculates the plotting coordinates using Eq. (1) and
(2)

a � � logFC_G2overG1 � Sin�Pi

6� � logFC_SoverG1

(Eq. 1)

b � � Cos��

6� � logFC_SoverGr1 (Eq. 2)

Then these coordinates are converted from Euclidean coordinates
into polar coordinates using Eq. (3) and (4).

r � �a2 � b2 (Eq. 3)

IF (a � 0 & b � 0) THEN � � tan�1 ��a
b
�� ELSEIF

(a � 0 & b � 0) THEN � � 180° � tan�1��a

b
�� ELSEIF

(a � 0 & b � 0) THEN � � 180° � tan�1��a

b
�� ELSEIF

(a � 0 & b � 0) THEN � � 360° � tan�1��a

b
�� ELSEIF

(b � 0 & a � 0) THEN � � 90° ELSEIF (b � 0 & a � 0)

THEN � � 270° (Eq. 4)

Finally, a summarizing group variable is calculated by checking
which hexagonal section the data point belongs to using Eq. (5).

Group � Int� �

60°�� 1 (Eq. 5)

The TriComp algorithm generates two polar coordinates from the
relative logarithmic relationship between three groups, in our study
the three cell cycle phases, without losing any information. The output
degree coordinate corresponds to the pattern of relationship, and the
radius coordinate corresponds to the quantification/intensity of the
relationship. By filtering on statistics and radius, the degree coordi-
nate was used throughout the study as a quantitative variable de-

scribing the kind of cell cycle oscillation pattern a protein or phos-
phopeptide exhibited.

Preparation of figures were performed in R (3.4.2) using the libraries
ggplot and extrafont

Annotation and Enrichment Analysis—GO-terms associated with
cell cycle were classified as being annotated with GO:7049 or a child
GO-term of GO:7049 (17). A grouping of these terms into five major
cell cycle processes was done using the same grouping as (9). Kinase
classifications were retrieved from the Kinome Database, accessed
181210 (18). Phosphatase classification was retrieved from DGIdb
3.0, accessed 181210 (19). Enrichment analysis was performed using
hypergeometrical test, with a significance cutoff of FDR�0.01 based
on biological function-ontologies from GSEA C5 v6.1 (Broad Institute)
after re-annotation of Uniprot IDs to entrez IDs using BioMart version:
0.7. For all enrichment tests, relevant subsets of all detected protien-
tes with unambiguous ID were used as background. Enrichment
analysis of comparing Insoluble-specific proteins to Soluble-specific
proteins was performed with DAVID after specifying hit lists using
multiple T-tests corrected for multiplicity with the qvalue module in R.
Uniprot IDs were provided to DAVID. Fraction-specific proteins were
specified as more than 2-fold higher in soluble than insoluble and
vice-versa, with a significance cutoff of FDR�0.001. Only proteins
with available data in both unsorted Soluble and unsorted insoluble
fractions were used.

For the literature-based kinase enrichment analysis, the Ma’ayan
Lab Kinase Enrichment Analysis 2 tool was used, and each phase
group of significantly fluctuating phosphopeptides was submitted,
with the results presented as a network analysis.

RESULTS

Characterizing Protein Oscillation Patterns Over The Cell

Cycle—To analyze the dynamics of the proteome across the
cell cycle without introducing potential artifacts from chemical
synchronization, we combined fluorescence-based cell sort-
ing with mass spectrometry-based proteomic analysis. The
cell cycle reporter cell line HeLa-Fucci (8) was used through-
out this study for precise separation of the cell cycle phases
(Fig. 1A; supplemental Fig. S2A–S2C). Live HeLa-Fucci cells
were sorted into three separate groups, G1, S and G2/M,
based on expression of either or both of its two reporters. A
microscopy-based characterization of the three groups was
also performed using EdU-incorporation-labeling of actively
replicating DNA and quantification of chromatin status (sup-
plemental Fig. S2D–S2F). To be able to quantify the relative
abundance of a given protein in G1, S or G2/M phases of the
cell cycle we employed a TMT isobaric labeling approach (20)
of three replicates for each cell cycle phase (Fig. 1A, supple-
mental Fig. S2G ). Nearly 7500 proteins were identified per cell
cycle phase (Fig. 1A, supplemental Table S1), and our ANOVA
statistical analysis (corrected by FDR) revealed that 3317
proteins were significantly altered across the cell cycle (sup-
plemental Fig. S2H ), of which 219 undergo changes larger
than 50%, and 87 more than 2-fold. We refer to these dy-
namic protein fluctuations between cell cycle phases as os-
cillatory behaviors. Visualization and comparison of the three
groups was achieved with the use of the TriComp algorithm
(9) (supplemental Fig. S1A–S1D). TriComp translates three
quantitative measurements into two polar descriptive vari-
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cycle phases, whereas distance from center denotes the intensity of the relationship. C, Bar graphs of relative abundance of the top 20
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ables: one variable describes the relationship type (�, degree),
whereas the other reports the relative intensity of the relation-
ship (radius). Thus, each angle in the polar coordinate system
corresponds to a specific relationship between G1, S and
G2/M phase, whereas the distance from origo is a quantifying
descriptor of that relationship and can be used for filtering.
The angle (degree) was also used to distinguish six separate
groups, corresponding to an up-regulation in either one or two
of the three cell cycle phases. We further categorized a group
of high-oscillating proteins as having at least a 50% increase
from one group to another, while also being statistically sig-
nificant. The results show all possible cell-cycle oscillation
patterns, with the high-oscillating group comprised of two
prominent clusters: 21% (46/219) of proteins were found to be
increased in G1 and G1�S; whereas 72% (158/219) of pro-
teins increased in S�G2/M and G2/M (Fig. 1B, supplemental
Table S1).

Among the 20 highest oscillating proteins—excluding the
cell cycle probes CDT1 and Geminin, which rank number 1
and 2—we identified well-known cell cycle regulators, as well
as proteins not previously associated with the cell cycle (Fig.
1C). The thymine DNA glycosylase TDG is high in G1 whereas
the uracil DNA glycosylase UNG2 peaks during S-phase. TK1
(thymidine kinase), involved in the production of the nucleo-
tide dTTP, is increased during S-phase carrying on through
G2/M phase. Proteins involved in Rho signaling such as
ARHGAP11A and NET1 as well as the mitotic spindle protein
CKAP2L have increased abundance in S and G2/M, which is
likely associated with mitosis. Some of the highest oscillating
proteins that are not GO-annotated as related to the cell cycle
have previously been identified to be cell cycle regulated,
including ARHGAP11A (4) which has previously been identi-
fied to have a critical function in mitosis (21) , and KIAA0101
and TK1 which have both been identified to undergo cell-
cycle-regulated degradation (22, 23).

Performing gene-set enrichment analysis (GSEA) on the
entire hit-list, we observed a major enrichment for cell-cycle-
annotated proteins, as expected (Fig. 1D). A closer inspection
of these oscillating proteins with cell cycle-related GO terms
revealed a strong bias toward the GO annotation of S�G2/
M-phase enriched proteins, whereas proteins with higher
abundance in G1- or G1�S-phase were underrepresented
(Fig. 1E). Confirming the quality of our cell cycle sorting we
detected bona fide cell cycle regulators in their corresponding
phases (Fig. 1F). After removing all non-cell-cycle-annotated
proteins, GSEA reveals that GO cellular process terms such
as Locomotion, Cell Motility, Adhesion, and Extracellular
Structure Organization are still enriched, suggesting that
many proteins involved in these processes are under regula-

tion of the cell cycle machinery (Fig. 1G). We also performed
GSEA on each individual group of cell cycle patterns, which
revealed a plethora of cellular processes with different protein
dynamics. For example, Ribosome Biogenesis was enriched
in the G1 pattern, RNA Processing in the G1�S pattern, DNA
Replication in the S�G2/M pattern, Organelle Fission in the
G2/M pattern, and Chromosome Segregation in the G2/
M�G1 pattern (Fig. 1H). We conclude that many vital cellular
processes, even those not directly cell cycle-regulatory, are
still affected by the cell cycle.

Substantiating the Relationship Between mRNA Expression

and Protein Abundance—A comparison between our pro-
teome data set with a recently published transcriptomic data
set on cell cycle dynamics using the Fucci system as a bio-
logical model (9) revealed an overlap of 1467 transcripts that
were significantly oscillating in both data sets. Interestingly,
56% of these showed a variation at the protein level but not at
the transcript level, implying that a large extent of protein
turnover is regulated via translational or post-translational
mechanisms (Fig. 2A). Using the � variable of both data sets
on proteins significantly oscillating in both systems, we could
compare variations at transcript and protein abundance, and
these strongly correlated. The oscillation patterns for most
proteins were either synchronized in the same cell cycle
phase as the corresponding transcript or delayed into the next
phase (Fig. 2B). By investigating and comparing the relation-
ship between mRNA and protein in the six different cell cycle
phase groups, we detected profound differences between
mRNA categories. The percentage of proteins that are de-
layed differ depending on how the mRNA is regulated. Some
mRNA-protein relationships are essentially self-supporting,
such as G1-up-regulated mRNA leading to G1- or G1�S-up-
regulated protein. Genes transcribed in G2/M have the high-
est percentage of delayed proteins, as a majority of corre-
sponding oscillating proteins are enriched in the following G1
and G1�S groups (Fig. 2C, 2D), with similar magnitudes as
the total hit list of oscillating proteins (supplemental Fig. S2I).
These findings suggest that most of the transcriptional output
during G2/M phase that can be seen as fluctuations on the
proteome, only show enrichment in the following G1 phase.
This could be part of a preparatory effort in G2/M for the future
proteomic composition of the two daughter cells. GSEA anal-
ysis of some of the major groups of cross-regulated hits
revealed that mRNA up-regulation starting in G1 phase
(Group G1 or G1�S), with a protein up-regulation also starting
in G1 phase, is enriched for multiple anabolic processes, such
as amide biosynthesis and mitochondrial assembly. Proteins
that are up-regulated solely in G2/M phase and which tran-
scripts are also up-regulated in G2/M are enriched for chro-

significantly oscillating proteins. Error bars denote the S.E. between the triplicate samples. Proteins without cell cycle GO terms are highlighted
in bold. D, GSEA of all significantly oscillating proteins. E, Distribution of GO-Cell-Cycle-annotated proteins. F, Distribution of proteins
annotated with GO-terms related to cell cycle. G, GSEA of all significantly oscillating proteins not annotated with a GO-term related to cell
cycle. H, GSEA analysis on each of the six broad groups of oscillation patterns.
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mosome organization proteins, as well as organelle fission—
reflecting the need to prepare for mitosis. Finally, the group of
mRNA-protein pairs that are delayed over mitosis are en-
riched for GO terms related to RNA processing and ribonu-
cleoprotein assembly (Fig. 2E). These three groups were also
analyzed on the level of magnitude they were affected, and
found to share a magnitude distribution with the total list of
significantly changed proteins, except for the group which
was up-regulated in G2 in both mRNA and Protein, which had
a higher overall magnitude (supplemental Fig. S2F).

We compared our data set with a collection of ten different
genome-wide CRISPR/Cas9 viability experiments (10) by us-
ing the number of cell lines out of ten affected in this collection
as a broad “Essentiality Score” to denote importance for
cellular proliferation. We found a clear positive correlation
between cell cycle-dependent changes of proteins and their
essentiality for cellular viability (Fig. 2F), the percentage of
essential proteins was more than 70% higher in �2FC oscil-
lators than non-oscillating proteins. Investigating the cell-cy-
cle distribution of the group of essential-and-oscillating pro-
teins we observed a significant decrease of protein
enrichment in S phase compared with non-essential oscillat-
ing proteins (Fig. 2G).

Cell Cycle Dynamics of Phosphorylation Patterns—Analyz-
ing the abundance of kinases and phosphatases in our data
set using the human KinBase (18) and the Drug-Gene Inter-
action database v3 (DGIdb3) (19), we detected an enrichment
of phosphatases up-regulated in S-phase, whereas kinases
are significantly enriched in G2/M (Fig. 3A). This is also evi-
dent after comparison of protein and mRNA (Fig. 3B). To
integrate the phosphorylation patterns for individual proteins
across the cell cycle on a proteome-wide scale, we sorted
cells in G1, S and G2/M phases and coupled a phospho-
enrichment step to a TMT-based LC/MS/MS analysis (Fig.
3C). We identified 5829 phosphosites with a localization prob-
ability �75%. An ANOVA test was performed on 4833 unique
phosphopeptides, out of which 3317 were significantly oscil-
lating across the cell cycle after FDR correction (Fig. 3C;
supplemental Fig. S2J–S2M). We applied TriComp to visualize
the overall changes in phosphorylation over the cell cycle (Fig.
3D–3E). The most prominent patterns of phosphorylation en-
richments were detected during S�G2/M phases of the cell
cycle, which coincides with the increase in kinase abundance
previously identified (Fig. 3A–3B) and overall increase in pro-
tein regulation during that phase (Fig. 1B). Among the top

oscillating phosphopeptides we could identify many known
cell cycle regulators including MKI67, MCM4, CDC20 and
CDT1 (Fig. 3F). Highlighted phosphopeptides, which have
corresponding genes not annotated with GO:7409 or child
terms among the top fluctuating, are multiple phosphoryla-
tions on nuclear and nucleolar proteins; Nucleolin and multi-
ple Histone 1 proteins (Fig. 3G).

Comparing the patterns of oscillations for the proteome and
phosphoproteome, we observed many occurrences that are
similar. However, there are also several phosphorylation
events in other phases (Fig. 3H). Marker of Proliferation KI-67
(MKI67) provides an example of how protein regulation and
activity can be decoupled from protein abundance. MKI67 is
transcriptionally restrained to the G2/M phase, but the protein
abundance is surprisingly stable throughout the cell cycle
(Fig. 3I). Still, a characterization of phosphorylation patterns
on MKI67 reveals a high degree of G2/M-phase phosphoryl-
ation of MKI67, with 11 unique phosphopeptides being en-
riched more than 2-fold in G2/M. This suggests a high degree
of upstream kinase regulation on MKI67, which corresponds
to its role in cellular proliferation (Fig. 3I).

We then used a motif-matching enrichment analysis to gain
insights into which phosphopeptide patterns were cell-cycle
dependent. We used a motif recognition algorithm in Perseus,
with Perseus’ integrated motif library which mostly contains
known kinase motifs; both general motifs for kinase families,
as well as specific kinase motifs (24). Predicted motifs were
stratified by cell cycle phase oscillation, providing insights into
the cell cycle dependence of specific kinases and enrich-
ments of phosphopeptide motifs (Fig. 3J, supplemental Fig.
S3A), supplemental Table S3). Out of 42 motifs in the Perseus
library, 39 were significantly enriched either in the number of
occurrences or in the specific cell cycle distribution relative to
a background distribution of all significant hits.

Subcellular Fractionation Reveals Cell Cycle-dependent

Protein Relocalization—To analyze protein translocation
events, we performed a simple subcellular fractionation on
cell cycle-sorted HeLa-Fucci cells (Fig. 4A, supplemental Fig.
S4A). Using digitonin as a mild detergent enabled us to sep-
arate the cytosol (soluble fraction) from cellular organelles,
nuclei and membranes (insoluble fraction). Cellular compo-
nents of the two fractions were validated using GSEA on GO
cell cycle (GO_CC) Terms (supplemental Fig. S4B), supple-
mental Table S4). TMT-based proteomics analyses of both
fractions detected 	4500 proteins. ANOVA analysis retrieved

Fig. 2. Comparing Transcriptomic and Proteomic Cell Cycle Dynamics. A, Venn diagram of significantly oscillating mRNA (Boström et al.,
2017) and proteins (this study). B, Dynamic comparison of protein and mRNA oscillations across the cell cycle using the � variable from
TriComp. C, Detailed view of mRNA-protein pairs oscillating in both experiments. Arrow widths are normalized to proportion of each mRNA
origin phase. D, Distribution of the delay from mRNA expression until enrichment of the corresponding protein, estimated as the difference
between � for protein and mRNA respectively. E, GSEA results of three major groups of oscillating mRNA-protein pairs and the twelve
highest-magnitude protein changes in each group. F, Fraction of essential proteins among oscillating proteins. Essentiality is enriched among
oscillating proteins. G, Proportion of essential and non-essential proteins in individual cell cycle phase patterns. Significance is calculated using
Fisher’s exact test or Log-Likelihood Ratio calculations. *: p � 0.05, ** p � 0.01, ***: p � 0.001, n.s: non-significant.
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1393 significantly oscillating proteins in the soluble and 2000
significantly oscillating proteins in the insoluble fraction (Fig.
4A, supplemental Fig. S4C). Tricomp visualization of the two
fractions revealed clearly distinct patterns. Soluble proteins
were mostly enriched in S phase, whereas insoluble proteins
were more prevalent in G1 and G2/M (Fig. 4B, 4C). We used
these oscillation patterns to screen for possible translocation
events by looking at proteins that oscillated diametrically op-
posite in the soluble and insoluble fraction but showed no
extensive variation (�20% change) in the total proteome. This
identified 169 potential cell cycle-dependent solubility-chang-
ing proteins (Fig. 4D). The essentiality score on this group of
proteins revealed a strong enrichment for essential proteins
(Fig. 4E), underscoring the functional significance of these
events. Characterizing these 169 proteins disclosed multiple
overarching trends with different kinds of soluble-insoluble
relationships (Fig. 4F), some indicating a cell-cycle dependent
translocation between subcellular compartments, and some
indicating a change in binding configuration. We performed
GSEA on a broad categorization of these distributions, using
the phase they were enriched as soluble to denote their
groups. The proteins enriched as soluble in G2/M phase are
enriched in GO terms relating to the nuclear matrix, but also to
external stimuli-responsive processes. The proteins soluble in
S or S�G2/M phase are predominantly involved in mRNA
processing, whereas those soluble in S phase are enriched in
mitochondrial-related GO terms, including many mitochon-
drial ATP synthase proteins, suggesting that small mitochon-
drial fragments are being released during cell-cycle depend-
ent mitochondrial fission events (25). Finally, proteins that
have decreased abundance as soluble in S phase are 133-
fold enriched for DNA replication initiation in GSEA, because
of the sole presence of five different minichromosome main-
tenance (MCM) proteins, components of the replicative DNA
helicase. In addition to the groups of proteins that relocate
during the cell cycle, there are also many unique proteins with
interesting phenotypes (supplemental Table S2).

The top possible translocating proteins, sorted on maxi-
mum change in relative abundance from the smaller change
out of the soluble or the insoluble phase, are shown in Fig. 5A.
Compared with Fig. 1B, the prevalence of GO terms denoting
Cell Cycle is much smaller. Some of the top possible trans-
locators are involved in chromatin remodeling (CHD2 and
CHD4, although not in the top-list), and calcium-dependent

signaling in ER (CALU, RCN1, RCN2). Other interesting trans-
locators that become insoluble during S-phase are TALDO1
(Transaldolase involved in PPP), NT5DC1 (5
nucleotidase)
and TKT (Transketolase in the hexosamine pathway). All three
are involved in nucleoside biosynthesis which would concur
with local nuclear regulation of nucleotides during replication.
We can also see NUP93, a nuclear-membrane-associated
protein becoming more soluble in G2, possibly because of a
fragmentation of the nuclear membrane in mitosis.

The shortlist of potential translocating proteins that are
also classified as essential can be subdivided into four
broad groups, depending on specific phases (Fig. 5B). One
of these groups, which becomes more insoluble during
S-phase, is composed of just five proteins, MCM compo-
nents MCM2,3,4,5 and 6, the majority of the members of the
MCM family, which are components of the MCM double
hexamer responsible for unwinding DNA during DNA repli-
cation (supplemental Fig. S5A). The DNA polymerase clamp
Proliferating Cell Nuclear Antigen (PCNA) also shifts to the
insoluble fraction in S-phase, but in contrast to the MCM
proteins, PCNA does not revert to the soluble fraction dur-
ing G2/M phase. A detailed look at the significant phospho-
rylation events on the MCM family members emphasizes the
complexity of PTM regulation of the cell cycle. Purely based
on protein dynamics and translocation data, the MCM pro-
teins show very similar phenotypes but they exhibit dissim-
ilar phosphorylation patterns (Fig. 5C). For example, MCM3
is dephosphorylated on many different serine sites during
S-phase. This dephosphorylation is in accordance with a
previous report describing negative regulation of MCM3
activity by the cell cycle regulator Chk1 (26). The highest
regulation of MCM3 was on Ser728, a site which has been
described by (27) to be phosphorylated by ATM in response
to DNA damage (Fig. 5D). Similarly, we can find the highest
regulations of MCM2 and MCM4 in the literature (28, 29)
(Fig. 5D).

MAT2A Nuclear Localization Is Enriched in S- and G2/M-

phase—MAT2A is one of the proteins that do not oscillate
over the cell cycle in total abundance but undergoes signifi-
cant changes in oscillation patterns of the soluble and insol-
uble fractions. This protein is involved in methyl donor pro-
duction and was previously found to have a dynamic nuclear
localization (30). We identified increasingly insoluble MAT2A
in S-phase and G2/M-phase cells, with a corresponding de-

Fig. 3. The Cell Cycle of Phosphoproteomic Events. A, Cell cycle distribution frequency of annotated kinases and phosphatases. B,
mRNA-protein dynamic comparison using TriComp �, stratified on kinases and phosphatases. C, Workflow of cell cycle sorting and
phosphoproteomic characterization over the cell cycle. D, Cell cycle distribution of all significantly oscillating and highly oscillating phospho-
sites. E Tricomp visualization of all phosphopeptides oscillating over the cell cycle. F–G, Top fluctuating phosphopeptide which associated
Gene is annotated with GO:CellCycle or a child term or not. H, Comparison between protein oscillation patterns and corresponding
phosphosite oscillation patterns using TriComp � variable. I, Transcriptomic, proteomic and phosphoproteomic MKI67 abundance during the
cell cycle. J, Cell cycle distribution of predicted Phosphopeptide Motifs from Perseus in the phosphoproteomic data set, analyzed for
enrichment relative the background distribution of all significantly oscillating phosphopeptides. Significance measured with Log-likelihood-ratio
testing. *: p � 0.05, **: p � 0.01, ***: p � 0.001.
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cline of soluble MAT2A in these phases (Fig. 6A). We con-
firmed these findings by independent immunofluorescence
experiments, using a machine-learning-based classifier in
CellProfiler Analyst (v2.2.1) to categorize MAT2A localization.
We identified a strong correlation between MAT2A nuclear
localization and S�G2 cell cycle phase using Fucci categori-
zation (Fig. 6B–6D). Arresting cells prior to replication (but
post G1/S-checkpoint) using two inhibitors of DNA replication
(Aphidicolin and Camptothecin), increased the proportion of
cells with nuclear MAT2A (Fig. 6D, supplemental Fig. S5B–
S5C). We can thus conclude that passing the G1/S check-
point is sufficient to facilitate the nuclear translocation of
MAT2A, without active replication or entry into G2 phase.

DISCUSSION

The importance of understanding the cell cycle on a pro-
teomic level has only recently become the focus of intense
research, as methods to measure protein stability have been
employed on cell cycle separated cell lines (31, 32). Addition-

ally, the complexity of the relationship between transcriptom-
ics and proteomics has been highlighted, and in many cases,
transcriptomic data cannot confidently be used to predict
protein dynamics (33). With the current study, we provide a
system-level understanding of the cell cycle in unperturbed
cells using combined proteomics, transcriptomics, phospho-
proteomics and functional genomics approaches (9, 10). Of
note, the HeLa cell line contains inactivated Rb because of its
HPV-positive status, and E2F regulation of the cell cycle can
be dysregulated (34, 35).

The algorithm TriComp enabled us to compare and visual-
ize large three-dimensional data sets by breaking down the
dimensions into a relationship-explanatory variable and a re-
lationship-intensity-variable. This enabled the comparison of
patterns from multiple experiments and yielded novel insights
into the relationship between transcriptional activity and pro-
teomic regulation on a global level.

Besides classic cell cycle regulatory systems, we also find
many proteins whose abundance changes are significantly
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delayed from their respective mRNA, suggesting that cells
prepare for the next G1 phase during G2/M. During the late
phases of mitosis, the cell is in a transcriptionally paused state
because of the condensation of chromatin (36). Significant
delays between late G2/M transcription and corresponding
protein accumulation in the following G1 phase suggest that
cells buffer mRNA production for subsequent translation dur-
ing this period of transcriptional pause. Enrichment analysis of
gene-protein pairs exhibiting such a delay in our data shows
heavy involvement in RNA processing and splicing, possibly
suggesting additional regulatory functions. This extent of in-
fluence of the parental cells’ transcriptional regulation on the
protein content of the divided cells raises the interesting pos-
sibility of a high parental control of cell fate determination in
developmental biology and stem-cell regulation. Additionally,

this delay implies that a mRNA identified as strongly up-
regulated in G2 might not actually be relevant for the G2-
phase but might be preparatory for G1-requisite protein trans-
lation instead. Overall, with a mixed cell cycle population such
as with tissues or cell samples, the mRNA abundance is a
reliable predictor of steady-state protein content (1). However,
for the fine-tuned temporal dynamics of the cell cycle, the
delay between transcription and translation is oscillatory. As
such, the cell will start synthesizing an mRNA in one cell cycle
phase in preparation for protein translation in the next phase,
especially during the transcriptional hiatus of mitosis. This
highlights the need to re-assess the cell cycle classifications
of proteins using protein-based techniques, such as Western
blotting or mass spectrometry, rather than relying solely on
transcriptomics data.
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The thymine DNA glycosylase TDG is not cell cycle asso-
ciated using gene ontology (GO) enrichment analysis, how-
ever it was described to be degraded by the UPS in cells
entering S-phase. The authors argue that this maintains a
separation of function between TDG and the uracil DNA gly-
cosylase UNG2 which peaks during S-phase (37). Although
UNG2 was not detected in our data set, we can confirm the
G1 prevalence of TDG, and UNG is up-regulated in S and
G2/M phases. However, TDG was also linked to DNA dem-
ethylation raising the possibility that it is also implicated in
regulating gene expression (38). Recently, TDG was sug-
gested as a novel target for melanoma with promising anti-
cancer effects through the transcriptional regulation of genes
important for cell cycle progression and senescence (39).

Investigating the essentiality of protein oscillations, we
could identify a significant lack of essential proteins in the
groups S and S�G2/M. Although this observation could sug-
gest an aversion to regulate protein levels in S phase, it might
alternatively indicate that essential proteins which are con-
trolled in S-phase, are more likely to be redundant, and there-
fore not be identified as essential in single-gene knockout
CRISPR/Cas9 survivability studies. One of these S-G2/M-
induced cell cycle markers, MKI67, which only exhibited a
phenotype in one out of ten cell lines in Bertoume et al. (10),
exhibited both extensive cell cycle-dependent phosphoryla-
tion and high transcriptional regulation. Although its protein
levels oscillated significantly, the difference among the
phases was relatively small. We hypothesize that this is be-
cause of a relatively slow degradation of MKI67, and the fast
proliferation rate of HeLa cells reaching the next transcrip-
tomic burst before degradation of MKI67 is complete. Al-
though Sobecki et al. shows that MKI67 undergoes APC/C-
mediated degradation (40), quantifications in continuously
proliferating cells by Miller et al. highlights that KI67 is con-
tinuously increasing in S/G2/M and continuously degraded in
G1 (41), and its degradation is a slower process than for
example APC/C-mediated degradation of Geminin, which
takes place within minutes at the end of mitosis (8).

We furthermore detected many proteins that oscillate over
the cell cycle while their transcripts remain stable, indicating
widespread post-translational regulation, possibly through
the ubiquitin-proteasome system. The major functional differ-
ence between transcriptional regulation and regulation via
protein degradation is the speed. An additional consideration
for the cell to actively degrade a protein, is the future cost in
energy and ribosome occupancy of rebuilding it the next time
it is needed. PTM-based regulation offers an even faster and
more energy-efficient way to control protein activity. We pro-
vide information regarding the phosphorylation events over
the cell cycle, and a method of comparing these to protein
and transcript level dynamics.

Besides the post-translational regulation of protein activity,
the intracellular localization plays a major role and the com-
partmentalization of the cell serves as a well-recognized way

to separate protein functions without altering abundance. Our
method to compare the soluble and insoluble proteomic cell
cycle while controlling for the overall cell cycle revealed sev-
eral interesting patterns. We identify three major reasons for
why proteins show up in this hit list; a change in structural
integrity of a larger structure, a change in binding confirmation
to a larger structure, or a translocation event between sub-
cellular compartments with different solubility.

The first reason can account for the enrichment of nuclear
matrix and mitochondrial GO-terms, as both complexes are
known to undergo cell-cycle-induced conformational chang-
es; the breakdown of the nuclear membrane in mitosis, and
the mitochondrial fission respectively. Indeed, the largest
unique group of proteins that appeared as oscillating in the
soluble cell cycle was a group of 22 mitochondrial proteins,
confirming the extensive cell-cycle-mediated fission of large
mitochondrial complexes that occurs during S-phase (42, 43).
Release of mitochondrial material into the cytosol during the
fission process would lead to a markedly higher amount of
mitochondrial proteins in the cytoplasm during S-phase until
they are naturally broken down.

The second reason is related to binding configurations to
structures inducing a solubility shift of the proteins them-
selves. A prominent group that becomes insoluble during
S-phase but is soluble throughout the remaining cell cycle
phases are five MCM family members, highlighting the spec-
ificity of the prediction algorithm. The MCM proteins are part
of the helicase responsible for unwinding duplex DNA during
replication, and is stabilized on DNA in S-phase, explaining
the solubility shift.

The last reason is related to translocation events between
subcellular compartments. We identified and confirmed a dis-
tinct translocating phenotype of the S-adenosylmethionine
synthase MAT2A. This protein was previously reported to be
localized to the nucleus as well as to the cytosol, but the
functional significance was unknown (30). We show here that
MAT2A is enriched in the nucleus of cells undergoing repli-
cation and during the subsequent G2-phase. We suggest that
the role for this translocation is the result of the high methyl-
ation requirement inside the nucleus during S-phase for both
DNA and histone methylation processes. Although the highest
requirement of methyl donor is during S-phase, recent evi-
dence (44) suggests that the copying of histone methylation
patterns is performed throughout G2 phase. In addition,
methylation is required during G2 phase to facilitate hetero-
chromatin formation (45). MAT2A and methionine metabolism
was just recently found to be a critical feature of tumor initi-
ating cells (46). Together, this provides a plausible explanation
as to why MAT2A nuclear localization persists until mitosis.
We speculate that localized nuclear S-adenosylmethionine is
essential to provide materials for the copying of epigenetic
methylation patterns in proliferating cells.

Throughout our characterizations of protein abundance,
phosphorylation and translocation patterns, we investigated
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the essentiality of the hit lists using CRISPR/Cas9 survival
screening data, and we could identify a clear correlation be-
tween the level of regulation over the cell cycle and essenti-
ality for cellular proliferation. This supports the argument that
essential genes are more likely to have specific cell cycle-de-
pendent functions. Thus, the essentiality score itself is a use-
ful tool to narrow large hit lists and identify proteins that are
also proven to be functionally necessary for cell division, and
to filter out candidates that are regulated but not functionally
essential.
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