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ARTICLE

A comprehensive structural, biochemical and
biological profiling of the human NUDIX hydrolase
family
Jordi Carreras-Puigvert1, Marinka Zitnik2,3, Ann-Sofie Jemth1, Megan Carter4, Judith E. Unterlass1,

Björn Hallström5, Olga Loseva1, Zhir Karem1, José Manuel Calderón-Montaño1, Cecilia Lindskog6,

Per-Henrik Edqvist6, Damian J. Matuszewski7, Hammou Ait Blal5, Ronnie P.A. Berntsson 4, Maria Häggblad8,

Ulf Martens8, Matthew Studham9, Bo Lundgren8, Carolina Wählby7, Erik L.L. Sonnhammer9, Emma Lundberg5,

Pål Stenmark4, Blaz Zupan2,10 & Thomas Helleday1

The NUDIX enzymes are involved in cellular metabolism and homeostasis, as well as mRNA

processing. Although highly conserved throughout all organisms, their biological roles and

biochemical redundancies remain largely unclear. To address this, we globally resolve their

individual properties and inter-relationships. We purify 18 of the human NUDIX proteins and

screen 52 substrates, providing a substrate redundancy map. Using crystal structures, we

generate sequence alignment analyses revealing four major structural classes. To a certain

extent, their substrate preference redundancies correlate with structural classes, thus linking

structure and activity relationships. To elucidate interdependence among the NUDIX

hydrolases, we pairwise deplete them generating an epistatic interaction map, evaluate cell

cycle perturbations upon knockdown in normal and cancer cells, and analyse their protein and

mRNA expression in normal and cancer tissues. Using a novel FUSION algorithm, we inte-

grate all data creating a comprehensive NUDIX enzyme profile map, which will prove fun-

damental to understanding their biological functionality.
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T
he nucleoside diphosphates linked to moiety-X (NUDIX)
hydrolases belong to a super family of enzymes conserved
throughout all species1,2, originally called MutT family

proteins, as MutT was the founding member. The human MutT
homolog MTH1, encoded by the NUDT1 gene, has antimutagenic
properties, as it prevents the incorporation of oxidized deox-
ynucleoside triphosphates (dNTPs) (e.g., 8-oxodGTP or 2-OH-
dATP) into DNA3,4. The high diversity in substrate preferences of
the NUDIX family members suggests that only a few, or poten-
tially only MTH1, is involved in preventing mutations in DNA5.
The NUDIX domain contains a NUDIX box (Gx5Ex5[UA]
xREx2EExGU), which differs to a certain extent among the family
members. As their name suggests, the NUDIX hydrolases are
enzymes that carry out hydrolysis reactions, substrates of which
range from canonical (d)NTPs, oxidized (d)NTPs, non-
nucleoside polyphosphates, and capped mRNAs6. The first
reference to the NUDIX hydrolases, MutT, dates back to 19547

and most of what we know about this enzyme family was dis-
covered through careful biochemical characterization by Bessman
and colleagues1,8 in the 1990s and others more recently, which
has been extensively reviewed by McLennan2,9,10. Despite decades
of research, the biological functions of many NUDIX enzymes
remain elusive and several members are completely unchar-
acterized11. An initial hypothesis was that the NUDIX enzymes
clean the cell from deleterious metabolites, such as oxidized
nucleotides, ensuring proper cell homeostasis1,12. Work in model
organisms on individual NUDIX members has given some
insights, but the key cellular roles of these enzymes, apart from
MTH1, are yet to be designated12–14. As some NUDIX enzymes
are reported to be upregulated following cellular stress15–18, they
may be important for survival of cells under these conditions and
are therefore potentially good targets for therapeutic intervention,
e.g., killing of cancer cells. Studying the NUDIX hydrolase family
of enzymes individually may be hampered by their possible
substrate and functional redundancies. To address this, we have
undertaken a family-wide approach by building the largest col-
lected set of information presented to date on all human NUDIX
enzymes, including biochemical, structural, genetic, and biologi-
cal properties, and using a novel algorithm, FUSION19, to
interrogate their similarities.

Results
Structural and domain analysis of human NUDIX hydrolases.
It is critical to define the relationship between structure and
activity, in order to better understand biochemical mechanisms at
molecular detail. To determine sequence and structural simila-
rities between the human NUDIX hydrolases, we generated
consensus phylogenetic trees using sequences of both full-length
(Fig. 1a and Supplementary Fig. 1a) and NUDIX fold domains
(Supplementary Fig. 1b, c), and analyzed their available crystal
structures (Fig. 1a, b)20,21. Multiple sequence alignments were
carried out using Clustal Omega22 followed by Bayesian inference
tree generation using MrBayes23. Although the alignment and
phylogenetic tree of the NUDIX fold domain sequences did have
some significant differences compared with the full-length ana-
lysis (Fig. 1a and Supplementary Fig. 1b), multiple NUDIX pro-
tein structures in complex with relevant substrates have revealed
that substrate binding is at times directed from residues outside
the NUDIX fold domain24,25 and, therefore, further analysis was
carried out on the full-length sequence alignment and phyloge-
netic tree. The phylogenetic analysis separated full-length human
NUDIX proteins into three general classes and one significant
outlier (NUDT22). Phylogenetic assignment accurately grouped
NUDIX proteins possessing diphosphoinositol polyphosphate
phosphohydrolase (DIPP) activity (NUDT3, NUDT4, NUDT10,

and NUDT11)26,27, which have almost identical sequences as
previously reported28. Another distinct group is formed by
NUDT7, NUDT8, NUDT16, and NUDT19, also in agreement
with previously reported alignments29. Although there is no
available structure for NUDT7 and NUDT8, as described ear-
lier29, our analysis also suggests a high grade of sequence simi-
larity between these two NUDIX enzymes given their posterior
probability score, which is close to 1, and their percent pairwise
identity of 36% (Fig. 1a). The related proteins NUDT12 and
NUDT13, both containing the SQPWPFPxS sequence motif
common in NADH diphosphatases, were mapped together30.
Another distinct grouping places NUDT14 and NUDT5 together.
The domain exchange responsible for forming the substrate
recognition pocket of NUDT5 is not present in the deposited
structure of NUDT14, which lacks the N-terminal 39 residues25.
Although possessing both sequence and structural similarity,
MTH1 and NUDT15 have a distinct substrate activity determined
by key residues within the substrate binding pocket21. NUDT2
and NUDT21 are grouped in the phylogenetic tree and both have
demonstrated ability to bind Ap4A31–34. As no family-wide
structural analysis has been performed previously, we generated
superimposed structures of the phylogenetically relevant enzymes
(Fig. 1a) and also present the individual human NUDIX enzymes
by their available structures and corresponding domains (Fig. 1b,
c). Despite the similarities in the NUDIX hydrolase domain
(green), including the NUDIX box (blue), there were clear dif-
ferences in the positions of these domains within the individual
proteins. Moreover, three of the NUDIX enzymes (namely
NUDT12, NUDT13, and DCP2) contained additional annotated
domains compared with the rest of the NUDIX family members.

Substrate redundancy in the NUDIX hydrolase family. Key to
defining the biological role of the NUDIX hydrolases is to have a
comprehensive overview of their respective substrate activities. A
substantial amount of work has been devoted to determine the
substrates for individual NUDIX hydrolases3,4,35. Here we wanted
to generate a more comprehensive picture of the substrate spe-
cificities of the different human NUDIX enzymes by assessing
their activities side-by-side, in a reaction buffer with physiological
pH, providing a basis for determining their biological function in
cells. We successfully expressed and purified 18 of the 22 human
NUDIX proteins from Escherichia coli (Supplementary Fig. 2a).
Attempts to express NUDT8, NUDT13, NUDT19, and NUDT20
as soluble full-length proteins using several different E. coli
strains, expression conditions, and tags were unsuccessful. We
subsequently set up a high-throughput biochemical screen based
on the Malachite Green assay36 (Supplementary Fig. 2b). Using
this setup, at low (5 nM) and high (200 nM) enzyme concentra-
tions, with 25 or 50 µM substrate, we screened 52 putative sub-
strates, including already known ones (e.g., oxidized dNTPs). We
confirmed published enzymatic activities of MTH1 and other
NUDIX hydrolases, and identified several novel substrates
(Fig. 2a and Supplementary Fig. 2b, c). Given the large data set,
we summarized the overlap in enzymatic activity by a heat map of
all the NUDIX enzymes at the highest concentration, as well as a
hierarchical clustering excluding the conditions displaying no
activity (Fig. 2a, b). In the cases of overlapping substrate activites,
a bar plot is provided, allowing for more accurate comparison
(Fig. 2c–e). Some significant novel substrates identified for the
human NUDIX enzymes are N2-me-dGTP for MTH1, and Ap4,
Ap4dT, Ap4G, and p4G as substrates for NUDT2 (Fig. 2a–c and
Supplementary Fig. 2c), which were previously reported to be
substrates for NUDT2 orthologs. We found that NUDT12 had
activity toward a wide range of substrates, confirming an earlier
study performed at a higher pH30. As expected, NUDT12 shared
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some substrates with NUDT230, as well as with NUDT5 and
NUDT14. Similar to NUDT5 and NUDT12, NUDT14 showed
activity with ADP-glucose and ADP-ribose, in agreement with
earlier published results37, but also with β-NADH and Ap3A,
which have not previously been reported (Fig. 2a, b, d and

Supplementary Fig. 2c). NUDT15 showed a rather promiscuous
activity over several substrates ranging from modified NTPs
including 6-thio-GTP, modified dNTPs such as 5-me-dCTP and
6-thio-dGTP to 8-oxo-dGTP and 8-oxo-dGDP (Fig. 2a, b, e and
Supplementary Fig. 2c). Interestingly, our screen failed to identify
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clear substrates for NUDT4, NUDT6, NUDT7, NUDT10,
NUDT11, NUDT16, NUDT17, NUDT21, and NUDT22 (Fig. 2a
and Supplementary Fig. 2c), indicating that other conditions
might be required different than those explored here. NUDT6 is
encoded by the fibroblast growth factor antisense RNA and
contains the MutT domain; however, as in our case, previous
studies have failed to identify a substrate38,39. Murine NUDT7
was previously identified as a peroxisomal enzyme with activity
toward several Coenzyme A-based substrates29. Albeit we used a
human purified NUDT7, we cannot explain why we failed to
reproduce the reported results. To validate the activity of the
DIPP family members, we used their main known substrate27, 5-
PP-InsP5 (Supplementary Fig. 2d), which revealed the expected
activity for NUDT3 and NUDT4, but no activity could be
detected for NUDT10 and NUDT11.

The hierarchical clustering of the active NUDIX enzymes
resembled the one resulting from the sequence analysis (Figs. 1a
and 2b), indicating a certain grade of correlation between
sequence and substrate activity. To visualize this correlation, we
plotted a cluster co-assignment matrix correlation comparing
sequence similarity groups and substrate activity clustering
(Fig. 2f). The fact that the NUDIX proteins grouped in, either
the same sequence similarity group, the same substrate cluster, or
both, indicates a correlation between these two features in a
subset of members of this enzyme family. However, the
phylogenetic tree generated using the NUDIX fold sequences
failed to group NUDT2 and NUDT21 (Supplementary Fig. 1b),
indicating that the NUDIX fold alignment may not be enough to
correctly predict sequence and substrate correlations.

NUDIX hydrolase gene expression. Next, we investigated the
gene expression of the NUDIX hydrolases in cancer tissues, using
the Cancer Genome Atlas (TCGA) and Human Protein Atlas
(HPA) databases, and compared cancer vs normal tissues using
RNA sequencing data of normal tissues from the HPA40. To
compare data sets we processed the HPA data according to the
TCGA V2 pipeline (see “Expression analysis” in Methods section
for reference) and plotted the results using a bubble plot in which
the size of the bubble corresponds to the expression levels of each
NUDIX gene (Fig. 3a). Up- or downregulation, as well as statis-
tical significance compared with the corresponding normal tissue,
is indicated in the figure key. To have a comprehensive overview
of normal vs cancer tissues, we paired the available data sets as
listed in Supplementary Table 1. In line with previous data,
NUDT1 was significantly overexpressed in almost all of the
analyzed cancers41. Although NUDT2 was overexpressed only in

a subset of cancers, NUDT4 was downregulated in all cancers and
appeared to be highly expressed throughout all normal tissues.

Co-expression may reveal an underlying biological function42.
To determine expression similarities, we used hierarchical
clustering to compare the fold-change expression of each tumor
type with its corresponding normal tissue (Supplementary
Fig. 3a), as well as the expression of each NUDIX enzyme among
the normal tissues (Supplementary Fig. 3b). Seemingly, the
expression of the NUDIX genes in both normal and cancer
samples was tissue dependent, providing a wide spectrum of
expression levels (Fig. 3b). However, a distinct cluster appeared
when comparing cancer vs normal tissues, which contained
NUDT1, NUDT5, NUDT8, NUDT14, and NUDT22 (Supplemen-
tary Fig. 3a), confirming a potential role of these NUDIX
hydrolases in cancer. Finally, two marked NUDIX genes clusters
appeared in normal tissues (Supplementary Fig. 3b).

Our thorough gene expression analysis provides a detailed, but
at the same time broad, overview of the NUDIX hydrolases gene
expression patterns in healthy as well as cancer tissues, and
thereby highlighting important differences across this enzyme
family.

NUDIX hydrolase protein expression. We determined the
diversity of protein expression across organs using immunohis-
tochemistry and tissue microarrays (TMAs), based on manually
curated and validated antibodies generated within the HPA
pipeline (Fig. 3b, see figure legend for staining details). The
protein expression levels are presented as a two-layered circle,
where the inner circle represents normal tissues and the color
code in the outer circle represents the percentage of cancer tissues
that displayed low, medium, high, or not detected expression,
allowing for a direct comparison between cancers and their cor-
responding healthy tissues. MTH1 for instance, appeared to be
upregulated in breast cancer and melanoma, whereas down-
regulated in colorectal cancer, indicating certain divergence
between protein and mRNA expression data (Fig. 3a, c). Deter-
mining the sub-cellular localization of a protein of interest is
important for the understanding of its function. We have used
available data from the HPA as well as UniProt to draw a com-
plete overview of the sub-cellular localization of NUDIX hydro-
lases (Supplementary Fig. 17e). This revealed three main
localizations for this family of enzymes: nuclear, mitochondrial
and cytosolic, with the exception of NUDT7, NUDT12, and
NUDT19, which have known peroxisomal localization.

Fig. 3 mRNA and protein expression across normal and cancer tissues of the human NUDIX hydrolases. a mRNA expression in cancer tissues from the

TCGA compared with the non-cancer counterparts from the HPA. Red and blue indicate up- or downregulation, and light brown and gray indicate normal

tissue of origin or non-significance in cancer tissue, respectively. A complete list of the cancer types acronyms can be found in the Supplementary Table 3.

b Immunohistochemical stainings of normal tissues. a, b MTH1 shows cytoplasmic staining of glandular cells in small intestine and cytoplasmic/nuclear

staining seminiferous ducts and testicular Leydig cells. c, d NUDT5 shows cytoplasmic staining hepatocytes and sperms in testis. e, f NUDT7 shows

cytoplasmic staining of hepatocytes and testicular Leydig cells. g, h NUDT8 shows patchy cytoplasmic staining of skeletal muscle and parathyroid glandular

cells. i, j NUDT9 shows cytoplasmic staining of glandular cells in the fallopian tube and staining of neurons and neuropil in cortex. k, l NUDT12 shows

cytoplasmic/membranous staining of tubules and glomeruli in kidney and staining of glial cells in cortex.m, n NUDT13 shows nuclear staining in a subset of

squamous epithelial cells in esophagus and in germinal center cells of the lymph node. o, p NUDT14 shows cytoplasmic and nuclear staining of tubules and

glomeruli in kidney and cytoplasmic staining of epidermis (enriched in the basal layer). q, r NUDT15 shows cytoplasmic/membranous staining of neurons

and neuropil in cortex and cytoplasmic/membranous staining of glandular cells in epididymis. s, t NUDT16 shows nucleolar staining of glandular cells in

small intestine and white pulp cells in spleen. u, v NUDT17 shows cytoplasmic/membranous staining of glandular breast cells and of seminiferous ducts in

testis. w, x NUDT18 shows cytoplasmic and nuclear staining of basal cells of the prostate and in epidermis. y, z NUDT22 shows cytoplasmic staining of

exocrine (strong) and endocrine (weak) pancreatic cells, and cytoplasmic/membranous staining of glandular cells of the stomach. Aa, Ab DCP2 shows

cytoplasmic staining in epidermis, and in stromal and glandular cells of the small intestine. c Qualitative assessment graphical representation of the human

NUDIX protein expression. The inner circles represent the expression in the normal tissue corresponding to its cancer counterpart. The outer circle

represents the percentage of cancers that displayed either not detectable, low, medium, or high protein expression
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NUDIX hydrolases required for cell survival and cell cycle. The
biological role of the majority of the NUDIX enzymes remains
unclear; however, some are implicated in cancer or modulate the
response to certain anticancer therapies such as 6-
thioguanine41,43–45. In order to connect biochemical and biolo-
gical functions, we small interfering RNA (siRNA)-depleted all
human NUDIX proteins and evaluated cell viability and cell cycle
distribution (Fig. 4a, b). We used a small panel of cell lines
representing three different types of cancers—A549 for lung,
MCF7 for breast, and SW480 for colon cancers—as well as the
colon epithelial-derived non-cancer cell line CCD841, in which
we ran two independent siRNA experiments. As indicated by the
high correlation between the knockdown experiments, we
achieved a good reproducibility in all four cell lines and, in
addition, we obtained a high level of mRNA depletion of each
NUDIX, tested in A549 cells by quantitative PCR (qPCR), indi-
cating high confidence results (Supplementary Fig. 4a, b).
NUDT1 and NUDT2 depletion, as expected41,43,44, reduced the
proliferation of A549 and MCF7 cells considerably. Interestingly,
we identified NUDT10 and NUDT11 to be essential in all three
cancer cell lines (Fig. 4a). Of note, given the high sequence
similarity between NUDT10 and NUDT11, we acknowledge that
the specificity of their corresponding siRNA is not as high as
desired. Nonetheless, both knockdowns resulted in a similar lethal
phenotype (Fig. 4a). Compared with all other NUDIX enzymes,
NUDT13 was essential in CCD841 cells. We analyzed the cell
cycle profiles using a DNA content approach46. In contrast to the
CCD841, the cancer cell lines displayed a wide range of cell cycle
effects upon depletion of the different NUDIX enzymes, namely
increases in sub-G0/G1 (indicating increase in cell death), arrest in
G1 (2 N) or accumulation in G2/M (4 N). We confirm previously
known cell cycle perturbations upon NUDIX depletion such as
NUDT2 and NUDT5 in cancer cells43,47,48, characterized by an
accumulation in G1 (2 N) phase. These data highlight the
potential role of NUDIX hydrolases in cell cycle regulation, either

in a direct manner or through a secondary regulation due to
nucleotide pool imbalance, which can lead to replication-slowing
DNA lesions49,50.

NUDIX genetic interactions uncover biological redundancies.
As some of the NUDIX hydrolases have overlapping biochemical
functions, there is also a high likelihood that different proteins
within this family are redundant. However, biochemical redun-
dancy may not necessarily equal to a biological redundancy
between proteins, as the activity may be distinct under certain
biological conditions, or be located to different subcellular com-
partments. A widely used approach to address this question is the
use of functional genomics together with inferred genetic inter-
action networks51. To explore this potential network, we inves-
tigated viability and cell cycle perturbations after double siRNA-
mediated knockdowns of all the human NUDIX hydrolases in a
pairwise manner, thereby producing 276 combinations, in the cell
lines CCD841, A549, MCF7, and SW480 (Supplementary Figs. 5
and 7–11). We determined whether the depletion of two NUDIX
enzymes had an aggravating, nonsignificant, or alleviating effect
on cell viability by normalizing to the corresponding single
knockdown controls. Among the several mathematically distinct
definitions of genetic interactions or epistasis, many studies52

provide multiple lines of evidence favoring the multiplicative
model; therefore, we decided to use this model in our study. This
approach predicts double knockdown viability to be the product
of the corresponding single knockdown viability values, i.e.,
E(Wab)=WaWb, where a gene pair (a,b), refers to the viability of
the two single NUDIX knockdowns and the double knockdown
as Wa, Wb, and Wab, respectively. An epistasis interaction score
under this definition is then determined as ϵ ¼ Wab � E Wabð Þ
(Fig. 5a). A negative epistasis score suggests an aggravating
genetic interaction between two genes, indicating that they likely
belong to different pathways, whereas a positive epistasis score is

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

NUDT1 NUDT4

NUDT7 NUDT10 

NUDT13 NUDT16

NUDT19 NUDT22 

NUDT2

N
o
rm

a
liz

e
d
 s

u
rv

iv
a
l 

NUDT5 

NUDT8 NUDT11

NUDT14 NUDT17

CCD841

SW480

MCF7

A549

DCP2

NUDT3 NUDT6

NUDT9 NUDT12 

NUDT15 NUDT18 

NUDT21

a b
CCD841 A549 MCF7

NUDT1

NUDT4

NUDT7

NUDT2

NUDT5 

NUDT8 

NUDT3

NUDT6

NUDT9

NUDT10

NUDT11

Pos. Ctrl.

NUDT12

NUDT13

NUDT14

NUDT15

NUDT16

NUDT17

NUDT18

NUDT19

DCP2

NUDT21

NUDT22

Non

targeting

NUDT1

NUDT4

NUDT7

NUDT2

NUDT5 

NUDT8 

NUDT3

NUDT6

NUDT9

NUDT10

NUDT11

Pos. Ctrl.

NUDT12

NUDT13

NUDT14

NUDT15

NUDT16

NUDT17

NUDT18

NUDT19

DCP2

NUDT21

NUDT22

Non

targeting

NUDT1

NUDT4

NUDT7

NUDT2

NUDT5 

NUDT8 

NUDT3

NUDT6

NUDT9

NUDT10

NUDT11

Pos. Ctrl.

NUDT12

NUDT13

NUDT14

NUDT15

NUDT16

NUDT17

NUDT18

NUDT19

DCP2

NUDT21

NUDT22

Non

targeting

NUDT1

NUDT4

NUDT7

NUDT2

NUDT5 

NUDT8 

NUDT3

NUDT6

NUDT9

NUDT10

NUDT11

Pos. Ctrl.

NUDT12

NUDT13

NUDT14

NUDT15

NUDT16

NUDT17

NUDT18

NUDT19

DCP2

NUDT21

NUDT22

Non

targeting

SW480

< 2N 2N S 4N
> 4N

Fig. 4 Cell viability and cell cycle profiles upon single NUDIX depletion. a Survival of CCD841, A549, MCF7, and SW480 cells upon single depletion of the
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indicative of alleviating genetic interaction between genes likely to
be in the same pathway. Clearly, some of the NUDIX enzymes are
epistatic with each other (Fig. 5a and Supplementary Fig. 5b).

To visualize the genetic interactions, we represented them in a
network, distinguishing between alleviating (blue) and aggravat-
ing (red) genetic interactions (Fig. 5b). We compared the overlap
among genetic interaction networks of different cancer cell lines
using a stringent 0.05 α-cutoff value (Fig. 5c). The resulting Venn

diagrams showed a low overlap of significant genetic interactions
among the cancer cell lines, indicating that most of the significant
interactions were cell line specific. There was an overlap of four
significant interactions between the cancer cell lines and the non-
cancerous CCD841 (Fig. 5c), overall indicating weak conservation
of both strongly positive and negative genetic interactions among
the different cell lines. However, despite the small overlap, we
calculated the Spearman’s rank correlation of the epistasis scores
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between paired cancer cell lines (Fig. 5d). The positive Spear-
man’s rank score indicated a certain epistasis correlation among
the cancer cell lines, namely the knockdown of the same pair of
NUDIX enzymes had a similar effect in two different cell lines.

In order to understand the correlation between epistatic
interactions and mRNA expression of the NUDIX enzymes in
cancer tissues, we compared these two parameters in a box plot
(Fig. 5e). We divided the epistasis scores in five bins containing
pairs of NUDIX genes. Subsequently, we compared these scores
with the log2 mRNA expression of these NUDIX genes in cancer
and normal tissues. The NUDIX genes with strongly negative
epistatic interactions in CCD841 cells tend to substantially
decrease their mRNA expression in cancer tissues. On the
contrary, the expression of NUDIX genes with strongly positive
epistatic interactions, remained unchanged. As for the cancer cell
lines, we compared their epistasis scores to specific cancer tissues
resembling their tissue of origin, that is: A549 to LUAD and
LUSC, MCF7 to OV and PRAD, and SW480 to COAD.

We next wanted to investigate the correlation between epistatic
interactions and sequence similarity, as well as similarity in
substrate activity (Supplementary Fig. 6). For each cell line we
used box plots to compare full-length and NUDIX fold sequence
Patristic distances from our phylogenetic trees, with their epistatic
interactions. Lastly, we compared the NUDIX enzymatic activity
similarity calculated by Spearman’s rank correlation with the
epistatic interactions. When comparing full-length sequence
distance, for all cell lines, the NUDIX proteins with strong
negative interactions also tend to have a lower Patristic distance,
which indicates higher sequence similarity (Supplementary
Fig. 6a). This was not as clear when comparing NUDIX fold
sequence distances (Supplementary Fig. 6b). As for substrate
activity similarity compared with epistatic interactions, NUDIX
enzymes with negative or aggravating genetic interactions had the
highest Spearman’s correlation score, mainly in CCD841, but also
in A549 and MCF7, but less pronounced in SW480 cells
(Supplementary Fig. 6b). A list of NUDIX pairs for each epistasis
score bin can be found in Supplementary Data 1.

In addition, we calculated the epistasis scores of the pairwise
siRNA-depleted cells depending on their cell cycle distribution
(A549 cells in Fig. 6a and rest of cell lines in Supplementary
Figs. 7 to 11). We represented each cell cycle phase in one circular
network showing interactions with Z-test scores corresponding to
a p-value <0.1 (dotted line) and a p-value <0.05 (solid line). We
maintained the position of the NUDIX enzymes fixed for better
visual assessment of the differences in genetic interactions. This
time, instead of classifying the interactions into alleviating or
aggravating, we interpreted the cell cycle interactions as
percentage of cells increasing (blue) or decreasing (brown) in a
given cell cycle phase. For example, in A549 cells, as it is
represented by a solid blue edge between the NUDT5 and

NUDT8 nodes, as well as NUDT5 and DCP2 nodes, the double
knockdown resulted in an increased number of cells in sub-G0/G1

phase, indicating increased cell killing (Fig. 6b, c), which is in
concordance with decreased survival (Supplementary Fig. 5b). On
the other hand, double knockdown of NUDT1 and NUDT12,
resulted in a decreased number of cells in G1 phase, especially
compared with the single NUDT1 knockdown (Fig. 6b, d). We
generated graphical representations of the cell cycle profiles,
presented by histograms of cell counts versus DNA content and
therefore cell cycle phase (Supplementary Figs. 7–11). In addition,
we provide heat maps representing the amount of cells in each
cell cycle phase for each single and double knockdowns
(Supplementary Fig. 13 and Supplementary Data 2). Similar to
the survival epistasis, in which there was a slight overlap among
the cancer and CCD841 cells, we also observed some overlap
among the genetic interactions (network edges) in each cell cycle
phase (Supplementary Fig. 12b). Altogether, the genetic interac-
tion networks extracted from the biological data clearly
demonstrate that there is a certain redundancy within the
NUDIX family, not only related to cell survival, but also in
regulating the cell cycle.

Réd inferred NUDIX networks reveal potential directionality.
Next, by analysing functional dependencies between the NUDIX
genes, we wanted to know whether quantitative genetic interac-
tion measurements could be used to provide detailed information
regarding the structure of the underlying biological pathways. For
this, we made use of the analytical tool Réd53, that uses pheno-
typic measurements of single and double knockdowns to auto-
matically reconstruct detailed pathway structures. We applied
Réd to our cell viability data set and used it to calculate rela-
tionships between NUDIX genes based on epistasis (Fig. 7). Réd
searches for networks that encode independence assumptions
supported by genetic interaction measurements. For example, if a
given NUDIX gene A appears fully epistatic to a NUDIX gene B,
the network should indicate that the cell viability is independent
of the activity level of B given the activity level of A, an inde-
pendence property that is encoded by a linear pathway structure.

We conducted a series of computational experiments to
estimate which relationships hold between the NUDIX genes in
the different cancer cell lines and in non-cancer cells (Fig. 7 and
Supplementary Fig. 14). We systematically evaluated genetic
interactions among all combinations of NUDIX genes and used
the precise cell viability measurements to distinguish between
epistasis and full or partial dependence between two genes54. Réd
provided probabilistic estimates for each of the four possible
network structures on two genes, which we studied independently
for each cell line (Fig. 7a and Supplementary Fig. 14a–c). We then
tested how the map of the NUDIX family wiring diagram breaks

Fig. 5 Survival genetic interactions between NUDIX genes. a Genetic interactions between NUDIX genes in the four cell lines, CCD841, and cancer cell lines

A549, MCF7, and SW480. A genetic interaction was assigned to pairs of genes based on deviation of cell viability of the double knockdown from cell

viability of the double knockdown that would be expected if the genes were not interacting. The expected viability was determined with a multiplicative null

function. The interaction maps include negative (or aggravating) interactions, as well as positive (or alleviating interactions). Alleviating interactions, shown

in blue, suggest that certain NUDIX product operate in concert or in series within the same pathway. b Statistically significant genetic interactions between

NUDIX genes in the four cell lines, CCD841, and cancer cell lines A549, MCF7, and SW480 are visualized using networks. For each gene pair, the genetic

interaction was assessed by using a two-tailed Z-test α= 0.1 (dotted line and solid line) or α= 0.05 (solid line only). Shown are genetic interactions whose

values are significantly larger (indicating alleviating interaction) or significantly smaller (indicating aggravating interaction) than values in the 90% (dotted

line and solid line), or 95% (solid line only) of interaction density in the respective cell line. c The overlap of significant genetic interactions from b (α=

0.05) is shown using Venn diagrams. The size of each circle in the diagram is proportional to the number of significant genetic interactions in the

respective cell line. d Scatter plot indicating the correlation between each epistasis scores corresponding to each cell line, Spearman’s correlation indicates

high similarity. e Box plots comparing log2 mRNA expression in cancer vs normal tissues, and epistasis score. Five epistasis score bins were used to classify

the NUDIX genetic interactions. The list of each NUDIX interaction can be found in Supplementary Data 1
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down in the context of a particular cancer cell line. To provide a
comprehensive view of pairwise NUDIX relationships in cancer
cells that diverge from those identified in non-cancer cells, we
visualized them in differential color maps (Fig. 7b and
Supplementary Fig. 14d, e). An alternative complementary view
is to examine relationships that are common to all three
considered cancers. Many relationships indicating independent
downstream effects on the phenotype appeared to remain
conserved when comparing interaction maps from A549,
SW480, and MCF7, which differ from the ones we found in
CCD841 (Supplementary Fig. 14f, g).

To model epistasis at the level of the entire NUDIX family, we
used Réd to infer an interaction network in non-cancer cells
(Fig. 7c) and, in addition, using common inference data from
A549, SW480, and MCF7 cells, Réd predicted the NUDIX cancer
epistasis network (Fig. 7d) with both networks clearly in contrast
to each other. To assess the stability of the edges in the inferred
networks, we tested them against small perturbations of the input
data (Supplementary Fig. 15). We used solid lines to visualize
confident edges, which were robust to small data perturbations
and exhibited low sensitivity to variations of prediction model
parameters. We used dashed lines to show edges, which exhibited
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Fig. 6 Cell cycle genetic interactions between NUDIX genes. a Cell cycle-based interactions between NUDIX genes in the A549 cell line. The interaction

maps visualize interactions determined based on the fraction of pairwise siRNA-depleted cells in each cell cycle phase. Shown is one interaction map per

cell cycle phase. In each map, an interaction score was assigned to a pair of genes based on the difference between the observed cell fraction of the double

knockdown and the expected cell fraction of the double knockdown. The expected cell fraction was determined using a multiplicative null model estimating

the cell fraction of a double knockdown that would be expected if the genes were not interacting. The interaction maps include negative (or aggravating)

interactions in brown, as well as positive (or alleviating) interactions in green. Alleviating interactions suggest that certain NUDIX product operate in

concert or in series within the same pathway. b Statistically significant cell-cycle-based interactions between NUDIX genes in the A549 cell line are

visualized using circular networks. The panel shows one network for each cell cycle phase. For each gene pair, the interaction was assessed by using a two-

tailed Z-test (α= 0.1). Edges in each network represent interactions whose values are significantly larger (indicating alleviating interaction) in cyan or

significantly smaller (indicating aggravating interaction) in brown, than values in the 90% of interaction probability density. The interactions were selected

independently and separately for each cell cycle phase in the A549 cell line. The width of network edges stands for statistical significance. c Bar charts

indicating the increase in % of cells in SubG0/G1 (<2 N) phase when NUDT5 and NUDT8, as well as NUDT5 and DCP2 are co-depleted. d Bar chart

indicating the decrease in % of cells in G1 (2 N) phase when NUDT1 and NUDT12 are co-depleted. The % of cells in each cell cycle phase were obtained by

measuring the integrated intensity of the DNA counterstained with Hoechst, the signal was then processed using PopulationProfiler, as previously

described46
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the same degree of robustness to model parameters as solid edges,
but which were more sensitive to noise added to the data. Here we
show a NUDIX cancer epistasis network, importantly, with
predicted directionality.

Integrative clustering of NUDIX enzymes by data FUSION.
Given the diverse and comprehensive nature of the data sets
generated and collected in this study, we aimed at conducting an
integrative analysis to investigate whether the members of the
human NUDIX family naturally cluster. In order to do so, we
used FUSION, a recent computational method that detects
clusters by fusing many different types of data measurements19.
In short, this approach infers the so-called data latent model to
create connections across heterogeneous data measurements such

as gene and protein expression profiles, substrate activity data,
and genetic interaction information, and thereby extracts inte-
grated NUDIX data profiles (see Methods section). Altogether we
used 27 data sets that included measurements of 16 different
types of objects (Supplementary Table 2), which we represented
in an abstract scheme also known as a fusion graph19. We per-
formed three in silico experiments in which we analyzed an entire
data collection from A549, SW480, and MCF7 cells (27 data sets),
and two other collections that focused specifically on data from
A549 or MCF7 cells (subset of 11 data sets) (Supplementary
Fig. 16).

To understand the NUDIX enzymes family at a sub-group
level, we used FUSION to hierarchically cluster the data profiles
extracted from the latent models of A549, SW480, and MCF7
data (Fig. 8a). To relate the clusters of the NUDIX enzymes
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Fig. 7 Probabilistic scoring of epistatic relationships from genetic interaction data and gene network inference. a Gene–gene relationships estimated from

A549 cell viability data. b Gene–gene relationships in A549 viability data that are different from those in CCD841 viability data. c Gene network inferred

based on gene-gene relationships in CCD841. d Gene network inferred based on gene–gene relationships that are conserved across A549, SW480, and

MCF7. Probabilities of the estimated relationships are provided in Supplementary Fig. 6
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identified by FUSION with the substrate activity data, we
visualized the clusters together with the substrate activity data
in the same network (Fig. 8b). We validated the results from the
FUSION analysis by interrogating the most prominent cluster
containing NUDT4, NUDT5, NUDT6, NUDT7, NUDT8, and
NUDT9. We siRNA depleted NUDT5 and NUDT9 in both A549
and MCF7 cells, and evaluated the effect on expression of the rest
of the NUDIX enzymes present in the cluster by qPCR (Fig. 8c,
d). In both A549 and MCF7 cells, depletion of NUDT5 resulted in
decreased expression of NUDT6, NUDT7, NUDT8, and NUDT9,
but not NUDT4. This was mostly in line with the predicted
FUSION clustering, which determined that the NUDIX enzymes
in this group had sufficiently similar data profiles to be assigned
to the same cluster (Fig. 8b). However, depletion of NUDT9 in

A549 and MCF7 resulted in a different expression pattern of the
rest of the members of the cluster in the two different cell lines.

Prompted by these differences and the evidence of the non-
random clustering of the NUDIX enzymes, we then performed
the FUSION analysis on the separate A549 and MCF7 data sets
(as opposed to the initially fused data profiles of A549, SW480,
and MCF7). Interestingly, NUDT4, NUDT5, NUDT6, NUDT7,
NUDT8, and NUDT9 were assigned to the same cluster when
considering data from the three cancer cell lines together (Fig. 8e,
f); however, when examining data collections limited to A549
(Fig. 8g, h) or MCF7 (Fig. 8i, j), these enzymes were assigned to
two or three separate clusters, respectively. In A549 cells,
NUDT5, NUDT6, NUDT7, and NUDT9 formed a cohesive
group and were most similar to each other within the cluster
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(Fig. 8h). This was confirmed by the decrease in expression of
these NUDIX enzymes in both NUDT5 and NUDT9 knock-
downs in A549 cells (Fig. 8c). On the other hand, NUDT4 and
NUDT8 appeared to be unaffected or slightly increased by the
depletion of NUDT9, which coincided with their outlying
position in the clustering (Fig. 8c, h). Interestingly, in MCF7
cells, NUDT8 appeared to be very similar to NUDT6, NUDT7,
and NUDT9 (Fig. 8j), in line with their decreased expression
upon NUDT5 and NUDT9 depletion (Fig. 8d), whereas NUDT9
knockdown, resulted in an increase in NUDT5 expression
(Fig. 8b).

Seemingly then, the differences in gene expression patterns
upon NUDT5 and NUDT9 depletion, the first resulting in a
general decrease in the sampled NUDIX enzymes, whereas the
latter resulting in increased NUDT5 expression specifically in
MCF7 cells, points towards a potential universal and non-cell-
specific regulatory role of NUDT5 and a cell-specific compensa-
tory role for NUDT9.

Given the large and diverse, yet comprehensive, amount of data
that we have generated, and in order to facilitate the extraction of
specific data by the scientific community, we are providing a
detailed results summary (Supplementary Fig. 17).

Discussion
The complexity of the NUDIX hydrolase activity is one of subtle
nuance. Most NUDIX family proteins are easily aligned, both via
sequence and structural comparisons, using both the NUDIX
motif and surrounding NUDIX fold domain. In slight contrast
with what has been previously reported55, albeit with some
exceptions, we found that structural and sequence alignment of
the human NUDIX hydrolases can on occasion correlate with
similar substrate activity25. Our sequence alignment analysis
(Fig. 1a) identifies an expected clustering within the DIPP sub-
family, which was anticipated given the large degree of similarity
among these members. It was previously shown that NUDT15
had activity towards 8-oxo-dGTP56, which prompted the authors
to name NUDT15 as MTH2 due to its similarities with MTH1.
However, despite possessing similar sequence and structure,
detailed structural and substrate kinetics comparisons, revealing
key differences in residues responsible for substrate binding, as
well as distinct enzymatic activity were reported21.

Overall, the degree of conservation among the human NUDIX
enzymes resides mostly in the NUDIX box as expected; however,
the substrate specificity is to a great deal determined by the rest of
the protein structure.

For our activity screen of the 18 purified NUDIX enzymes, we
consistently used a physiological pH, differently from what has
been done before55,57,58. Under these conditions, most NUDIX
proteins showed activity ranging from one to many substrates,
confirming the activities of MTH1, NUDT2, and NUDT15
(Fig. 2a, b and Supplementary Fig. 2). As previously reported,
many of the NUDIX enzymes are rather promiscuous regarding
substrate preference; however, this preference was rather spread
within groups of substrates (Fig. 2b). NUDT5 and NUDT14
exhibit homodimerization, share activity towards ADP-ribose and
ADP-glucose, and have a high grade of structural similarity,
illustrated in our structural analysis and structure superposition
(Fig. 1a). We also show that NUDT14 has activity against β-
NADH. Finally, NUDT22 lacks a conventional NUDIX box
(Fig. 1c), which could explain its lack of activity toward any of the
screened substrates. Our data show that relatively modest
sequence divergence can drastically affect substrate activity and
protein function.

Our global expression analysis, which has not previously been
done for this family of enzymes, depicted a clear diversity of

expression levels depending on the tissue of origin as well as its
corresponding cancer tissue. Seemingly, in adrenal-, endome-
trium-, and lung-related cancers, the NUDIX enzymes were sig-
nificantly highly expressed, whereas it was the opposite in kidney-
and testis-related cancers (Fig. 3a). Remarkably, two distinct
clusters appeared when comparing the NUDIX expression in
normal and in their corresponding cancer tissues (Supplementary
Fig. 3a). Similarly, the NUDIX enzymes also clustered in two
groups when comparing their expression in only normal tissues
(Supplementary Fig. 3b). NUDT1, NUDT5, and NUDT14 belong
to the cluster of highly expressed NUDIX in cancer, pointing
toward a potential role of these NUDIX enzymes in cancer, which
has been previously proposed41,44,59,60.

A biological function in which the NUDIX enzymes seem to
have a role is cell cycle regulation49,50,61,62. Indeed, our global
approach of NUDIX depletion in a small panel of cell lines also
showed that knockdown of several NUDIX enzymes altered the
cell cycle distribution and affected viability, mainly in cancer cells.
The cell cycle distribution of non-cancerous cells was less affec-
ted, which might be due to their slower cell cycle progression
(Figs. 4–6 and Supplementary Figs. 5–12).

One of the main questions that we intended to answer was
whether the human NUDIX hydrolases form an internally
regulated interconnected network. To answer this we determined
gene interactions, or epistasis, an approach undertaken by many
others earlier51, by depleting all of the NUDIX enzymes in a
pairwise manner (Figs. 5 and 6). Elucidating epistasis is funda-
mental for a better understanding of genetic pathways63. In this
context, our results clearly indicated that several of the NUDIX
have an epistatic relation measured by both cell viability and cell
cycle perturbations. This observation was more dramatic in
cancer cells compared to non-cancerous cells (Figs. 5 and 6, and
Supplementary Figs. 5 and 6).

Nodes representing alleviating interactions suggest the pre-
sence of certain redundancies among the NUDIX hydrolases.
Common parallel pairwise relationships imply the existence of
buffering mechanisms in the cells64. Interestingly, in CCD841,
A549, and MCF7 cells, we found that NUDIX with strong
aggravating epistatic interactions tend to be downregulated in
cancer, whereas NUDIX with alleviating interactions tend to be
upregulated (Fig. 5e). This observation prompts us to speculate
that less favorable interactions (aggravating), may be negatively
selected in a cancer context. Remarkably, a comparison between
sequence distance and substrate activity similarity with epistasis
scores, also revealed that NUDIX genes with negative epistatic
interactions have lower Patristic sequence distances (Supple-
mentary Fig. 6a), as well as higher Spearman’s correlation of
enzymatic activity similarity (Supplementary Fig. 6c), indicating
that NUDIX with aggravating interactions, which are likely to
belong to different pathways, have actually a similar sequence as
well as substrate activity, suggesting an overlapping biochemical
function, and therefore implying that there is redundancy among
the NUDIX family. As an example, NUDT5 and NUDT14 are
located in the low epistasis score bins in A549, MCF7, and S480
cells, and interestingly, both share high grade of sequence simi-
larity (Fig. 1a) and substrate activity (Fig. 2a, b, d).

To be able to identify the four types of gene pairwise rela-
tionships that are common in pathways54, we employed Réd, a
probabilistic predictive model. The obtained results (Fig. 7a and
Supplementary Figs. 13 and 14) suggest that all four types of
pairwise relationships appear to be present in both non-cancer
(Supplementary Fig. 13a) and cancer cells (Fig. 7a and Supple-
mentary Fig. 13b, c and f). However, in the three cancer cell lines,
parallelism is the most prominent pairwise relationship (indicated
in blue in the heat maps in Fig. 7a and Supplementary Fig. 13b, c
and f), suggesting that many NUDIX enzymes act in independent
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pathways. In this context, the effects of each depletion on cell
viability are compounded independently, frequently leading to a
quantitative phenotype that is near a “typical” level, determined
as a function of the phenotypes of the two individual gene
knockdowns65, which is what we observed in our dataset. This is
in agreement with previous studies51 reporting that strong genetic
interactions, are relatively rare events. These observations further
indicate that redundant and robust genetic networks are the
underlying genetic architecture of the NUDIX enzymes. Conse-
quently, substantial phenotypes are observed only when multiple
genes are depleted in a given genetic network. The strong evi-
dences of regulatory interdependence among the NUDIX
hydrolases here presented could have a direct impact on the
understanding of the complexity of this family of enzymes.

To integrate all our data sets and thereby obtain an overview of
the overall connectivity among the NUDIX enzymes, we applied
FUSION19 (Supplementary Table 2 and Supplementary Figs. 6–
10 and 13). To validate our predictions, we performed a series of
qPCR experiments, which overall recapitulated the predicted
clustering of NUDIX enzymes (Fig. 8). Interestingly, however, we
found clear divergent results when we broke down the most
prominent NUDIX cluster found by FUSION (NUDT4, NUDT5,
NUDT6, NUDT7, NUDT8, and NUDT9) by depleting NUDT5
and NUDT9 in A549 and MCF7 cells (Fig. 8), overall indicating
that, despite forming a clearly clustered network, the different
cancer backgrounds may rely differently on the NUDIX hydro-
lases. These results provide a clear insight into the intricate
NUDIX network, while, at the same time, pointing to specific
patterns depending on the biological context.

Altogether, our comprehensive and exhaustive analysis of the
human NUDIX hydrolase family not only provides a complete
overview of the relationships within this interesting family of
proteins but also reveals novel insights into their substrate
selectivity and biological functions. Moreover, we provide a ple-
thora of data ranging from gene and protein expression, and
substrate specificity to functional genomics, which we believe are
an excellent basis for future research.

Methods
NUDIX enzyme production. Complementary DNA encoding NUDT4 (DIPP2α)
and NUDT9 was amplified from cDNA synthesized from RNA isolated in house
from HL60 cells and subcloned into pET28a(+) (Novagen). cDNAs encoding
NUDT1 (MTH1), NUDT2, NUDT7, NUDT17, and NUDT18 were codon opti-
mized for E. coli expression and purchased from GeneArt (Life Technologies) and
subcloned into pET28a(+) (Novagen). NUDT21 and NUDT22 cDNAs were pur-
chased from Source BioScience and were subcloned into pET28a(+). Validation of
the sequences of the expression constructs was verified by sequencing. Expression
constructs of NUDT3 (aa 8–172), NUDT5, the catalytic subunit of NUDT6,
NUDT10 (variant AAH50700), NUDT11 (aa 13–164), NUDT12, NUDT14,
NUDT15, and NUDT16 (variant AAH31215) in pNIC28 were kind gifts from SGC
Stockholm. All NUDIX proteins were expressed as N-terminally His-tagged pro-
teins, apart from NUDT10 and NUDT11 that were C-terminally tagged, in E. coli
BL21(DE3) R3 pRARE2 at 18 °C and were purified by the Protein Science Facility
(PSF) at the Karolinska Institute, Stockholm. Briefly, the N-terminally His-tagged
NUDIX proteins were purified using HisTrap HP (GE Healthcare) followed by gel
filtration using HiLoad 16/60 Superdex 75 (GE Healthcare). NUDT2 was expressed
in BL21 DE3 (Life Technologies) overnight at 18 °C after induction with 1 mM
isopropyl β-D-1-thiogalactopyranoside and purified on HisTrap HP followed by
purification using HP monoQ column (GE Healthcare). Proteins were con-
centrated and stored at −80 °C in storage buffer (20 mM HEPES pH 7.5, 300 mM
NaCl, 10% glycerol and 0.5 mM TCEP(tris-(carboxyethyl) phosphine)). Purity of
protein preparations was examined using SDS-polyacrylamide gel electrophoresis
followed by Coomassie staining and the mass of the purified proteins was verified
using mass spectrometry.

Activity assay. To be able to detect both low and high activities of the NUDIX
hydrolases, we performed the assay at two enzyme concentrations, low (5 nM) and
high (200 nM) with 25 or 50 µM substrate, respectively (when available) (Supple-
mentary Fig. 2b, c). NUDIX protein activity with a panel of possible substrates was
assessed in technical triplicates, in reaction buffer (100 mM Tris Acetate pH 7.5,
40 mM NaCl, 10 mM MgAc, and 1 mM dithiothreitol) at 22 °C. 50 µM of the

respective substrate was incubated together with 0, 5, or 200 nM NUDIX protein
diluted in reaction buffer, either without coupling enzyme, or with E. coli pyr-
ophosphatase (PPase) (0.2 Uml−1) or alkaline phosphatase from bovine intestinal
mucosa (10 Uml−1) (Sigma Aldrich), in order to detect inorganic phosphate (Pi)
produced from the reaction products pyrophosphate and sugar-5-phosphates,
respectively (Supplementary Fig. 2b). After 30 min incubation under shaking
conditions, the generated Pi was detected by addition of a malachite green
reagent36. After 15 min incubation, the reaction was stopped by addition of 10 µl
0.4 M sodium citrate to the 40 µl reaction mixture per well in a 384-well plate and
the absorbance was read at 630 nm in an EnVision plate reader (Perkin Elmer). We
normalized the absorbance signal to the control in the absence of coupling
enzymes. In some cases, such as MTH1 activity toward 8-oxo-dGTP, the low
concentration of enzyme was sufficient to completely convert the substrate into
product, providing a maximum signal (Supplementary Fig. 2c).

Cell cultures. A549, MCF7, SW480, and CCD841 cells were obtained from the
ATCC. All cell lines were cultured and maintained at 37 °C, with 5% CO2, in
Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen) medium, supple-
mented with 10% fetal calf serum (Invitrogen) and 1% penicillin/streptomycin
(Sigma Aldrich). All cell lines were tested for Mycoplasma using the Mycoplasma
Detection Kit (Lonza).

siRNA-mediated knockdown. A custom-made siRNA siGENOME (Dharmacon,
see Supplementary Table 5 for sequences) library of four sequences per NUDIX
enzyme was used to construct the double knockdown siRNA library. First, a sub-
library containing a pool of the four sequences was built by mixing equal amounts
of each sequence, diluted to a final concentration of 20 μM using a Janus Auto-
mated Workstation (PerkinElmer). Second, the pooled sub-library was used to
generate the 276 pairwise combinations using an Echo550 Liquid Handler (Lab-
cyte) to add 60 nl of each siRNA pool to BD Falcon 384-well plates. Before seeding
of the cells, Opti-MEM medium was added to each well. Transfection agent
Lipofectamine RNAiMAX (Life Technologies) was diluted in Opti-MEM medium
(Life Technologies) and added to the wells. The siRNA-RNAiMAX mix was
incubated for 25–30 min at room temperature (RT), and finally 30μl of cell sus-
pension was added per well. The final concentration of siRNA was 18 nM (9 nM
per pool). The non-targeting siRNA 5 (Dharmacon) was used as negative control,
as well as load equivalent control to compare single vs double knockdown. As
positive transfection controls siRNA against KIF11, PLK1, and UBB (Dharmacon)
were used, as the depletion of these essential genes causes cell death within 48 h,
indicating a successful transfection. The double knockdown experiments were done
in technical triplicates, whereas the single knockdown experiments were done in
two technical triplicate sets. For statistics refer to Supplementary Fig. 4.

Multiple alignment and phylogenetic analysis. The protein coding sequences of
the Human NUDIX family proteins were aligned in the ClustalOmega software22.
Both, full-length and NUDIX fold domain sequences were aligned separately and
used in subsequent phylogenetic analysis. MrBayes (v3.2)23 was used to construct
Bayesian inference trees with Markov chain Monte Carlo methods. Tree generation
was performed using the Blosum62 model66, indicated as the best-fit model after a
mixed model fitting test in MrBayes, using unconstrained branch length priors
with no root enforcement. After an initial burn-in of the first 25% of trees, samples
were analyzed every 1,000 generations and convergence assessed by the average SD
of split frequencies (<0.01). The posterior probabilities for internal nodes of the
consensus tree were calculated from the posterior density of trees.

NUDIX structure visualization. Known structures of NUDIX family proteins
were generated in Pymol (The PyMOL Molecular Graphics System, Version 1.8
Schrödinger, LLC). Individual structures are shown in cartoon format with the
NUDIX box colored in neon blue, the NUDIX domain colored in smudge green,
and any remaining structure colored in gray. Superpositions of phylogenetic
relevant structures were generated in Pymol with the NUDIX box in cartoon
format, colored neon blue, and the remaining structures in ribbon format with
complimentary colors.

Expression analysis. We downloaded the RNA-seq V2 level 3 data for all cancer
types from the TCGA Data Portal and extracted quantile normalized gene
expression levels. The RNA sequencing data of normal healthy tissues from the
HPA project40 were processed from raw reads according to the TCGA V2 pipeline
as described in the document “TCGA mRNA-seq Pipeline for UNC data”: (https://
www.cghub.ucsc.edu/docs/tcga/UNC_mRNAseq_summary.pdf), using the same
versions of all software and references, and the same normalization scheme.
Finally, data for the NUDIX family genes were extracted from the expression
matrices and used for further analyses. Log2-transformed expression values for
normal tissues were used for hierarchical clustering and visualized in a heat map.
For tumors, the fold change compared with the corresponding normal tissues
(according to Supplementary Table 1) was used for clustering. Significantly up- or
downregulated NUDIX genes in the normal-cancer comparisons were determined
using two-sample t-tests, with false discovery rate-adjusted p-values. This was
illustrated in a bubble plot where the radius of each bubble is proportional to the
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square root of the expression level, and the significance level and direction of
change is shown in the color of the bubble.

Cell cycle analysis. Image-based cell cycle analysis was performed as follows46:
upon siRNA knockdown in 384-well plates, images of Hoechst 33342 (Sigma-
Aldrich)-stained cells were acquired using a high-throughput microscope. The
segmentation of the nuclei and measure of integrated intensity was done by Cell
Profiler image analysis software67, and the cell cycle distribution was calculated and
plotted using PopulationProfiler46.

Tissue microarrays. The TMAs consisted of the standard set of 44 normal tissues
and 20 different forms of cancer used in the HPA project40, and were constructed
as follows68: TMAs were constructed from formalin-fixed paraffin-embedded
normal tissues and tumors obtained from the pathology archives at the Uppsala
Akademiska Hospital, Uppsala, Sweden, with permission from the Research Ethics
Committee at Uppsala University (2002-577, 2009/139 and 2011/473). For normal
tissues, one 1.0 mm diameter core from each donor block representing three
individuals per normal tissue was used. For cancer tissues, duplicate 1.0 mm dia-
meter cores from up to 12 individuals per cancer type were used. The donor cores
were assembled into recipient TMA blocks using the Beecher Manual Tissue
Arrayer MTA-1 (Estigen OÜ, Tartu, Estonia). All blocks were cut in 4 μm-thick
sections using waterfall microtomes (Microm HM 355S, Thermo Fisher Scientific,
Fremont, CA, USA), dried overnight at RT and baked in 50 °C for 12–24 h before
immunohistochemical staining.

Immunhistochemistry. Immunohistochemical procedures followed the standard
techniques employed by the HPA project68. In short, buffers and instrumentation
were purchased from LabVision (Fremont, CA, USA), where not stated otherwise.
TMA slides were deparaffinized and hydrated using a histostaining instrument
(Leica Autostainer XL, Leica Microsystems, Wetzlar, Germany). The depar-
affinization was performed in Xylene (Histolab, Gothenburg, Sweden) twice for
15 min, followed by hydration in graded alcohols, including blocking of endo-
genous peroxidase activity by 0.3% H2O2 in 95% ethanol for 5 min. After depar-
affinization, the slides were immersed in retrieval citrate buffer, pH 6, and for heat-
induced epitope retrieval a pressure boiler (Decloaking chamber, Biocare Medical,
Walnut Creek, CA, USA) was used at 125 °C for 4 min. Automated immunohis-
tochemical staining of TMA slides was performed in Autostainer 480 as previously
described68. Slides were rinsed at RT in wash buffer supplemented with 0.2 %
Tween-20 between each step. Primary antibodies (Supplementary Table 4) were
diluted in antibody diluent and allowed to incubate for 30 min at RT. Subsequently,
slides were incubated with enhancer reagent for 20 min, followed by UltraVision
LP HRP polymer for 30 min before being developed using DAB QUANTO for
5 min. After staining, the tissues were counterstained with Mayer’s hematoxylin
(Histolab) for 7.5 min, dehydrated in ethanol and Tissue-Clear Xylene substitute
(Sakura Finetek, Alphen aan den Rijn, The Netherlands), mounted using Pertex
(Histolab), and coverslipped by the Leica Autostainer XL. All tissues were scanned
using an automated slide-scanning system with a ×20 objective (ScanScope XT,
Aperion Technologies, Vista, CA, USA) and manually evaluated by experienced
pathologists.

Gene silencing and qRT-PCR. siRNA complexes were prepared containing
2.5 nmol siRNA per 6 µL Lipofectamine 2000 per sample, in DMEM with 2% fetal
bovine serum without antibiotics, incubated for 30 min at RT, to allow complex
formation, and loaded into 6-well plates. Subsequently, 7×104 cells per well were
seeded on the siRNA/Lipofectamine 2000 mix. A549 and MCF7 cells were siRNA
transfected for 96 h. siGENOME siRNA (Dharmacon) was used for siRNA-
mediated depletion (Supplementary Table 5). Lipofectamine 2000 (Invitrogen) was
used as transfection agent in accordance with the manufacturer’s instructions (see
above). After the incubation, total RNA was isolated using GeneJet RNA Pur-
ification kit (Thermo Scientific). Four hundred nanograms of mRNA was reverse
transcribed using Maxima First Strand cDNA Synthesis Kit for RT-qPCR with
dsDNase (Thermo Scientific). Real-time quantitative PCR (qRT-PCR) was per-
formed using the iTaq Universal SYBR Green Supermix (BioRad), 5 ng cDNA and
primers on a CFX96 qRT-PCR machine (BioRad). The primers used for qRT-PCR
can be found in Supplementary Table 5. Relative mRNA levels were calculated
using the iQ5 Optical System Software (BioRad) and using hGAPDH and β-actin
as reference housekeeping genes.

Production of E. coli PPase. cDNA encoding E. coli PPase was amplified from
genomic E. coli DNA using PCR and subcloned into pNIC28. E. coli PPase was
expressed in E. coli BL21(DE3) R3 pRARE2 at 18 °C and purified using HisTrap
HP (GE Healthcare) followed by gel filtration using HiLoad 16/60 Superdex 75 (GE
Healthcare) by PSF.

Scoring genetic interactions. Under our definition, a genetic interaction was
assigned to a pair of genes (a,b) if Wab, the cell viability of the double knockdown,
was significantly different from E(Wab), the viability of the double knockdown that
would be expected if a and b were noninteracting. The expected viability E(Wab)

predicted for a strain mutated in genes a and b was quantified according to the
multiplicative neutrality function. For each gene pair, the difference between the
means ofWab and E(Wab) was assessed by using a Z-test with a significance level α
= 0.05. Interactions were classified as synergistic (aggravating or negative) ifWab<

E(Wab) and alleviating (positive) if Wab> E(Wab). Significant negative and positive
interactions were shown with red and blue edges, respectively, connecting the
corresponding genes.

Gene network inference (Réd). Cell viability measurements of single and double
NUDIX knockdowns from three experiments were independently normalized to
the negative siRNA controls. Afterwards, the normalized values were averaged. The
multiplicative rule52 was used to compute the expected cell viability of double
knockdowns under the assumption that corresponding single knockdowns do not
interact. Réd53 was used to automatically infer gene networks from knockdown
data. Inputs to the algorithm of Réd were a matrix of double knockdown viability
measurements (G), a vector of single knockdown viability measurements (S), and a
matrix of expected cell viability (H). The Réd inference algorithm involved three
stages. (i) first, the algorithm factorized matrix G. A factorized model was repre-
sented with two latent matrices that captured the global structure of the cell via-
bility landscape and accounted for potential noise in the data. The latent dimension
(factorization rank) was selected as a value at which the best reconstruction of
matrix G was obtained measured as normalized root-mean-square error. The
model also inferred a logistic map that represented a nonlinear mapping from
latent to cell viability space. This nonlinear transformation took into consideration
differences in single knockdown backgrounds, which affected cell viability of
double knockdowns. (ii) In the second stage, Réd applied a probabilistic scoring
scheme to the inferred model with the goal of estimating probabilities of gene-gene
relationships of four different types. Given genes u and v, Réd distinguishes
between four possible pairwise relationships: (1) u and v act in a linear pathway,
where v is epistatic to u; (2) u and v act in a linear pathway, where u is downstream
of v; (3) u and v affect the phenotype separately; and (4) u and v are partially
interdependent. Réd provided probabilistic estimates of the possible pairwise
relationships for all combinations of NUDIX genes. The estimates were visualized
in a heat map, where the four types of gene-gene relationships were color coded,
and used for hierarchical clustering based on the Hamming distance between
relationship-based gene profiles. (iii) In the third stage, Réd algorithm used the
pairwise scores to construct a gene network. Stability of the network was evaluated
against independent and normally distributed noise added to the data, whose mean
was set to zero and standard deviation was varied between 10−6 and a third of the
SD of G. For every noise level value, M= 100 independent runs of Réd algorithm
were executed. Network edges were categorized into two groups, where edges that
appeared in at least 40% of the runs were visualized with solid lines and edges that
appeared between 20% and 40% of the runs were visualized with dashed lines.

Data fusion by collective matrix factorization (FUSION). We performed three
data fusion experiments, each considering a different data collection. In the largest
experiment we analyzed 27 data sets describing relations between objects of 16
different data types and taking into consideration all NUDIX related data in A549,
SW480, and MCF7 cells (Supplementary Fig. 16). The other experiments inde-
pendently analyzed data about one cell line at a time, either A549 or MCF7. As
such, these experiments considered subsets of the entire data collection showed in
Supplementary Fig. 16. In particular, the A549 experiment used 11 data sets and
the MCF7 experiment used 10 data sets.

The experiments adopted the following computational procedure: first, each
data set was represented with a data matrix. This was possible because each data set
was considered as a relation between objects of two different types. For example,
cell cycle data for A549 cells were encoded in two types of matrices. One matrix
had NUDIX genes in rows and cell cycle phases in columns and its elements
contained data about the number of single NUDIX knockdown cells in the
corresponding cell cycle phases. The five other matrices had NUDIX genes both in
rows and columns. Given a cell cycle phase, a matrix contained data about the
number of double NUDIX knockdown cells detected in respective cell phase.
Second, data sets were organized in a relational map called data fusion graph19.
Third, data matrices were separately normalized in two steps by first dividing each
row by its second norm and then similarly dividing each column. Fourth, collective
matrix factorization algorithm was applied to jointly co-factorize all data matrices
considered in the experiment. The algorithm compressed each data matrix through
a tri-factorization, which estimated three latent matrices for a given data matrix.
The latent matrices had substantially fewer dimensions than the data matrix but,
when multiplied together, they provided a high quality reconstruction of the data
matrix. Given a data matrix Rij, the algorithm approximated it with a product
Rij � GiSijG

T
j , where Gi, Sij and Gj are the inferred latent matrices. The strategy

used to select the number of latent dimensions (factorization rank) is described
elsewhere69. The essence of data fusion was to reuse the latent data matrices when
co-factorizing data matrices that reported on objects of common data type. This
property of the algorithm was central for data fusion and necessary to achieve
transfer of information between data sets considered in each experiment. Finally, a
collection of inferred latent matrices were analyzed further to obtain data profiles
of the NUDIX genes.
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Clustering NUDIX proteins using the estimated latent space. Collective matrix
factorization algorithm (FUSION) provided a system of latent matrices that were
used to compute profiles (feature vectors) of the NUDIX genes. The latent matrices
were multiplied resulting in non-sparse, smooth, and complete reconstruction of
input data matrices, which were originally sparse, non-smooth, and, as such,
inappropriate for clustering. The reconstructed matrices, which reported on
NUDIX genes, were used to compare NUDIX genes to each other. Given two
NUDIX genes and their feature vectors returned by the fusion algorithm, the cosine
distance between feature vectors was calculated. The cosine distance compared two
feature vectors on a normalized space by computing the cosine of the angle
between the vectors. This setup generated one gene-gene distance matrix for each
data matrix and contained pairwise distances between NUDIX genes. Distance
matrices were averaged resulting in a single distance matrix that integrated dis-
tances from all data sets. The resulting distance matrix was used for hierarchical
clustering and for visualization.

Additional information on the methodologies used can be found in
Supplementary Note 1.

Code availability. The respective codes for FUSION and Réd are available at
GitHub:

FUSION—http://github.com/marinkaz/scikit-fusion
Réd—http://github.com/biolab/red

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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