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ABSTRACT

Pathway annotation of gene lists is often used to

functionally analyse biomolecular data such as gene

expression in order to establish which processes are

activated in a given experiment. Databases such as

KEGG or GO represent collections of how genes are

known to be organized in pathways, and the chal-

lenge is to compare a given gene list with the known

pathways such that all true relations are identified.

Most tools apply statistical measures to the gene

overlap between the gene list and pathway. It is how-

ever problematic to avoid false negatives and false

positives when only using the gene overlap. The

pathwAX web server (http://pathwAX.sbc.su.se/) ap-

plies a different approach which is based on network

crosstalk. It uses the comprehensive network Fun-

Coup to analyse network crosstalk between a query

gene list and KEGG pathways. PathwAX runs the

BinoX algorithm, which employs Monte-Carlo sam-

pling of randomized networks and estimates a bi-

nomial distribution, for estimating the statistical sig-

nificance of the crosstalk. This results in substan-

tially higher accuracy than gene overlap methods.

The system was optimized for speed and allows inter-

active web usage. We illustrate the usage and output

of pathwAX.

INTRODUCTION

Functional genomics experiments are widely used to gain
insights into biological processes. A typical experiment
measures gene expression in a speciic (perturbed) condition
and a control from which a list of differentially expressed
genes is calculated. This list does not normally givemuch di-
rect insight as the differentially expressed genes may repre-
sent amix of different biochemical functions and categories.

However, if they are known to interact with each other in a
pathway then this pathway is clearly affected.
A range of pathway databases exist (1), but the most gen-

eral ones are Kyoto Encyclopedia of Genes and Genomes
(KEGG) (2) and Gene Ontology (GO) (3). A large number
of tools are available to assess whether a gene list is associ-
ated with a pathway or not (see (4) for a review). They typ-
ically apply a statistical measure such as the Fisher’s exact
test to assess the signiicance of the gene overlap between
the gene list and pathway. However, because the pathway
databases are far from complete, many true associations
will be missed. Furthermore, the Fisher exact test gener-
ally overestimates the signiicance because it assumes that
all genes are independent of each other, but this is not true
as they interact with each other (5). The problem can be
reduced with for instance the ‘EASE score’ (6) but still re-
mains paramount. In summary, gene overlap methods pro-
duce high levels of false negatives and false positives, and
there is a great need to improve this situation.
A solution has recently been proposed by network-based

approaches such asNEA (7), EnrichNet (8), CrossTalkZ (9)
and BinoX (Ogris et al., submitted). These methods anal-
yse enrichment of network links between gene sets rather
than the gene overlap. If employing a dense comprehensive
network of functional gene associations such as FunCoup
(10,11) or STRING (12), the relation between gene list and
pathway can be analysed using a lot more data than are pro-
vided by the gene overlap. Using crosstalk analysis one can
also detect signiicant depletion of crosstalk relative to what
is expected, which is never possible with gene overlap anal-
ysis.
However, network-based approaches face two main chal-

lenges: (1) which statistical model to assess signiicance, and
(2) if employing iterative network rewiring to estimate a null
model, how to avoid an excessive compute time? Enrich-
Net solves the latter by random walk with restart instead of
randomizing the whole network. It however does not assess
the statistical signiicance of the crosstalk enrichment. NEA
and CrossTalkZ both use the normal distribution as model,
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but this is often unsuitable and leads to a high false positive
rate for NEA and a high false negative rate for CrossTalkZ.
The binomial distribution, which is used by BinoX, is

more suitable and gives much lower false positive and
false negative rates (Ogris et al., 2016, submitted). The Bi-
noX algorithm employsMonte-Carlo sampling of random-
ized networks (while preserving topological properties) to
estimate parameters of a binomial distribution which is
used to calculate the statistical signiicance of an observed
crosstalk. Two gene sets are considered to have signiicant
enrichment if the number of network connections is signif-
icantly higher in the real network than expected from the
random model. If the groups have fewer connections in the
real network than expected from the random model, they
have crosstalk depletion.
The earlier methods, CrossTalkZ and NEA, need to gen-

erate and analyse hundreds of randomized networks to cal-
culate the statistical signiicance of a crosstalk for every
query, and this is too time-consuming to be done interac-
tively in a web site. To make it possible to obtain fast net-
work crosstalk results, BinoX employs a very eficient sta-
tistical method based on pre-sampled randomized networks
that are stored in a database, including information about
up-to-date curated pathways.
To use BinoX, it is necessary to irst obtain a large net-

work and a set of pathways, and this can be a hurdle for
some users. To make BinoX readily available to the pub-
lic, we developed the pathwAX (pathway analysis with
crosstalk) web server. It contains KEGG pathway infor-
mation and genome-wide association networks of 11 well-
studied model organisms. To minimize compute time, we
have pre-randomized the networks, which gives run times
for single gene sets of half a minute up to a few minutes.
The pathwAX web site thus provides interactive online net-
work crosstalk based pathway annotation that has a high
chance of discovering affected pathways. We here illustrate
this process with an example gene set containing 14 genes.

IMPLEMENTATION

pathwAX was designed to maximize performance and us-
ability for network crosstalk based pathway annotation.
The system relies on loading data dynamically allowing a
multithreaded interplay between client and server modules.
The server is running python 2.7 cgi scripts optimized for
fetching and serving data, while the client side (the browser)
is used for integrating data and estimating the statistical sig-
niicance of crosstalk. The web service is based on javascript
using the libraries jquery v2.1.4 and jstat for eficient data
handling and calculation. For visualization, the librariesD3
v3.5.16 and Materialize v0.97.3 are used. The platform is
optimized for the chrome browser; slightly more compute
time should be expected using the browsers Firefox, Safari,
Edge or Opera. Due to lack of support for some of the used
javascript libraries, pathwAX is not compatible with Inter-
net Explorer.
The BinoX worklow was adapted for pathwAX, where

an annotation request is divided into four main stages, see
Figure 1. During the irst stage, pathwAX translates the
query genes to internal IDs using the FunCoup web service,
and a subnetwork including valid query genes and their

Figure 1. PathwAX worklow. After the user submits an input query, a
subnetwork containing all query genes and their neighbours are requested
from the server. A second request looks up all pathways sharing at least one
gene with the subnetwork. In the inal call the browser gets the parameters
of the randomized connections between the pathways and the query gene.
Once the browser has obtained the subnetwork, pathways of interest and
the randomized connection parameters, it calculates the crosstalk statistics
and displays these in the browser.

adjacent network genes is returned to the client. The sec-
ond stage includes requesting relevant pathways, i.e. path-
ways having at least one connection to the query within the
present subnetwork, as well as the total number of outgoing
connections for the query gene set and each pathway. These
are needed later for statistics. After combining the pathway
information with the subnetwork, it is possible to count the
number of network connections k between the query gene
set and each pathway. In the third step, the client requests
for each query-pathway pair the average number of connec-
tions k’ in the randomized networks, which is used as an
estimate of the expected connections within a randomized
environment, E(k’). The inal stage is initiated once all in-
formation is gathered. Using the BinoX algorithm the path-
wAX client assumes the binomial distribution to employ al-
ternative hypothesis testing to calculate the statistical sig-
niicance of observing k. The binomial distribution for the
alternative hypothesis depends on n’, the maximum possi-
ble connections between gene set and pathway, and p’, the
probability of observing k’. Here p’ can be approximated by
E(k’)/n’. Finally, pathwAX uses the Benjamini-Hochberg
procedure to account formultiple testing and calculates cor-
rected False Discovery Rate (FDR) values.
During each stage, pathwAX requests additional infor-

mation of gene IDs, pathway names, pathway components,
etc. The additional information is rendered together with
the estimated FDR in the inal summary to give the user an
overview of the pathway annotation.

DATA

PathwAX incorporates 1930 pathways from the KEGG
database (release 70.1) distributed among 11 model organ-
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isms (see Table 1 for details). The FunCoup database pro-
vides a genome-wide functional association network for
each species (link conidence score > 0.8). The networks
are undirected, scale free and dense; they were constructed
by integrating nine different evidence types: mRNA co-
expression, phylogenetic proile similarity, protein–protein
interaction, subcellular co-localization, co-microRNA reg-
ulation, domain interaction, protein co-expression, shared
TF binding and genetic interaction proile similarity. Across
all species’ networks, an average gene has 90 network
connections. The densest network is Arabidopsis with 154
neighbours on average for each gene whereas yeast is the
sparsest with 45 links on average. Using the BinoX algo-
rithm, 1000 randomized networks were sampled for each
species. PathwAX supports a variety of different identiier
types including Ensembl gene, protein as well as transcript
IDs, NCBI gene IDs, RefSeq IDs and UniProt IDs.

USING PATHWAX

The input of pathwAX is a list of genes with identiier types
as above, and the output is a table of signiicantly enriched
or depleted KEGG pathways, together with graphical dis-
plays of pathway categories and the network connections
between query genes and each pathway as a matrix. The
gene list input size is limited to 400 as larger sizes com-
promises the rendering of the network connectivity matrix
which shows graphically each query gene’s connectivity to
each pathway and provides hyperlinks to view these links
in the FunCoup network. We want to ensure that this key
functionality of the web site works.
To illustrate pathwAX, we chose an example from

an experiment with a well-known phenotype: the gene
list LOPEZ MESOTHELIOMA SURVIVAL WORST V
S BEST UP (13) from MSigDB v3.0 collection (14). These
14 genes were expressed higher in the worst 25 survivors
compared to the 25 best survivors, in a study of 99 pleu-
ral mesothelioma patients, and thus relect processes that
make this cancer more lethal. PathwAX identiied 31 sig-
niicant (FDR ≤ 0.05) pathways of which only 15 had any
gene overlap (1 or 2 genes) with the query set, see Figure
2. The largest category, with 12 pathways, is Human Dis-
eases, and four of these are cancer pathways. This particu-
lar form of cancer affects cells of the pleural mesothelium,
the protective lining of the lungs and chest wall. It is there-
fore not surprising that many of the signiicant pathways
are related to cell adhesion, including the most signiicant
(Focal adhesion) and the third most signiicant (Leukocyte
transendothelial migration). The latter pathway received an
FDR of 8.9e-9, yet it would not be discoverable using tradi-
tional gene overlap methods as there is no overlap between
it and the query gene list. This pathway contains 117 genes;
26 network links were observed between it and the query
gene list, yet only 4.8 links are expected by chance. It is of
clinical interest that four pathways related to heart disease
have signiicant crosstalkwith this gene list, whichmanifests
poor survival.

DISCUSSION

In this paper we present pathwAX, a new web server for
pathway annotation based on network crosstalk. The sta-

Figure 2. PathwAX results for the 14 genes in the human gene set
LOPEZ MESOTHELIOMA SURVIVAL WORST VS BEST UP
in MSigDB (PLXNA3, PSRC1, DLGAP4, HN1, CDC25C, FLNB,
C20ORF20, CCND1, ACOT7, FLJ20674, TGFB1I1, LOX, DDAH1,
CDC42EP3). The upper table and pie diagram summarize the results
and visualize the distribution of pathway classes. The lower table lists
all enriched (blue) and depleted (red) pathways for the query that are
signiicant for the chosen cutoff (only top part shown). The pathways
may be restricted to a class by clicking on one in the upper table. The
results are sorted by increasing FDR. To the right is a matrix showing
network connections between query genes and each pathway. Each gene is
shown as a coloured box and mouseover shows its number of links to the
pathway. Green boxes represent query genes linked to the pathway and
purple boxes indicate genes which are part of the pathway. Darker shades
indicate higher connectivity.

tistical model used for calculating signiicance is based on
the binomial distribution. This increases sensitivity, accu-
racy and speed, and allows to combine network crosstalk
pathway analysis with interactive web usage.
Compared to traditional gene overlap enrichment analy-

sis, pathwAXoffers a substantial improvement in sensitivity
and speciicity. For instance, applying gene overlap enrich-
ment analysis using the EASE score (6), which is employed
by the popular DAVID web site (15), to the example in Fig-
ure 2 is only possible for three of the 31 pathways found by
pathwAX. The other 28 pathways cannot be tested because
they have a gene overlap of less than two. Two is the mini-
mum overlap to calculate the EASE score, which performs
the Fisher exact test on the overlap minus 1. This is done in
order to reduce the high false positive rate of the pure Fisher
exact test.
A major problem with gene overlap enrichment analy-

sis is that pathway annotation is incomplete. Only about a
third of all human genes are annotated in KEGG, hence the
chance of an overlap is small. Usually more than 90% of all
pathway–gene set pairs overlap by less than two genes, and
can therefore not be tested with the EASE score. In the ex-
ample in Figure 2, the three pathways that can be testedwith
EASE had an overlap of exactly two genes. However, such
a small overlap can often happen by chance, which would
result in false positives.
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Table 1. Overview of networks and pathways available in pathwAX

Species Network genes Network connections Pathways Unique pathway genes

Homo sapiens 11 882 1 002 371 289 6 482
Mus musculus 12 903 1 495 536 286 7 299
Rattus norvegicus 12 025 1 668 050 271 6 458
Canis familiaris 9 292 667 556 244 4 712
Gallus gallus 6 211 299 485 135 3 210
Danio rerio 8 480 769 808 148 4 502
Ciona intestinalis 3 282 212 110 87 1 263
Drosophila melanogaster 5 762 385 691 124 2 395
Caenorhabditis elegans 6 014 686 340 124 2 014
Saccharomyces cerevisiae 3 991 179 499 101 1 784
Arabidopsis thaliana 9 306 1 433 523 121 4 239

Network genes are deined as protein coding genes having at least one connection within the network. The number of unique pathway genes relates to
genes included in FunCoup.

PathwAX can analyse both enriched and depleted net-
work crosstalk.What does a signiicantly depleted crosstalk
imply? Technically it means that there are signiicantly fewer
links than expected, and the implication is that there is sta-
tistical evidence that the gene set is not affected by a de-
pleted pathway. One should thus not misinterpret it as an
indication that the pathway is ‘turned off’. In the example in
Figure 2, the pathway Oxidative Phosphorylation was sig-
niicantly depleted. This makes sense because cancer cells
are mostly performing anaerobic energy production by gly-
colysis instead of oxidative phosphorylation, which is the
aerobic energy production mostly used in healthy cells. This
is called the Warburg effect (16).
Possible future extensions to pathwAX include using

other pathway databases and networks. We chose the Fun-
Coup network because of its comprehensiveness, which is
paramount for crosstalk analysis. Although a variety of
pathway databases exist, KEGG has the advantage of well-
deined and relatively distinct pathways, which gives results
that are easy to interpret, and it has good coverage for the
species that we support. Methodologically one could con-
sider using gene expression values more beyond just to ex-
tracting a list of differentially expressed genes. Methods ex-
ist that use such values to weight the relations to pathways
(17,18). However, most of the information is captured by
the list of signiicant differentially expressed genes and not
much can be gained from including less informative data.
Also, absolute gene expression levels are highly variable and
it may be unwise to trust these too much. In practice, meth-
ods that use expression proiles are not as widely used as tra-
ditional gene overlap methods, possibly due to instability of
the results and less interpretability. In a recent benchmark,
most expression proile based methods did not show a clear
advantage (17).
Another possibility would be to compare the pattern of

crosstalkwith the knownwiring of geneswithin pathways to
give higher weight to crosstalks with interacting genes. This
may be a way to better rank the pathways, but we believe
that the current level of biological knowledge is too frag-
mentary to dismiss a crosstalk based on poor consistency
with the annotated wiring of the pathway.

SERVER INFORMATION

The web server is a virtual machine running Scientiic Linux
6.7 with 2 GB RAM and 2 Intel Xeon E5-2630v2 2.60 GHz
cores.

ACKNOWLEDGEMENT

We thank the Science for Life Laboratory for providing the
infrastructure for the pathwAX web site.

FUNDING

Funding for open access charge: SwedishResearchCouncil.
Conlict of interest statement.None declared.

REFERENCES

1. Ooi,H.S., Georg,S., Teng-Ting,L., Ying-Leong,C., Birgit,E. and
Frank,E. (2010) Biomolecular pathway databases.Methods Mol.
Biol., 609, 129–144.

2. Kanehisa,M., Minoru,K., Yoko,S., Masayuki,K., Miho,F. and
Mao,T. (2015) KEGG as a reference resource for gene and protein
annotation. Nucleic Acids Res., 44, D457–D462.

3. Gene Ontology Consortium. (2015) Gene Ontology Consortium:
going forward. Nucleic Acids Res., 43, D1049–D1056.

4. Khatri,P., Sirota,M. and Butte,A.J. (2012) Ten years of pathway
analysis: current approaches and outstanding challenges. PLoS
Comput. Biol., 8, e1002375.

5. Gatti,D.M., Barry,W.T., Nobel,A.B., Rusyn,I. and Wright,F.A.
(2010) Heading down the wrong pathway: on the inluence of
correlation within gene sets. BMC Genomics, 11, 574.

6. Hosack,D.A., Dennis,G. Jr, Sherman,B.T., Lane,H.C. and
Lempicki,R.A. (2003) Identifying biological themes within lists of
genes with EASE. Genome Biol., 4, R70.

7. Alexeyenko,A., Lee,W., Pernemalm,M., Guegan,J., Dessen,P.,
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