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We report a measurement of the spin polarization of the recoiling neutron in deuterium photodisin-

tegration, utilizing a new large acceptance polarimeter within the Crystal Ball at MAMI. The measured

photon energy range of 300–700 MeV provides the first measurement of recoil neutron polarization at

photon energies where the quark substructure of the deuteron plays a role, thereby providing important new

constraints on photodisintegration mechanisms. A very high neutron polarization in a narrow structure

centered around Eγ ∼ 570 MeV is observed, which is inconsistent with current theoretical predictions

employing nucleon resonance degrees of freedom. A Legendre polynomial decomposition suggests this

behavior could be related to the excitation of the d�ð2380Þ hexaquark.
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Introduction.—The photodisintegration of the deuteron
is one of the simplest reactions in nuclear physics, in which
a well understood and clean electromagnetic probe leads to
the breakup of a few-body nucleonic system. However,
despite experimental measurements of deuteron photodis-
integration spanning almost a century [1], many key
experimental observables remain unmeasured. This is
particularly evidenced at distance scales (photon energies)
where the quark substructure of the deuteron can be
excited. This limits a detailed assessment of the reaction
mechanism, including the contributions of nucleon reso-
nances and meson exchange currents as well as potential
roles for more exotic QCD possibilities, such as the six-
quark containing (hexaquark) d�ð2380Þ recently evidenced
in a range of nucleon-nucleon scattering reactions [2–9].

The d�ð2380Þ has inferred quantum numbers IðJPÞ ¼
0ð3þÞ and a mass ∼2380 MeV, which in photoreactions
would correspond to a pole at Eγ ∼ 570 MeV. Constraints

on the existence, properties [10] and electromagnetic
coupling of the d�ð2380Þ would have important ramifica-
tions for the emerging field of nonstandard multiquark
states and our understanding of the dynamics of condensed
matter systems such as neutron stars [11].
Although cross sections for deuterium photodisintegra-

tion have been determined [12], polarization observables
provide different sensitivities to the underlying reaction
processes and are indispensable in constraining the basic
photoreaction amplitudes. Of all the single-polarization
variables, the ejected nucleon polarization (Py) is probably

the most challenging experimentally, requiring the charac-
terization of a sufficient statistical quantity of events where
the ejectile nucleon subsequently undergoes a (spin-
dependent) nuclear scattering reaction in an analyzing
medium. Nucleon polarization measurements of sufficient
quality have therefore only recently become feasible with
the availability of sufficiently intense photon beams. Efforts

to date have focused on recoil proton polarization (P
p
y )

[13,14], exploiting proton polarimeters in the focal planes
of (small acceptance) magnetic spectrometers. The data
have good statistical accuracy but with a discrete and
sparse coverage of incident photon energy and breakup
kinematics [13,14], with most data restricted to a proton
polar angle of Θc:m:

p ∼ 90° in the photon-deuteron center-of-

mass (c.m.) frame. However, these available P
p
y data do

exhibit a distinct behavior, reaching ∼ − 1 (i.e., around
−100% polarization), in a narrow structure centered on
Eγ ∼ 550 MeV. Because of the inability to describe this

behavior with theoretical calculations including only the
established nucleon resonances, it was speculated [13,15]
that it would be consistent with a then unknown 6-quark
resonance, with inferred properties having a striking
similarity to the d�ð2380Þ hexaquark discovered later in
NN scattering.
Clearly, measurement of the ejected neutron polarization

(Pn
y) would be important to establish a role for the d�ð2380Þ

in photodisintegration. In d�ð2380Þ → pn decays, the spins
of the proton and neutron would be expected to be aligned

[16]. Therefore, if the P
p
y anomaly originates from a

d�ð2380Þ contribution, the neutron polarization should
mimic this anomalous behavior. Measurements of Pn

y are

even more challenging experimentally than P
p
y , due to the

inability to track the uncharged neutron into the scattering
medium, and have only been obtained below Eγ ∼ 30 MeV

[17,18]. The experimental difficulties even led to attempts
to extract Pn

y from studies of the inverse reaction n⃗þ p →

dþ γ, using detailed balance [19,20].
This new work provides the first measurement of Pn

y in

deuterium photodisintegration for Eγ sensitive to the quark

substructure of the deuteron, covering Eγ ¼ 300–700 MeV

and neutron breakup angles in the photon-deuteron c.m.
frame of Θc:m:

n ¼ 60°–120°.
Experimental details.—The measurement employed a

new large acceptance neutron polarimeter [21] within the
Crystal Ball detector at the A2@MAMI [22] facility during
a 300 h beam time. An 1557 MeV longitudinally polarized
electron beam impinged on either a thin amorphous (cobalt-
iron alloy) or crystalline (diamond) radiator, producing
circularly (alloy) or linearly (diamond) polarized brems-
strahlung photons. As photon beam polarization is not
used to extract Pn

y , equal flux from the two linear or circular

polarization settings were combined to increase the
unpolarized yield. The photons were energy-tagged
(ΔE ∼ 2 MeV) by the Glasgow-Mainz Tagger [23] and
impinged on a 10 cm long liquid deuterium target cell.
Reaction products were detected by the Crystal Ball (CB)
[24], a highly segmented NaI(Tl) photon calorimeter
covering nearly 96% of 4π steradians. For this experiment,
a new bespoke 24 element, 7 cm diam and 30 cm long
plastic scintillator barrel (PID-POL) [25] surrounded the
target, with a smaller diameter than the earlier PID
detector [25], but provided similar particle identification
capabilities. A 2.6 cm thick cylinder of analyzing material
(graphite) for nucleon polarimetry was placed around PID-
POL, covering polar angles 12° < θ < 150° and occupying
the space between PID-POL and the multiwire proportional
chamber (MWPC) [26]. The MWPC provided charged
particle tracking for particles passing out of the graphite
into the CB. At forward angles, an additional 2.6 cm thick
graphite disc covered the range 2 < θ < 12° [25,27].
The dðγ; pn⃗Þ events of interest consist of a primary

proton track and a reconstructed neutron, which undergoes
a ðn; pÞ charge-exchange reaction in the graphite to
produce a secondary proton which gives signals in the
MWPC and CB. The primary proton was identified using
the correlation between the energy deposits in the PID and
CB using ΔE − E analysis [25] along with an associated
charged track in the MWPC. The intercept of the primary
proton track with the photon beam line allowed determi-
nation of the production vertex, and hence permitted
the yield originating from the target cell windows to be
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removed. Neutron 12Cðn; pÞ charge exchange candidates
required an absence of a PID-POL signal on the recon-
structed neutron path, while having an associated track in
the MWPC and signal in the CB from the scattered
secondary proton. The incident neutron angle (θn) was
determined using Eγ and the production vertex coordinates.

A distance of closest approach condition was imposed to
ensure a crossing of the (reconstructed) neutron track
and the secondary proton candidate track (measured with
MWPC and CB). Once candidate proton and neutron tracks
were identified, a kinematic fit was employed to increase
the sample purity and improve the determination of the
reaction kinematics [28], exploiting the fact that the
disintegration can be constrained with measurements of
two kinematic quantities while three (θp, Tp and θn) are

measured in the experiment. A 10% cut on the probability
function was used to select only events from the observed
uniform probability region [29].
Determination of neutron polarization.—The neutron

polarization was determined through analysis of the neu-

tron-spin dependent 12Cðn; pÞ reactions occurring in the
graphite polarimeter. The spin-orbit component of the
nucleon-nucleon interaction results in a ϕ anisotropy in
the produced yield of secondary protons. For a fixed
nucleon energy, the secondary proton yield as a function
of polar (Θ) and azimuthal (ϕÞ scattering angle can be
expressed as

NðΘ;ϕÞpol ¼ NðΘ;ϕÞunpol½1þ PnAyðΘÞ cosðϕÞ�; ð1Þ

where Pn is the neutron polarization and Ay is the analyzing

power. Ay for free n − p scattering is established for the

appropriate energy range in the SAID parametrization [30].
Differences in the analyzing power between the free ðn; pÞ
process and the in-medium 12Cðn; pÞX process were estab-

lished by a direct measurement of Ay for 12Cðn;pÞX by

JEDI@Juelich [31]. Above Tn ¼ 300 MeV the measured
Ay agreed with the SAID ðn; pÞ parametrization to within a

few percent. For lower energies, the influence of coherent

nuclear processes, such as 12Cðn; pÞ12N resulted in an
increased magnitude (around a factor of 2) but exhibiting
a similar Θ dependence to the free reaction [27]. The ðn; pÞ
analyzing power from SAID was corrected [32] by the
function

Ayðn
12CÞ=AyðnpÞ ¼ 1þ eð1.82−0.014En½MeV�Þ: ð2Þ

To reduce systematic dependencies in the simulation of the
polarimeter the events were only retained if AyðnpÞ was

above 0.1, the proton scattering angle (Θ) was in the
range Θ

scat
p ∈ 15 − 45° and Θn − Θ

scat
p > 27° where Θ

scat
p

is the polar angle of scattered proton relative to the direction
of the neutron. The latter cut reduced the contribution of
secondary protons traveling parallel to the axis of the

polarimeter. The scattered yields were corrected for small
angle-dependent variations in detection efficiency from the
MWPC, established using reconstructed charged particles in
the data. The acceptance with the above cuts was determined
using a GEANT4 [33] simulation of the apparatus. The yield
of scattered events was then corrected for this efficiency and
the polarization extracted according to Eq. (1). An example
of the measured distribution and the fits to extract Pn

y are

shown in Fig. 1.
To quantify systematic errors in the Pn

y extraction, the

analysis cutswere relaxed.This involvedwidening the cuts on
the scattered proton angle and minimum energy (both of
which change theMWPC efficiency), reducing theminimum
analyzing power cut, as well as varying the minimum
probability in the kinematic fit up to 40% [27]. The systematic
errors are extracted from the resulting variations in the
extracted Pn

y , so include significant contributions from the

achievable measurement statistics. The main systematic error
arose from variations in theϕ-dependent detector efficiencies
for the secondary protons in GEANT4, which had increasing
influence for the lower nucleon energies. The extracted
systematic error in Pn

y was typically around �0.2 and is

presented bin by bin with the results in the next section.
Results.—The extracted Pn

y are presented as a function of
photon energy at a fixed θc:m:

n ∼ 90° bin in Fig. 2. The Pn
y

observable was extracted in both a binned (red-filled
circles) and an unbinned (black dashed line) ansatz.
Both methods gave consistent results within the statistical
accuracy of the data. At the lower photon energies, in the
region of the Δ resonance, Pn

y is negative in sign, small in

magnitude and rather uniform. However, at higher photon
energies the Pn

y data exhibit a pronounced and sharp

structure reaching ∼ − 1 around Eγ ∼ 550 MeV. The

new data reveal a striking consistency between Pn
y and

the previous P
p
y [13] measurements (blue open circles) in

the region of the d�ð2380Þ.

, [rad]
p

scatφ

−2 −1 0 1 2

c
o

u
n

ts

0

50

100

150

FIG. 1. The measured ϕscat
p distribution (corrected for efficiency

and acceptance) for Eγ ¼ 350 MeV andΘc:m:
n ¼ 90°. The red line

shows the fit [Eq. (1)], giving Py ¼ −0.31� 0.18. The cyan,
blue, and gray dashed lines correspond to Py ¼ 0;−1, and 1,
respectively. All fits are for Ay ¼ −0.25.
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The cyan (pink) dashed-dot curves show theoretical

calculations of P
p
y (Pn

y), respectively. The model includes

meson exchange currents (π, ρ, η, ω) and conventional
nucleon resonance degrees of freedom [34]. These calcu-

lations reproduce the measured P
p
y and Pn

y in the Δ region,

but fail to describe the pronounced and narrow structure
centred around Eγ ∼ 550 MeV for either observable. At the

very highest photon energies the model predictions are

consistent with the trend towards smaller Pn
y and P

p
y

shown by the data. For the very highest bins Pn
y and P

p
y

are predicted to diverge, attributed [34] to the N�ð1520Þ
resonance having opposite sign for photocoupling to the
neutron and proton [35]. Although these differences are
consistent with the current data, future experiments with
improved statistical accuracy would be essential to resolve
this question.
The blue (red) solid lines show a simple approximation

to include an additional contribution to these theoretical

predictions from the d�ð2380Þ hexaquark in Pn
y (P

p
y ), taking

the established mass and width, and having a magnitude

fitted to reproduce the P
p
y data alone. Previous observations

of a lack of mixing of the d�ð2380Þwith nucleon resonance
backgrounds in the inverted reaction n⃗p → d� gives some
justification to this approximate ansatz [8,9].
The main features of the data in the d�ð2380Þ region,

specifically the minima position and width of the dip

evident in both Pn
y and P

p
y , appear consistent with a

d�ð2380Þ contribution of a common magnitude for both
channels. Such a common magnitude may be expected
from a symmetric decay to pn from a particle which does
not mix significantly with other [non-d�ð2380Þ] back-
ground contributions. Clearly, more detailed theoretical
calculations including the d�ð2380Þ in a consistent

framework within the model would be a valuable next step
and we hope our new results will encourage such efforts.
The new dataset also has sufficient kinematic acceptance

and statistical accuracy to provide a first measurement of
the angular dependence of Pn

y . For a d
�ð2380Þ → pn decay,

Pn
y would be expected to exhibit the angular behavior of the

associated P3

1
Legendre function [36], reaching a maximum

at θc:m:
n ¼ 90° with zero crossings at θc:m:

n ¼ 64° and 116°.
In Fig. 3, Pn

y is presented as a function of θc:m:
n for two Eγ

bins, in the Δ region and in the region of the d�ð2380Þ. The
Pn
y data from the Δ region show a broadly flat distribution

for most of the θc:m:
n range, although with a diminishing

statistical definition near the edge of the polarimeter

acceptance [37]. The previous P
p
y data (open points) show

general agreement with Pn
y , as also predicted by the model

[34]. In the d�ð2380Þ region, Pn
y has larger magnitude and

exhibits a distinct angular dependence, with a minima of

∼ − 1 reached at ∼90°. The single datum for P
p
y in this bin

(open point) also appears consistent with the new Pn
y

determination.
To quantify the dependence of Pn

y on photon energy and

polar angle, we performed an expansion of our results into
associated Legendre functions.

 [MeV]γE

300 400 500 600 700

y
P

1−

0

1

FIG. 2. Pn
y (Red filled circles) and previous P

p
y [13] (blue open

circles) for c.m. angular bins centered on 90° as a function of
photon energy. The result of an unbinned analysis of Pn

y is
presented as a black dashed line with the error bars as a gray band.
The dashed-dotted lines show predictions from Ref. [34] for P

p
y

(cyan) and Pn
y (pink). The solid lines show the result of the fit

with an additional d�ð2380Þ contribution (see text) for P
p
y (blue)

and Pn
y (red). Systematic uncertainties for the Pn

y data are shown
by the hatched area.
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FIG. 3. Pn
y is presented as a black dashed line with the error bars

as a gray band (unbinned ansatz) as a function of θc:m:
n for Eγ bins

centered on 355 (upper) and 585 MeV (lower). Existing P
p
y data

are shown as open symbols: cyan squares [13], pink circle [38],
blue triangles [39], and green circle [14]. The curves are results of
the Legendre decomposition (see text): a1P

1

1
(green), a2P

2

1
(blue),

a3P
3

1
(red), and their sum (black). Systematic uncertainty is

shown as the hatched area.
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Pn
y ¼

X3

l¼1

alP
l
1
: ð3Þ

The result of this expansion can be seen in Fig. 3, which

shows the fitted contributions from a1P
1

1
(green line), a2P

2

1

(blue line), and a3P
3

1
(red line), and the sum of all

contributions (black line). The strongly varying angular
behavior in the d�ð2380Þ region is consistent with a sizable
P3

1
contribution [40].

Figure 4 shows the Eγ dependence of fitted expansion

coefficients. We employ the prescription adopted in
Ref. [29] and use two fit methods: (i) a single-energy
procedure in which the fit was performed using data from
each photon energy bin in isolation (black data points) and
(ii) an energy-dependent procedure where the expansion
coefficients, al, were assumed to vary smoothly from bin to
bin (dotted lines with the errors represented by bands). The
a1 coefficient did not show any particular energy dependent
variation, so it was fixed to the value of a1 ¼ −0.3 [41].
The extracted coefficients are presented as a function of

photon energy in Fig. 4. The energy dependence of the P3

1

coefficient is consistent with the established mass and
width of the d�ð2380Þ hexaquark (M ¼ 2380� 10 and
Γ ¼ 70� 10 MeV), indicating the angular dependence of
Pn
y is consistent with a sizable J ¼ 3 contribution having

properties consistent with those of the d�ð2380Þ.
Summary.—The recoil neutron polarization in

deuteron photodisintegration has been measured for

300 < Eγ < 700 MeV and photon-deuteron center-of-

mass breakup angles for the proton of 60°–120°, providing
the first measurement of this fundamental observable at
photon energies where the quark substructure of the
deuteron can play a role in the mechanism. At lower
photon energies, the data are well described by a reaction
model which includes meson exchange currents and the
known nucleon resonances. At higher photon energies,
a narrow structure centered around Eγ ∼ 550 MeV is

observed in which the neutrons reach a high polarization.
Such behavior is not reproduced by the theoretical model
and is consistent with the “anomalous” structure observed
previously for the recoil proton polarization [13]. In a
simple ansatz the photon energy and angular dependencies
of this “anomaly” are consistent with a contribution from
the Jp ¼ 3þ d�ð2380Þ hexaquark.
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