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Abstract

We study a class of backtests for forecast distributions in which the test statistic

depends on a spectral transformation that weights exceedance events by a function of

the modeled probability level. The weighting scheme is specified by a kernel measure

which makes explicit the user’s priorities for model performance. The class of spectral

backtests includes tests of unconditional coverage and tests of conditional coverage. We

show how the class embeds a wide variety of backtests in the existing literature, and

further propose novel variants which are easily implemented, well-sized and have good

power. In an empirical application, we backtest forecast distributions for the overnight

P&L of ten bank trading portfolios. For some portfolios, test results depend materially

on the choice of kernel.
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1 Introduction

In many forecasting exercises, fitting some range of quantiles of the forecast distribution

may be prioritized in model design and calibration. In risk management applications, which

motivate this study, accuracy near the median of the distribution or in the “good tail” of high

profits is generally much less important than accuracy in the “bad tail” of large losses. Even

within the region of primary interest, preferences may be nonmonotonic in probabilities. For

example, the modeller may care a great deal about assessing the magnitude of once-in-a-

decade market disruptions, but care much less about quantiles in the extreme tail that are

consequent to unsurvivable cataclysmic events. In this paper, we study a class of backtests

for forecast distributions in which the test statistic weights exceedance events by a function

of the modeled probability level. The weighting scheme is specified by a kernel measure

which makes explicit the priorities for model performance. The backtest statistic and its

asymptotic distribution are analytically tractable for a very large class of kernels.

Our approach unifies a wide variety of existing approaches to backtesting. In the area

of risk management, the time-honored test statistic (dating back to Kupiec, 1995) is simply

a count of “VaR exceedances,” i.e., indicator variables equal to one whenever the realized

trading loss is in excess of the day-ahead value-at-risk (VaR) forecast. In our framework,

this is the case where the kernel is Dirac measure concentrated at the target VaR level. At

the other extreme, the tests applied in Diebold et al. (1998) and in the related literature on

conditional density estimation including Bai (2003), Hong and Li (2005) and Corradi and

Swanson (2006a,b) represent a special case in which weights are uniform across all probability

levels. The likelihood-ratio test of Berkowitz (2001), the expected shortfall tests of Du and

Escanciano (2017) and spectral risk measure test of Costanzino and Curran (2015) represent

intermediate cases of a kernel truncated to tail probabilities.

While these works are related to our own, we make a distinct threefold contribution: (i)

we offer an overarching testing framework that embeds many existing tests and many new

ones, including discrete spectral tests and multivariate spectral tests; (ii) we emphasize the
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idea that choice of backtest should be guided by a user’s preferences for model performance

as expressed in kernel choice, rather than by the blind pursuit of power; and (iii) we propose

a general form of conditional test which may be combined with any kernel and which nests

the unconditional test as a special case.

Our application of a weighting function bears some similarity to the approach of Amisano

and Giacomini (2007) and Diks et al. (2011) who apply weights to forecast scoring rules to

obtain measures of forecast performance that accentuate the tails (or other regions) of the

distribution. There is a particularly close connection to Gneiting and Ranjan (2011) who

apply weights to the probability level of the quantile function of the forecast model to

develop their quantile-weighted continuous ranked probability score (CRPS). The weighted

testing approach is applied by these authors to the comparison of forecasting methodologies

using tests in the style of Diebold and Mariano (1995). In contrast, we develop absolute

tests for the weighted performance of a single forecast model. This is closer in spirit to the

approach of Crnkovic and Drachman (1996) who apply a statistic based on a weighted Kuiper

distance between the uniform distribution and the distribution of the estimated probabilities

of realized sample values under the forecast model.

While the comparative testing approach is useful for the internal refinement of the fore-

casting method by the forecaster, the absolute testing approach in this paper facilitates

external evaluation of the forecaster’s results by another agent, such as a regulator. In this

paper we adopt the perspective of such an agent who must make a judgment based on a

predefined set of data supplied by the forecaster and who has very limited information about

the forecaster’s methodology. The kernel function must be chosen exogenously in accordance

with the agent’s own priorities for model performance.

Our investigation is motivated in part by a major expansion in the data available to

regulators for the backtesting exercise. Prior to 2013, banks in the US reported to regulators

VaR exceedances at the 99% level. The new Market Risk Rule mandates that banks report

for each trading day the probability associated with the realized profit-and-loss (P&L) in
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the prior day’s forecast distribution, which is equivalent to providing the regulator with

VaR exceedances at every level α ∈ [0, 1]. The expanded reporting regime allows us to

assess the tradeoff between power and specificity in backtesting. If a regulator is concerned

narrowly with the validation of reported VaR at level α, then a count of VaR exceedances is

a sufficient statistic for a test for unconditional coverage. However, if the regulator is willing

to assign positive weight to probability levels in a neighborhood of α, we can construct more

powerful backtests. Furthermore, our approach is consistent with a broader view of the

risk manager’s mandate to forecast probabilities over a range of large losses. The formal

guidance of US regulators to banks on internal model validation explicitly requires “checking

the distribution of losses against other estimated percentiles” (Board of Governors of the

Federal Reserve System, 2011, p. 15).

Under the reforms mandated by the Fundamental Review of the Trading Book (Basel

Committee on Bank Supervision, 2013), 99%-VaR is replaced by 97.5%-Expected Shortfall

(ES) as the determinant of capital requirements. While there has been a lot of debate around

the question of whether or not ES is amenable to direct backtesting (Gneiting, 2011; Acerbi

and Szekely, 2014; Fissler et al., 2016), our contribution addresses a different issue. We

devise tests of the forecast distribution from which risk measures are estimated and not tests

of the risk measure estimates. When ES is of primary interest it may be argued that a

satisfactory forecast of the tail of the loss distribution is of even greater importance, since

the risk measure depends on the whole tail.

In Section 2, we lay out the statistical setting for the risk manager’s forecasting problem

and the data to be collected for backtesting. The transformation that underpins the class of

spectral backtests is introduced in Section 3. Spectral backtests of unconditional coverage

are described in Section 4. In Section 5, we develop tests of conditional coverage based on

the martingale difference property. As an application to real data, in Section 6 we backtest

ten bank models for overnight P&L distributions for trading portfolios.
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2 Theory and practice of risk measurement

We assume that a bank models P&L on a filtered probability space (Ω,F , (Ft)t∈N0
,P) where

Ft represents the information available to the risk manager at time t, N0 = N ∪ {0} and N

denotes the non-zero natural numbers. For any time t ∈ N, Lt is an Ft-measurable random

variable representing portfolio loss (i.e., negative P&L) in currency units. We denote the

conditional loss distribution given information to time t− 1 by

Ft(x) = P (Lt ⩽ x | Ft−1) .

The loss distribution cannot be assumed to be time-invariant. The distribution of returns on

the underlying risk factors (e.g., equity prices, exchange rates) is time-varying, most notably

due to stochastic volatility. Furthermore, Ft depends on the composition of the portfolio.

Because the portfolio is rebalanced in each period, Ft can evolve over time even when factor

returns are iid.

For t ∈ N we can define the process (Ut) by Ut = Ft(Lt) using the probability integral

transform (PIT). Under the assumption that the conditional loss distributions at each time

point are continuous, the result of Rosenblatt (1952) implies that the process (Ut)t∈N is a

sequence of iid standard uniform variables, notwithstanding the fact that (Lt) is typically

non-stationary. The risk manager builds a model F̂t of Ft based on information up to time

t − 1. Reported PIT-values are the corresponding rvs (Pt) obtained by setting Pt = F̂t(Lt)

for t ∈ N. The regulator is assumed to have no direct knowledge of the sequence of models

F̂t, but can conduct tests and draw inferences based on a sample of the PIT-values. If the

models F̂t form a sequence of ideal probabilistic forecasts in the sense of Gneiting et al.

(2007), i.e., coinciding with the conditional laws Ft of Lt for every t, then we expect the

reported PIT-values to behave like an iid sample of standard uniform variates; tests of this

property are tests that the sequence of models is calibrated in probability.

For any α in the unit interval, let V̂aRα,t := F̂←t (α) be an estimate of the α-VaR con-
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structed at time t − 1 by calculating the generalized inverse of F̂t at α. Since the VaR

exceedance event {Lt ⩾ V̂aRα,t} is equal to the event {Pt ⩾ α}, the PIT-value provides a

sufficient statistic for the VaR exceedances at all possible levels.

Our tests, in common with the majority of tests based on PIT values (including VaR

exception tests), make no assumptions about the procedures and models used by the bank in

forecasting. This is desirable for preserving the objectivity and statistical integrity of the test

regime, since it prevents the regulator exploiting knowledge of the design of the forecaster’s

risk model to bias the outcome of a test. In practice, there is considerable heterogeneity

in methodology. For nearly two decades, most large banks have relied primarily on some

variant of historical sampling (HS), which is a nonparametric method based on re-sampling

of historical risk-factor changes or returns. As HS fails to account for serial dependencies in

returns due to time-varying volatility, some banks adopt filtered historical simulation (FHS)

as suggested by Hull and White (1998) and Barone-Adesi et al. (1998). In this approach, the

historical risk-factor returns are normalized by their estimated volatilities, which are typically

obtained by taking an exponentially-weighted moving-average of past squared returns. Banks

that do not use HS or FHS typically adopt a parametric model for the joint distribution of

risk-factor changes.

In our empirical application, testing for delayed response to changes in volatility is of

special interest. Assuming a roughly symmetric loss distribution centered at zero, the fre-

quent switching between positive and negative values will tend to cause PIT values to be

serially uncorrelated, even when volatility is misspecified in the model. However, extreme

PIT-values (i.e., near 0 or 1) will tend to beget extreme PIT-values in high volatility periods,

and middling PIT-values (i.e., near 1⁄2) will tend to beget middling PIT-values in low volatil-

ity periods. This pattern can be inferred by examining autocorrelation in the transformed

values |2Pt − 1|. We will exploit this transformation in implementing tests of conditional

coverage in Section 6.

There are relatively few empirical studies of bank VaR forecasting. Berkowitz and O’Brien
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(2002) show that VaR estimates by US banks are conservative (i.e., there are fewer ex-

ceedances than expected) and that the forecasts underperform simple time-series models

applied to daily P&L. Conversative forecasts have been documented as well for Canadian

banks (Pérignon et al., 2008) and in a larger international sample (Pérignon and Smith,

2010). The sensitivity of such results to sample period is revealed by O’Brien and Szerszen

(2017). In their sample of five large US banks from 2001–2014, tests of unconditional cov-

erage reject VaR forecasts as excessively conservative for all banks in the periods of relative

stability (2001–2006 and 2010–2014). In the crisis period of 2007–2009, however, O’Brien

and Szerszen reject VaR forecasts as insufficiently conservative for all five banks, and serial

independence is rejected for four of the banks. This pattern is consistent with a failure to

model stochastic volatility.

3 Spectral transformations of PIT exceedances

The tests in this paper are based on transformations of indicator variables for PIT ex-

ceedances. The transformations take the form

Wt =

∫

[0,1]

✶{Pt⩾u}dν(u) (1)

where the kernel measure ν is a probability measure defined on [0, 1] with distribution func-

tion Gν . The kernel measure is designed to apply weight to the probability levels of greatest

interest, typically (in practice) in the region of the standard VaR level α = 0.99. Note

that (1) implies Wt = Gν(Pt) showing that Wt is increasing in Pt and that all moments of

Wt are bounded in [0, 1].

All theoretical results apply under the following condition on Gν , which admits kernel

measures corresponding to discrete distributions with finite sample space and continuous or

mixed probability distributions.
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Assumption 1. Gν has at most a finite set of discontinuities, which may not be at 0 or 1,

and is otherwise absolutely continuous.

In the discrete case, the measure places positive mass γ1, . . . , γm satisfying
∑m

i=1 γi = 1

at the ordered values 0 < α1 < · · · < αm < 1 leading to

Gν(u) =
m∑

i=1

γi✶{u⩾αi}. (2)

For the continuous case, Gν is defined in terms of a nonnegative density gν(u) on [0, 1] which

we refer to as the kernel density.

Figure 1 illustrates the transformation for a selection of very simple kernels. Under a

discrete kernel transformation, Gν is a step function. An example labeled 3-point places

mass of γ1 = 0.25, γ2 = 0.5, and γ3 = 0.25 at PIT values α1 = 0.985, α2 = 0.99, and

α3 = 0.995. This generalizes the single-point Heaviside function traditionally used in VaR

backtesting. The three continuous examples place mass in the same interval [0.985, 0.995].

Within this window, the concave transformation Gν associated with the linear decreasing

density places most mass in the lower portion, whereas the convex transformation associated

with the linear increasing density places most weight in the upper portion. The uniform

density yields a linear transformation Gν . Since gν(u) = 0 outside of the interval, for all

three kernels we have Gν(u) = 0 for u < 0.985 and Gν(u) = 1 for u > 0.995. For these

kernel choices the resulting transformation u 7→ Gν(u) of the interval [0, 1] is clearly not a

bijection. The idea is that the tester sacrifices some information in the PIT values in order

to prioritize the quantile levels at which the forecast model should perform.

The univariate transformation extends naturally to the multivariate case in which a set

of distinct kernel measures with distribution functions G1, . . . , Gm is applied to PIT-values

to obtain the vector-valued variables W1 . . . ,Wn where

Wt = (Wt,1, . . . ,Wt,m)
′, Wt,j = Gj(Pt), j = 1, . . . ,m. (3)
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Figure 1: Examples of kernel transformation of PIT values.
We plot Wt as a function of Pt for various kernels. The 3-point kernel places mass of (0.25, 0.5, 0.25) at
PIT values (0.985, 0.99, 0.995). The remaining kernels, all continuous, share a window
[α1 = 0.985, α2 = 0.995]. Within this window, the linear decreasing kernel has density
gν(u) = (α2 − u)/(α2 − α1), the uniform kernel has density gν(u) = 1/(α2 − α1) and the linear increasing

kernel has density gν(u) = (u− α1)/(α2 − α1). Outside the kernel window, the density is zero.

We will refer to any backtest based on spectrally transformed PIT exceedances as a

spectral backtest. For the purposes of this paper, we assume that the regulator can utilize

only present and past values of Pt in the backtest statistic. This restriction could be relaxed

considerably.1 What is essential to our contribution is that the regulator does not observe the

entire distribution F̂t, but does observe more than the VaR exception indicator ✶{Lt⩾V̂aRα,t}
.

Let (F∗t ) be the regulator’s filtration generated by the PIT values, i.e., F∗t = σ({Ps : s ⩽

t}) ⊂ Ft. Regardless of the form of the test, the null hypothesis is

H0 : Wt ∼ F 0
W and Wt ⊥⊥ F∗t−1, ∀t, (4)

1Our approach could easily be generalized to incorporate information in (Lt, V̂aRα,t) and in publicly
observed market variables (such as VIX). However, frequent change in portfolio composition implies that
lagged VaR values are less reliably informative than lagged PIT values.
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where F 0
W denotes the distribution function of Wt when Pt is uniform. The null hypothesis (4)

implies that the (Wt) are iid but is weaker than a null hypothesis that the (Pt) are iid

Uniform. This is by intent. Since the regulator is free to choose the kernel measure in

accordance with her priorities, she should not object to departures from uniformity and

serial independence that arise outside the support of her chosen kernel.

Several recent papers propose to correct tests of forecasts for estimation error; see, e.g.,

Escanciano and Olmo (2010); Du and Escanciano (2017); Hurlin et al. (2017). Implementa-

tion of these corrections generally requires knowledge of the forecasting model and estimation

scheme and is thus infeasible in the regulatory context we describe. Our null hypothesis im-

poses the high standard that the forecaster is an ideal forecaster working with a sequence of

correctly specified, perfectly estimated models.

The spectral class encompasses a great variety of tests but we prioritize two general

testing approaches: Z-tests and likelihood ratio (LR) tests. In the univariate case, the

spectral Z-test is based on the asymptotic normality of W n = n−1
∑n

t=1 Wt under the null

hypothesis (4). Writing µW = E(Wt) and σ2
W = var(Wt) for the moments in the null model

F 0
W , it follows from the central limit theorem that

Zn =

√
n(W n − µW )

σW

d−−−→
n→∞

N(0, 1). (5)

Since the transformed PIT Wt is bounded in the unit interval, the variance σW is guaranteed

to be finite as required by the Central Limit Theorem (CLT).

The Z-test (5) is a simple test based on the mean of the spectrally transformed PIT

values Wt. In the case where Wt is Bernoulli, the sample mean W n is a sufficient statistic for

the parameter of the Bernoulli distribution, but it is not sufficient for the parameters of Wt

in general. A multispectral test can help address this shortcoming. In the multivariate case

(dimWt = m) we have
√
n
(
W n − µW

) d−−−→
n→∞

Nm(0,ΣW ) where W n = n−1
∑n

t=1 Wt and

µW and ΣW are the mean vector and covariance matrix of the null distribution F 0
W . Hence
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a test can be based on assuming for large enough n that

Tn = n
(
W n − µW

)′
Σ−1W

(
W n − µW

)
∼ χ2

m, (6)

where we refer to Tn as an m-spectral Z-test statistic.

The first moment of the transformed PIT-values under the null hypothesis is easily ob-

tained as

µW =

∫ 1

0

(1− u)dGν(u) (7)

The variance σ2
W and the cross-moments in ΣW are obtained using a simple product rule for

spectrally transformed PIT values.

Theorem 3.1. The set of spectrally transformed PIT values defined by Wt,j = Gj(Pt) is

closed under multiplication. The product W ∗
t = Wt,1Wt,2 is given by W ∗

t = G∗(Pt) where G∗

is a distribution function satisfying

G∗(u) =

∫ u

0

1

2

(
G2(s) +G2(s

−)
)
dG1(s) +

∫ u

0

1

2

(
G1(s) +G1(s

−)
)
dG2(s).

It follows that σ2
W = µW ∗−µ2

W , where µW ∗ is found by applying (7) using the distribution

function G∗ obtained when G1 = G2 = Gν . This yields

µW ∗ =

∫ 1

0

(1− u)
(
Gν(u) +Gν(u

−)
)
dGν(u) . (8)

Likelihood ratio tests are based on continuous parametric models FP (· | θ) for the PIT

values Pt that nest uniformity as a special case corresponding to θ = θ0. The implied

model FW (· | θ) for the values Wt = Gν(Pt) is used to test the null hypothesis (4) with

F 0
W = FW (· | θ0); the alternative is that Wt ∼ FW (· | θ) with θ ̸= θ0. Writing LW (θ | W )

for the likelihood function, the test is based on the asymptotic chi-squared distribution of

11



the statistic

LRW,n =
LW (θ0 | W )

LW (θ̂ | W )
(9)

where θ̂ denotes the maximum likelihood estimate based on the transformed sample (Wt).

An important difference between the two classes of test is that the Z-test is sensitive to

the kernel’s functional form whereas the LR-test is sensitive only to the kernel’s support.

Considering the univariate case for simplicity, we show

Theorem 3.2. Let G1 and G2 be distribution functions satisfying Assumption 1 and corre-

sponding to probability measures ν1 and ν2. Let Wt,j = Gj(Pt) for j = 1, 2 and t = 1, . . . , n

be the respective samples of transformed PIT values. If supp(ν1) = supp(ν2) then LRW1,n =

LRW2,n almost surely.

This result can be viewed as being analogous to the invariance property of LR-tests under

one-to-one transformations of the data.

4 Tests of unconditional coverage

It is common to divide backtesting methods into tests of unconditional coverage and tests of

conditional coverage. In our setting, an unconditional test is a test for the distribution F 0
W

implied by the uniformity of the PIT-values while a conditional test is a test for both the

correct distribution and the independence of Wt and F∗t−1 for all t.

In this section we present a number of unconditional tests based on the Z-test and LR-test

ideas discussed in Section 3 and we show how our approach subsumes a number of important

published tests or close relatives thereof. It is important to note that the convergence

results on which our tests are based, although mostly stated under iid assumptions, do

hold in situations where the independence assumption is relaxed, for example for stationary

and ergodic martingale-difference processes (according to the martingale CLT of Billingsley,

1961). In the case of the univariate Z-test, the test will have no power to detect serial
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dependence whenever limn→∞ var(
√
nW n) ≈ σ2

W . If, however, there is persistent positive

serial correlation in (Wt) leading to limn→∞ var(
√
nW n) > σ2

W then the Z-test will have some

power to detect dependencies; however, more targeted tests of the independence property

are available and are the subject of Section 5.

4.1 Discrete weighting

Discrete tests are based on the univariate transformation Wt =
∑m

i=1 γi✶{Pt⩾αi} as defined

in (2) and the multivariate transformation Wt = (✶{Pt⩾α1}, . . . ,✶{Pt⩾αm})
′ in (3) for the

same set of ordered levels α1 < · · · < αm. Obviously, when m = 1 (and γ1 = 1) both

transformations yield Wt = ✶{Pt⩾α}, so that we obtain iid Bernoulli(1 − α) variables under

the null hypothesis (4). This is the basis for standard VaR exceedance testing based on the

binomial distribution. The Z-test statistic (5) for Wt = ✶{Pt⩾α} coincides with the binomial

score test statistic

Zn =

√
n
(
W n − (1− α)

)
√

α(1− α)
. (10)

The LR-test uses an implicit nesting model for Pt in which the Wt are iid Bernoulli(p) and

tests p = 1− α against p ̸= 1− α by comparing the statistic (9) to a χ2
1 distribution; this is

the approach taken by Kupiec (1995) and Christoffersen (1998).

When m > 1 the variables Wt =
∑m

i=1 γi✶{Pt⩾αi} take the ordered values 0 = Γ0 < Γ1 <

· · · < Γm = 1, where Γk =
∑k

i=1 γi for k = 1, . . . ,m. Under the null hypothesis (4) the

distributions of Wt and Wt satisfy

P(Wt = Γi) = P(1′Wt = i) = αi+1 − αi, i ∈ {0, 1, . . . ,m}, (11)

where α0 = 0 and αm+1 = 1. In both cases this describes a multinomial distribution.

The univariate and multivariate tranformations result in different Z-tests which can be

considered as alternative generalizations of the binomial score test (10). Application of

Theorem 3.1 to the univariate case and use of (8) delivers moments under the null µW =
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∑m

i=1 γi(1 − αi) and σ2
W =

∑m

i=1 γ
∗
i (1 − αi) − µ2

W where γ∗i = (2Γi − γi)γi. In constructing

the test statistic Zn in (5), we can vary the weights γi to emphasize different levels αi and

obtain a variety of new tests.

In the multivariate case, we construct an m-spectral Z-test as in (6) with µW = (1 −

α1, . . . , 1− αm)
′ and second moment matrix ΣW with (i, j) element given by αi∧j(1− αi∨j).

We then obtain the classical Pearson chi-squared statistic as proposed by Campbell (2006).

Theorem 4.1.

n(W n − µW )′Σ−1W (W n − µW ) =
m∑

i=0

(Oi − nθi)
2

nθi

where Oi =
∑n

t=1 ✶{1′Wt=i} and θi = αi+1 − αi for i = 0, . . . ,m.

To implement a multinomial (or multi-level) LR-test of (11) we use a nesting model for

Pt in which P(Wt = Γi) = P(1′Wt = i) = pi and
∑m

i=0 pi = 1. The likelihoods based on (Wt)

and (Wt) yield the same sufficient statistics Oi =
∑n

t=1 ✶{Wt=Γi} =
∑n

t=1 ✶{1′Wt=i} for the

cell probabilities pi. By the likelihood principle the univariate and multivariate LR-tests are

identical and depend only on the levels (α1, . . . , αm) and not the weights γi in the univariate

transformation. The invariance of the univariate LR-test under different choices for the

weights is also a consequence of Theorem 3.2. The multinomial LR-test coincides with the

test proposed in Pérignon and Smith (2008) which also underlies the work of Colletaz et al.

(2013); see Kratz et al. (2018) for a comparison with Pearson test.

4.2 Continuous weighting

The continuous tests we consider are based on distribution functions Gν with densities gν

satisfying gν(u) > 0 for α1 < u < α2 and gν(u) = 0 for u < α1 and u > α2. We refer to the

interval [α1, α2] as the kernel window.

Consider spectral transformations Wt,1 = G1(Pt) and Wt,2 = G2(Pt) corresponding to

kernel densities g1 and g2 with common kernel window [α1, α2]. Theorem 3.1 implies that

the spectral transformation W ∗
t = G∗(Pt) = Wt,1Wt,2 has kernel window [α1, α2] and kernel
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density given by g∗(u) = G1(u)g2(u) + G2(u)g1(u). Hence moments and cross-moments of

the Wt,i can be obtained analytically for a wide variety of kernel densities, e.g., based on

polynomials, exponential functions, or on beta-type densities of the form (u − α1)
a−1(α2 −

u)b−1 for a, b > 0; see Section 4.3 for examples of new tests based on this idea. Thus, our

compact presentation of the continuous spectral Z-test subsumes a very large class of possible

tests. In particular, the tests proposed by Du and Escanciano (2017) and Costanzino and

Curran (2015) are special cases of our univariate spectral Z-test.

For the LR-test, recall that we require a family of distributions FP (· | θ) for the PIT

values that nests uniformity as a special case corresponding to θ = θ0. Since the kernels

of this section have support [α1, α2], Theorem 3.2 implies that they all give rise to identical

LR-tests, depending only on α1, α2 and the nesting model FP (· | θ). The form taken by Gν

on [α1, α2] is immaterial.

Following Berkowitz (2001), we draw upon the probitnormal as nesting model. We assume

that the PIT values P1, . . . , Pn have a distribution satisfying Φ−1(Pt) ∼ N(µ, σ2). Writing

θ = (µ, σ)′, the distribution function and density of Pt are respectively

FP (p | θ) = Φ

(
Φ−1(p)− µ

σ

)
, fP (p | θ) =

φ
(

Φ−1(p)−µ
σ

)

φ(Φ−1(p))σ
, p ∈ [0, 1], (12)

and the uniform distribution corresponds to θ = θ0 = (0, 1)′.

The Berkowitz test is an LR-test that the data P ∗t = max(α1, Pt) have a uniform distri-

bution truncated to [α1, 1] against the alternative that they have a probitnormal distribution

truncated to the same interval. Having restricted ν to the set of probability measures defined

on [0, 1], there is no ν such that P ∗t = Gν(Pt). However, it is easily seen that taking ν as the

uniform kernel on [α1, 1] yields the spectral transformation

Wt = Gν(Pt) = max

(
0,

Pt − α1

1− α1

)
=

P ∗t − α1

1− α1

.
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Since Wt and P ∗t are related by a simple one-to-one transformation we obtain the same LR-

test as Berkowitz by arguments similar to Theorem 3.2. The equivalence holds as well when

we generalize the tests to allow the kernel window to have upper bound α2 ∈ (α1, 1].

4.3 Size and power

We have performed extensive Monte Carlo analyses to explore how the size and power of

unconditional spectral backtests depend on the kernel and test. Here we offer representative

examples. Details of all simulation experiments may be found in the Online Supplement to

this paper.

We consider kernels of discrete, continuous and mixed form. Parameters α1 and α2 control

the kernel window. For the continuous tests, α1 and α2 are the infimum and supremum of

the kernel support. For the discrete case, we consider 2-level kernels at points (α1, α2) and

3-level kernels at points (α1, α
∗, α2), where α∗ = 0.99 is the conventional VaR level. We

define a narrow window for which α1 = 0.985 and α2 = 0.995, and a wide window for which

α1 = 0.95 and α2 = 0.995. Observe that the narrow window is symmetric around α∗, whereas

the wide window is asymmetric.

For the continuous case, there is a wide variety of plausible candidates for the kernel.

Table 1 lists the kernels that we discuss below; each may be thought of as describing a family

of kernel densities for different windows [α1, α2]. For parsimony, all are special cases of the

beta kernel. The uniform and hump-shaped Epanechnikov kernels are commonly used in the

nonparametric statistics literature. The kernels are all quite natural for weighting quantile

probabilities and are similar to choices made by Gneiting and Ranjan (2011, Table 2). In

the Online Supplement, we provide analytical solutions for the moments of transformed PIT

values for the general beta(a, b) case.

Discrete monospectral Z-tests: two-sided binomial score test at level α∗ (BIN); and

three-point discrete uniform kernel (ZU3) test;
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Kernel family Mnemonic Density g(ũ) Beta representation

Uniform ZU 1 1,1

Arcsin ZA 1/
√

ũ(1− ũ) 1⁄2,1⁄2
Epanechnikov ZE ũ(1− ũ) 2,2

Linear increasing ZL+ ũ 2,1
Linear decreasing ZL− 1− ũ 1,2

Table 1: Kernel density functions on [α1, α2].
ũ denotes the rescaled value ũ = (u− α1)/(α2 − α1). Density functions are not scaled to integrate to 1.

Continuous monospectral Z-tests: tests based on the uniform kernel (ZU); the arcsin

kernel (ZA); Epanechnikov kernel (ZE); and increasing (ZL+) and decreasing (ZL−)

linear kernels;

Discrete multispectral Z-tests: two-point and three-point Pearson tests (PE2 and PE3);

Continuous multispectral Z-tests: forming symmetric pairs of beta kernels with param-

eters (p, 1) and (1, p), for p = 1 we have the bi-linear kernel (ZLL), and for p = 25 the

sharply concave/convex bi-power kernel (ZPP); finally, we insert a uniform kernel into

the bi-power kernel to create a tri-power kernel (ZPUP).

We consider three different choices for the cdf F of the true model of Lt: the standard

normal, the scaled t5 and scaled t3. The Student t distributions are scaled to have variance

one so differences stem from different tail shapes rather than different variances. We take

the risk manager’s model F̂ to be the standard normal, i.e., we transform the sampled Lt to

PIT-values as Pt = Φ(Lt). Therefore, when the samples of Lt are drawn from the standard

normal, the PIT-values are uniformly distributed and are used to evaluate the size of the

tests. The PIT samples arising from the Student t distributions show the kind of departures

from uniformity that are observed when the risk manager’s model is too thin-tailed.

We fix a sample size n = 750 corresponding approximately to the three-year samples of

bank data studied in Section 6.2 In Table 2, we report the percentage of rejections of the

2All findings in this section hold qualitatively for n = 250 and n = 500; see our Online Supplement for
details.
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null hypothesis at the 5% confidence level based on 216 = 65,536 replications. All reported

p-values are based on two-sided tests, though one-sided versions of some tests are of course

available.

Monospectral Bispectral Trispectral

window F | kernel BIN ZU3 ZU ZA ZE ZL+ ZL− PE2 ZLL ZPP PE3 ZPUP

narrow Normal 6.1 4.9 4.7 4.7 4.7 4.6 4.8 4.8 4.8 4.8 5.3 5.2
Scaled t5 33.9 35.0 33.8 34.4 33.0 40.3 27.1 44.0 40.0 45.3 40.3 39.3
Scaled t3 24.0 24.8 23.9 24.3 23.3 32.7 16.5 50.7 43.3 50.9 43.4 42.7

wide Normal 6.1 5.0 4.9 4.9 4.9 4.9 4.9 4.8 5.0 4.9 5.1 5.0
Scaled t5 33.9 10.7 6.4 6.6 6.1 11.9 5.8 60.7 45.1 59.2 55.5 51.8
Scaled t3 24.0 13.5 17.7 20.4 15.4 7.4 31.9 94.0 85.8 93.0 90.6 88.4

Table 2: Estimated size and power of unconditional Z-tests.
We report the percentage of rejections of the null hypothesis at the 5% confidence level based on
216 = 65,536 replications. The number of days in each backtest sample is n = 750. The narrow window is
[0.985, 0.995] and the wide window is [0.95, 0.995].

In both narrow and wide windows, we observe that the size of the Z-tests is very close

to the nominal size of 5%, except in the case of the binomial score test, which is slightly

oversized. The power of the tests, in contrast, is sensitive to the choice of kernel. We

summarize the results as follows:

1. Differences across tests in power are more pronounced on the wide window than on the

narrow window. The monospectral tests are broadly similar in power to the binomial

score test on the narrow window.

2. The monospectral tests offer more power against the scaled t5 model than the more

fat-tailed scaled t3 model on the narrow window, but the opposite is true in most cases

on the wide window.

3. Increasing the window width reduces the power of most of the monospectral tests.

4. For the wide window, the increasing linear kernel ZL+ offers more power than the

decreasing linear kernel ZL−when the true model is the scaled t5, but the opposite

holds when the true model is the scaled t3.
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5. The bispectral tests offer more power than the monospectral tests, but the differences

are relatively small in the case of the narrow window when the true model is the scaled

t5.

6. Among the bispectral tests, the PE2 and ZPP, which weight heavily at or near the

boundaries of the support, markedly outperform the ZLL, which weights heavily in the

interior. The trispectral tests PE3 and ZPUP offer less power than the corresponding

bispectral tests PE2 and ZPP.

The first finding is easily understood. For the families of kernel densities in Table 1, the

associated function Gν converges to a step function as the window narrows. Put another way,

all kernel families degenerate to the binomial score kernel as the window shrinks around α∗.

To illuminate the second finding, we plot in Figure 2 the distribution function for reported

PIT-values under each of the true models, i.e., Pr(Pt ⩽ u) = Pr (Lt ⩽ Φ−1(u)) = F (Φ−1(u)).

The cdf is simply the identity line (y = x) when the null hypothesis is true. Within the

narrow window of [0.985, 0.995], the cdf for the scaled t3 lies closer to the identity line on

average than does the cdf for the scaled t5. The monospectral tests, being tests of the first

moment of Wt = Gν(Pt), are sensitive to this distance, so have greater power against the

scaled t5 than the scaled t3. On the wide window, however, the cdf for the scaled t5 lies

closer to the identity line on average, so the tests have greater power against the scaled t3.

The figure also illuminutes the third and fourth findings. Both of the scaled Student t

cdfs cross the identity line outside the boundaries of the narrow window, but near the middle

of the wide window. Crossings within the window reduce the average distance, so pose a

particular challenge for the monospectral tests. On the wide window, the scaled t5 cdf crosses

the identity line near 0.971, which is slightly below the midpoint. This slight asymmetry

favors the ZL+ kernel, which puts heavier weight on the upper side of the window. The

scaled t3 cdf crosses the identity line above the midpoint (near 0.982), and furthermore the

distance between the cdf and identity line is much larger at the lower end of the window.

This asymmetry favors the ZL− kernel.
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With regard to the fifth finding, the greater power of the bispectral tests is most apparent

when the kernel window contains a crossing of the type just described. While the crossing

reduces the average distance between the cdf of the reported PIT-values and the identity

line, the cdf will be too steep or too shallow. Cross-moments of the kernels in a bispectral

test can effectively detect such a slope violation. In contrast, when the cdf of the reported

PIT-values lies roughly parallel to the identity line throughout the kernel window (as is the

case for the scaled t5 in the narrow window), the advantage of the bispectral test is expected

to be less pronounced.

Finally, the power of bispectral tests to discern slope violations is greatest when the

component kernels emphasize opposite ends of the kernel support. Put another way, the

lower the correlation between Wt,1 and Wt,2, the greater the additional information gain in

introducing the second kernel. We tend to lose power when introducing a third kernel because

the average correlation across the components must rise. The marginal gain in information

is too small to offset the additional degree of freedom in the χ2 test.

In Table 3, we compare the size and power of LR-tests against Z-test counterparts. The

classic Kupiec (1995) LR-test (LR1) is matched to the binomial score Z-test. Two- and

three-point multinomial LR-tests (LR2 and LR3) are matched to the two- and three-point

Pearson tests. We have some discretion in how we choose a bispectral Z-test counterpart to

the LR-test of Berkowitz (2001) (LRB); we match it against the bi-power kernel (ZPP) as

indicative of what can be achieved when the kernels have low correlation.

Overall, we find the Z-tests outperform their LR-test counterparts in size and power. The

3-point multinomial LR-test is notably oversized on both narrow and wide support, whereas

the worst of the Z-tests (BIN) is only slightly oversized. When the true model F is the scaled

t5, the Z-tests in each case offer greater power than the corresponding LR-test. When the

true model F is the scaled t3, the LR-tests and Z-tests perform similarly overall. Since the

Z-tests avoid specification and estimation of a nesting model, they are also much simpler to

implement and faster to execute. Therefore, we will henceforth limit our attention to the

20



0.96

0.98

1.00

0.950 0.985 0.995 1.000

u

P
r(P

t
≤

u
)

True model

Normal

Scaled t5

Scaled t3

Figure 2: Distribution functions for reported PIT-values.
CDFs for the reported PIT-values when the risk manager assumes standard normal losses (F̂ = Φ) but the
true loss model F is standard normal (red line), scaled t5 (green line) or scaled t3 (blue line).

class of Z-tests.

As a general caveat, we do not advocate that power alone should dictate the choice of

kernel. A general intuition from our simulation studies is that a test is most powerful in

rejecting a false model when the kernel weights heavily on probability levels for which the

quantiles of the risk manager’s model diverge from the true quantiles. As historical simulation

in particular tends to understate the tails of the distribution, in practice we expect that the

most powerful tests will weight heavily on extreme probability levels. However, this can come

at the expense of the stability of the test, in the sense that the outcome can be determined by

the presence or absence of one or two very large reported PIT-values. Furthermore, testing

at very extreme tail values of α runs counter to a primary regulatory motivation for the

backtest, which is to verify the bank’s 99% VaR.
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window F | test BIN LR1 PE2 LR2 PE3 LR3 ZPP LRB

narrow Normal 6.1 4.1 4.8 6.3 5.3 8.2 4.8 5.5
Scaled t5 33.9 24.0 44.0 36.5 40.3 34.3 45.3 37.6
Scaled t3 24.0 16.1 50.7 47.7 43.4 46.5 50.9 49.2

wide Normal 6.1 4.1 4.8 5.9 5.1 7.3 4.9 5.1
Scaled t5 33.9 24.0 60.7 57.1 55.5 53.0 59.2 57.7
Scaled t3 24.0 16.1 94.0 94.8 90.6 93.0 93.0 95.0

Table 3: Estimated size and power of unconditional Z-tests and LR-tests. We report the percentage of
rejections of the null hypothesis at the 5% confidence level based on 216 = 65,536 replications. The number
of days in each backtest sample is n = 750. The narrow window is [0.985, 0.995] and the wide window is
[0.95, 0.995].

5 Tests of conditional coverage

While the unconditional tests of Section 4 have some limited power to detect the presence of

serial dependencies, the aim in this section is to propose conditional extensions of our spectral

tests that explicitly address the independence of Wt and F∗t−1 as well as the correctness of the

distribution of Wt. These tests should have more power to detect departures from the null

hypothesis resulting from a bank’s failure to use all the information in Ft−1 when building the

predictive model F̂t, such as a failure to address time-varying volatility in adequate fashion.

5.1 Tests of the martingale difference property

A necessary condition for null hypothesis (4) to hold is the martingale difference (MD)

property with respect to the regulator’s filtration:

E(Wt − µW | F∗t−1) = 0 (13)

where we recall that F∗t = σ({Ps : s ⩽ t}). When the MD property (13) holds, we must

have E(ht−1(Wt−µW )) = 0 for any F∗t−1-measurable random variable ht−1. Using a function

h, which we refer to as a conditioning variable transformation (CVT), we form the k + 1-

dimensional lagged vector ht−1 = (1, h(Pt−1), . . . , h(Pt−k))
′. To guarantee the existence of

the second moment of ht−1, we assume that (Pt) is covariance-stationary and that h is
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bounded. Particular examples that we will use in our empirical analysis are h(p) = ✶{p⩾α}

for some α and h(p) = |2p− 1|c for c > 0.

We base our test on the vector-valued process Yt = ht−1(Wt − µW ). Under the null

hypothesis, Yk+1, . . . ,Yn should be close to the zero vector on average. We apply the con-

ditional predictive test of Giacomini and White (2006) which was developed for comparing

forecasting methods, and which has also been used by Nolde and Ziegel (2017) in the back-

testing context. Let Y n,k = (n − k)−1
∑n

t=k+1 Yt and let Σ̂Y denote a consistent estimator

of ΣY := cov(Yt). Giacomini and White show that under very weak assumptions, for large

enough n and fixed k,

Tn,k = (n− k) Y
′

n,k Σ̂
−1
Y Y n,k ∼ χ2

k+1. (14)

Since ΣY decomposes as σ2
WE

(
ht−1h

′
t−1

)
under the null hypothesis, we form the estimator

Σ̂Y = σ2
W (n− k)−1

n∑

t=k+1

ht−1h
′
t−1. (15)

Alternative estimators may be used, but the decomposition in (15) has the advantage that it

nests our unconditional spectral Z-test in (6), which corresponds to the case k = 0. The case

k = 1 may be viewed as a Z-test analog of the first-order Markov chain test of Christoffersen

(1998).

In the Online Supplement, we show that Tn,k can also be interpreted as the chi-squared

statistic for a regression of Wt−µW on ht−1. Thus, our conditional test embeds the regression-

based DQ test statistic proposed by Engle and Manganelli (2004), which corresponds to the

binomial score case, i.e., the case where Wt = ✶{Pt⩾α} and the CVT is h(p) = ✶{p⩾α}.
3

The extension to a conditional bispectral Z-test is based on generalizing the statistic (14)

to accommodate vectors Yt =
(
h′t−1,1(Wt,1 − µW,1),h

′
t−1,2(Wt,2 − µW,2)

)′
formed from two

different series of spectrally transformed PITs (Wt,i) and two different series of conditioning

3Engle and Manganelli (2004) allow as well for lagged VaR values to be included as regressors, an extension
possible in our framework, but change in portfolio composition implies that lagged VaR values are less
informative than lagged PIT values.
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variable vectors (h′t−1,i). Details are given in Appendix B. The approach clearly extends

to conditional multispectral tests which offer more general Z-test analogs of the conditional

multilevel tests in Leccadito et al. (2014).

5.2 Size and power

We build on the Monte Carlo exercises of Section 4.3 to study the size and power of the

conditional tests of coverage. Here we present a representative extract of simulation studies

documented in our Online Supplement. The data are generated from three different “true”

models: iid standard normal; a time series model known as VT-ARMA(1,1) in which the

squares of the data have the serial dependence of an ARMA(1,1) process but the data

have a standard normal marginal distribution; and a VT-ARMA(1,1) model in which the

marginal distribution is scaled t5. Our calibration of the ARMA parameters (AR = 0.95, small

changeMA = -0.85), which is described in the Online Supplement, is designed to mimic the serial

dependence in PIT values when stochastic volatility is neglected. The resulting process gives

similar behavior to a GARCH(1,1) model but allows the marginal distribution to be freely

specified. As in Section 4.3, we assume the risk manager reports PIT-values based on the

standard normal model F̂ = Φ.

In addition to a choice of kernel, the MD test requires the choice of the number (k) of

lagged PIT values and the conditioning variable transformation h(P ). Define V (u) = |2u−1|;

this V-shaped transformation of PIT values is well-suited to uncover dependence arising from

stochastic volatility. As listed in Table 4, we consider four candidates for the CVT. Whereas

the DQ requires only a time-series of traditional exceedance indicators, the three CVT based

on the V (u) transformation require that the regulator observe PIT values.

Table 5 gives a flavor of the main findings for the example of the uniform kernel (ZU)

and the narrow kernel window of [0.985, 0.995]. We report the percentage of rejections of

the null hypothesis at the 5% confidence level based on 216 = 65,536 replications. In the

first column (CVT=“None”), we set k = 0 to obtain the unconditional Z-test. Each of the

24



Mnemonic h(P ) Description

DQ ✶{P⩾0.99} Flags upper-tail PIT values, as in Engle and Manganelli (2004).
V.BIN ✶{V (P )⩾0.98} Two-tailed version of DQ, flags PIT values near zero or one.
V.4 V (P )4 Places heavier weight on tail PIT values in the recent past.

V.1⁄2
√

V (P ) Dampens sensitivity to tail PIT values relative to V.4.

Table 4: Conditioning variable transformations. V (u) ≡ |2u− 1|

remaining columns corresponds to a CVT with k = 4. As seen in the first row (iid standard

normal model), size is more difficult to control in the conditional tests. However, the CVT

choices V.4 and V.1⁄2 are only slightly oversized whereas V.BIN and, in particular, DQ are

very oversized.

The model depicted in the second row gives uniformly distributed PIT values with a

serial dependence structure that is typical when stochastic volatility is ignored. The power

of the unconditional test in this situation is very limited (10.8%), while the MD tests show

power ranging from 21.7% to 32.6%. There is a further increase in power when the simulated

PIT data are both non-uniform and serially dependent (third row).

F Serial Dependence | CVT None DQ V.BIN V.4 V.1⁄2

Normal None 4.8 14.4 9.0 6.7 6.7
Normal VT-ARMA(1, 1) 10.8 31.5 30.9 32.6 21.7
Scaled t5 VT-ARMA(1, 1) 36.2 54.9 52.7 60.7 54.5

Table 5: Estimated size and power of conditional tests.
MD tests using the ZU kernel on the narrow window [0.985, 0.995]. We report the percentage of rejections
of the null hypothesis at the 5% confidence level based on 216 = 65,536 replications. The number of days in
each backtest sample is n = 750. VT-ARMA parameters are AR = 0.95, MA = -0.85.

Check small changes in this section to introduce VT-ARMA terminology, including in

Table 5. Readers (and referees) tend to take ARMA(1,1) literally, if they don’t read

carefully. I think it helps to add the VT prefix. I also think it is reasonale to have the

citation of my paper in the OS only, as it is currently still a preprint.
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6 Application to bank-reported PIT values

6.1 Data

Our data consist of ten confidential backtesting samples provided by US banks to the Federal

Reserve Board at the subportfolio level. Mandatory reporting to bank regulators pursuant

to the Market Risk Rule took effect on January 1, 2013. For each significant subportfolio

and each business day, the bank is required to report the overnight VaR at the 99% level, the

realized clean P&L, and the associated PIT-value (Federal Register, 2012, p. 53105). While

the first two fields have been available to regulators for a long time (at least at an aggregate

trading book level), access to PIT values is new. Each of our ten samples represents returns

on an equity or foreign exchange subportfolio, which can include derivative as well as cash

positions. Our samples are taken from the three-year period from 2014–2016.

Summary statistics for the unconditional distributions are found in Table 6. As is often

the case with new regulatory reporting requirements, the data are not uniform in quality.

Two of the samples (coded Pf 104 and Pf 110) have missing values (0.9% and 3.2% of trading

days, respectively). Furthermore, close inspection reveals that most of the samples contain

a small number of observations that are potentially spurious. In a few extreme cases, a PIT

value of 1 is matched to a realized loss smaller than the forecast VaR. We apply a heuristic

procedure to identify spurious values based on the distance between the reported PIT-value

and an imputed value. The latter is constructed using a portfolio-specific model that fits PIT

to the ratio of realized loss to VaR; details are provided in the Online Supplement. In test

results reported below, we treat spurious values as missing to make the tests less sensitive to

reporting error. Our conclusions are robust to taking all non-missing observations as valid.

Remaining columns of the table provide a histogram of PIT values. For some portfolios,

tail PIT values are underrepresented (e.g., Pf 107) or overrepresented (e.g., Pf 105) in the

sample. For some other portfolios, the histograms appear to be close to uniform, e.g., for

Pf 110, 85.9% of PIT values lie in [0.05, 0.95) and remaining mass is distributed roughly
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symmetrically.

6.2 Tests of unconditional coverage

Due to the generality of our framework, application of spectral backtests to data involves

choices along several dimensions. As in Section 4.3, we fix α∗ = 0.99 as the conventional VaR

level, define a narrow window as [0.985, 0.995] and a wide window as [0.95, 0.995]. Kernels

are drawn from Table 1. Guided by our simulation results and the need for brevity, we

exclusively employ two-sided Z-tests in our empirical analysis.

Table 7 presents p-values for the tests of unconditional coverage.4 We find that the

forecast models for portfolios Pf 105, Pf 106 and Pf 107 are rejected at the 1% level for all

kernels and on both the narrow and wide kernel windows. In view of the histograms observed

in Table 6, this is unsurprising. When an empirical distribution function (edf) lies above

the uniform cdf within the kernel window (as observed for Pf 107), large PIT values are

underepresented in the sample, which suggests that the forecast model overstates the upper

quantiles of the loss distribution. When an edf lies below the uniform cdf (as observed for

Pf 105 and Pf 106), large PIT values are overrepresented in the sample, which suggests that

the forecast model understates the upper quantiles. By contrast, there are no rejections at

all for Pf 110, for which the edf is reasonably close to the theoretical cdf throughout the

upper tail.

For the remaining six portfolios, test results are sensitive to the choice of kernel. This

is to be expected and desirable, as the different tests prioritize different quantiles of the

unconditional distribution. To shed light on the differences, in Figure 3 we plot the edf for

three portfolios on the narrow window (upper panel) and wide window (lower panel). This

plot is the empirical counterpart to Figure 2 in Section 4.3. For Pf 104, we observe that the

edf intersects with the theoretical cdf at the common upper window boundary α2 = 0.995,

4All p-values in the tables below should be interpreted in the context of a single test of the null hypothesis.
If multiple tests are conducted, inferences would have to be based on a standard correction method such as
that of Bonferroni; see Shaffer (1995) for a review.
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ID Trading days of which: Frequencies

Missing Spurious [0, .005) [.005, .015) [.015, .05) [.05, .95) [.95, .985) [.985, .995) [.995, 1]

101 756 0 0 0.0132 0.0172 0.0357 0.8796 0.0317 0.0106 0.0119
102 751 0 7 0.0027 0.0108 0.0215 0.9113 0.0323 0.0121 0.0094
103 750 0 8 0.0040 0.0040 0.0189 0.9474 0.0162 0.0081 0.0013
104 774 7 0 0.0000 0.0000 0.0026 0.9804 0.0104 0.0013 0.0052
105 750 0 2 0.0174 0.0214 0.0294 0.8596 0.0388 0.0187 0.0147
106 629 0 1 0.0111 0.0191 0.0510 0.8328 0.0557 0.0175 0.0127
107 750 0 1 0.0000 0.0000 0.0013 0.9960 0.0027 0.0000 0.0000
108 756 0 8 0.0000 0.0053 0.0267 0.9278 0.0174 0.0120 0.0107
109 734 0 6 0.0082 0.0151 0.0495 0.8654 0.0371 0.0206 0.0041
110 774 25 0 0.0134 0.0200 0.0507 0.8585 0.0427 0.0107 0.0040

Table 6: Sample statistics.
Missing and spurious observations excluded from the reported frequencies. Sample period is 2014-01-01 to 2016-12-31.
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Monospectral Bispectral Trispectral

ID window BIN ZU3 ZU ZL+ ZL− PE2 ZLL ZPP PE3

101
narrow 0.1046 0.0340 0.0356 0.0230 0.0572 0.0263 0.0595 0.0371 0.0502
wide 0.1046 0.1407 0.2050 0.0610 0.4243 0.0254 0.0128 0.0318 0.0593

102
narrow 0.0016 0.0200 0.0800 0.1346 0.0558 0.1968 0.1085 0.2255 0.0027
wide 0.0016 0.0063 0.2456 0.2114 0.2898 0.0722 0.4477 0.4258 0.0121

103
narrow 0.1029 0.1158 0.0987 0.1094 0.0995 0.3207 0.2545 0.3854 0.4212
wide 0.1029 0.0035 0.0058 0.0156 0.0038 0.0085 0.0126 0.0092 0.0229

104
narrow 0.1829 0.1691 0.1651 0.3063 0.0987 0.0533 0.0767 0.0636 0.1119
wide 0.1829 0.0010 0.0004 0.0031 0.0002 0.0001 0.0003 0.0001 0.0002

105
narrow 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001
wide 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0001 0.0000 0.0002

106
narrow 0.0005 0.0004 0.0010 0.0019 0.0007 0.0037 0.0033 0.0035 0.0055
wide 0.0005 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001

107
narrow 0.0059 0.0018 0.0026 0.0062 0.0016 0.0033 0.0053 0.0036 0.0097
wide 0.0059 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

108
narrow 0.0166 0.0213 0.0311 0.0191 0.0520 0.0740 0.0482 0.0414 0.0933
wide 0.0166 0.6971 0.8422 0.5358 0.4445 0.0113 0.0034 0.0033 0.0052

109
narrow 0.5217 0.2499 0.1358 0.3171 0.0634 0.0152 0.0165 0.0147 0.0222
wide 0.5217 0.2584 0.0563 0.0503 0.0706 0.2435 0.1471 0.3192 0.3373

110
narrow 0.8514 0.9479 0.6660 0.6321 0.7032 0.9126 0.8737 0.9647 0.8692
wide 0.8514 0.5407 0.3017 0.4527 0.2325 0.5048 0.3407 0.5109 0.6916

Table 7: Tests of unconditional coverage.
We report p-values by portfolio, kernel window, and kernel family. Narrow kernel window is [0.985,0.995] and wide kernel window is [0.95,0.995].
Sample period is 2014-01-01 to 2016-12-31.
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but lies above the theoretical cdf at lower PIT values. Over the wide window, the average

distance between edf and theoretical cdf is large, so any test that assigns significant weight to

PIT values near the center of the window will reject. When restricted to the narrow window,

the average distance is reduced, so the tests fail to reject. The edf for portfolio Pf 103 (not

shown) is qualitatively close to that of Pf 104, which explains the similarity in test results.

The edf for portfolio Pf 108 lies somewhat below and roughly parallel to the theoretical

cdf throughout the narrow window. Tests reject at the 5% level for some of the kernels and

fail to reject for others, but the p-values all lie between 1.5% and 10%. When we consider

the wide window, we find that the edf lies above the theoretical cdf in the lower half of the

window and below in the upper half, which implies that the forecast model underestimates

quantiles at one boundary of the kernel window and overestimates quantiles at the other

boundary, i.e., a slope deviation from the uniform cdf. As shown in Section 4.3, bispectral

tests generally outperform monospectral tests in this situation. We find that the tests based

on the bivariate and trivariate kernels all reject at the 1% level. The edf for portfolio Pf 101

(not shown) also displays a slope violation on the wide window, and again we find the

bivariate kernels most effective.

In the case of portfolio Pf 109, the edf displays a slope violation within the narrow window.

As before, we find that the tests based on the bivariate and trivariate kernels reject at the

5% level, whereas the monospectral tests all fail to reject. On the wide window, the edf lies

uniformly below the theoretical cdf, so the slope violation loses salience. The bispectral and

trispectral tests now fail to reject, whereas several of the monospectral tests reject at a 10%

level.

6.3 Tests of conditional coverage

In this section, we emphasize the role of the conditioning variable transformation h(P )

in revealing serial dependence in PIT-values. For parsimony, we consider only a subset

of the kernels used in the previous section. We include the binomial score kernel (BIN)
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Figure 3: Empirical distribution functions for select portfolios.
EDFs for narrow kernel window (upper panel) and wide kernel window (lower panel). The uniform cdf is
plotted as a dashed black line.
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as representative of the traditional test, the uniform kernel (ZU) as representative of the

continuous monospectral tests, and the (ZLL) as representative of the multispectral tests.

We fix k = 4 lags in the monospectral tests which corresponds to looking at dependencies

over a time horizon of one trading week. To facilitate comparison to the monospectral tests,

we fix (k1 = 4, k2 = 0) for the bispectral ZLL test.

Missing or spurious values may be especially troublesome in a test of conditional coverage

because a PIT value missing at time t introduces missing regressors at t+1, . . . , t+k. To avoid

losing the subsequent k observations, we replace missing or spurious Pt−ℓ with an inputed

value when computing the lagged vector ht−1. (As in the tests of unconditional coverage,

we do not impute missing Pt to backfill the dependent variables Wt, but simply drop these

observations.) Details of our imputation algorithm are found in the Online Supplement.

Table 8 presents p-values for the tests of conditional coverage. For portfolios Pf 105,

Pf 106 and Pf 108, forecast models are strongly rejected (always at the 1% level, and nearly

always at the 0.01% level) regardless of the choice of CVT or kernel; for brevity we drop

these portfolios from the table. For only a single portfolio (Pf 109), the forecast model is

never rejected. In the other six cases, choice of CVT and kernel matters.

For portfolios Pf 102 and Pf 110, the V.4 CVT generally leads to rejection at the 5% level,

whereas tests using the DQ CVT generally do not. The V.BIN and V.1⁄2 CVT are effective

in many cases, but appear less robust than V.4. This reflects the greater sensitivity of the

V.4 transformation to local spikes in market volatility. In the case of portfolio Pf 103, the

tests reject on the wide window except when using the DQ CVT.

For portfolios Pf 101 and Pf 104, variation in p-value across tests is driven primarily by

kernel choice, and in a manner consistent with the tests of unconditional coverage in Table

7. Thus, for these two portfolios, serial dependence in the PIT-values does not appear to be

the salient shortcoming in the forecast model.

In the case of Pf 107, the test statistic is undefined for the DQ CVT and its two-tailed

counterpart (V.BIN). As there were no observed violations in either tail (Pt < .01 or Pt >
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narrow window wide window

ID CVT BIN ZU ZLL ZU ZLL

101

DQ 0.0017 0.0002 0.0020 0.0342 0.0092
V.BIN 0.0084 0.0002 0.0009 0.0513 0.0115
V.4 0.0062 0.0003 0.0007 0.0921 0.0230
V.1⁄2 0.0658 0.0063 0.0078 0.1376 0.0301

102

DQ 0.0088 0.0975 0.1448 0.1873 0.1443
V.BIN 0.0119 0.4716 0.3441 0.0201 0.0147
V.4 0.0000 0.0086 0.0023 0.0003 0.0006
V.1⁄2 0.0000 0.0239 0.0111 0.0004 0.0005

103

DQ 0.7540 0.7429 0.8408 0.1787 0.1879
V.BIN 0.0773 0.0426 0.1331 0.0068 0.0149
V.4 0.3064 0.1372 0.2286 0.0074 0.0088
V.1⁄2 0.5209 0.4194 0.5181 0.0318 0.0276

104

DQ 0.8732 0.8501 0.5202 0.0295 0.0138
V.BIN 0.8700 0.8456 0.5167 0.0289 0.0135
V.4 0.3225 0.2013 0.1287 0.0034 0.0022
V.1⁄2 0.2085 0.0976 0.0689 0.0016 0.0011

107

DQ NA NA NA NA NA
V.BIN NA NA NA NA NA
V.4 0.1844 0.1071 0.1085 0.0001 0.0000
V.1⁄2 0.1844 0.1071 0.1085 0.0001 0.0000

109

DQ 0.9917 0.6351 0.0548 0.1465 0.1383
V.BIN 0.8041 0.7510 0.1179 0.4522 0.5170
V.4 0.8929 0.8603 0.2067 0.5578 0.6225
V.1⁄2 0.9313 0.6389 0.1327 0.4766 0.5266

110

DQ 0.2658 0.3058 0.4121 0.1661 0.1395
V.BIN 0.0041 0.0006 0.0009 0.0044 0.0108
V.4 0.0093 0.0008 0.0012 0.0100 0.0352
V.1⁄2 0.1403 0.0513 0.0840 0.1508 0.2823

Table 8: Tests of conditional coverage.
We report test p-values by portfolio, conditioning variable transformation, kernel window and kernel family.
The monospectral tests utilize k = 4 lags, and for the ZLL bispectral test we set (k1 = 4, k2 = 0). Narrow
kernel window is [0.985,0.995] and wide kernel window is [0.95,0.995]. Sample period is 2014-01-01 to
2016-12-31. Forecast models for Pf 105, Pf 106 and Pf 108 (not tabulated) are rejected at the 1% level for
all choices of CVT and kernel.
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.99), in both cases the matrix Σ̂Y in (15) is singular so cannot be inverted. This demonstrates

a practical limitation of a binary-valued CVT, as short samples may often contain no tail

values. Observe also that the backtest fails to reject for the remaining two CVT on the

narrow window, even though the forecast model for this portfolio is strongly rejected by the

unconditional tests. Since Pt < α1 = 0.985 for all t, Wt has a degenerate distribution in the

sample. In this situation, it may be shown that the conditional test statistic is invariant to

the CVT and to k and is equal to the unconditional test statistic. Recalling that the test

statistic has distribution χ2
1+k under the null hypothesis, we find that the p-value increases

with k. This explains why unconditional backtests may have greater power than conditional

backtests in situations where an overly conservative forecast model leads to degeneracy in

Wt.

7 Conclusion

The class of spectral backtests embeds many of the most widely used tests of unconditional

coverage and tests of conditional coverage, including the binomial likelihood ratio test of Ku-

piec (1995), the interval likelihood ratio test of Berkowitz (2001), and the dynamic quantile

test of Engle and Manganelli (2004). As we demonstrate with many examples, viewing these

tests in terms of the associated kernels facilitates the construction of new tests. From the

perspective of the practice of risk management, making explicit the choice of kernel measure

may help to discipline the backtesting process because the kernel directly expresses the user’s

priorities for model performance.

Different kernels are sensitive to different deviations from the null hypothesis. A tester

who only cares about systematic under- or overestimation of quantiles within a narrow range

is well served by a number of single kernels, discrete and continuous. A tester who wants

to ensure maximum fidelity of the forecast models to the true distributions across a wider

range of quantiles may worry more about slope violations (overestimation of quantiles at one
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end of a window and underestimation at the other). Such a tester may favor a multispectral

test. However, to promote a single “best” test from the spectral family would be contrary to

the philosophy of our contribution, and we refrain from doing so. The tester should reflect

on performance priorities and select her kernel accordingly.

Whereas most of the widely-used tests of unconditional coverage are LR-tests, our findings

suggest that Z-tests should be preferred in spectral backtesting. First, we show that Z-tests

perform at least as well as LR-tests in power and size over the range of backtest sample sizes

used in practice. Second, our Z-tests are much easier to implement and faster to run than

the LR-tests because the Z-test does not require estimation of a nesting model. Third, our

Z-test framework is parsimonious, in the sense that the unconditional Z-test is nested as a

special case within the broader class of conditional Z-test.

Finally, our results illustrate the value to regulators of access to bank-reported PIT-

values. Until recently, regulators effectively observed only a sequence of VaR exceedance

event indicators at a single level α, and therefore backtests were designed to take such data as

input. In some jurisdictions, including the United States, PIT-values have been collected for

some time. Besides enabling the formation of spectral test statistics, lagged PIT-values are

especially effective as conditioning variables in regression-based tests of conditional coverage.

A Proofs

A.1 Proof of Theorem 3.1

Since G1 and G2 are increasing, right-continuous distribution functions it follows that G∗(u) =

G1(u)G2(u) is also a distribution function corresponding to some probability measure. The

formula for G∗ is obtained by applying the integration-by-parts formula for the Lebesgue-

Stieltjes integral (Hewitt, 1960, Theorem A).
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A.2 Proof of Theorem 3.2

Let pt denote the realized value of Pt and wt,j = Gj(pt) the corresponding realized value of

Wt,j for t = 1, . . . , n and j = 1, 2. There are two cases to consider. Either pt occurs in an

interval where the right derrivative of Gj is 0 or in an interval where the right derivative

is positive. Let Gj denote the subset of [0, 1] consisting of all points for which the right

derivative of Gj equals zero.

If pt ∈ Gj then, by the right-continuity of Gj, pt must occur in an interval of the form

[at,j, bt,j) (if there is a jump in Gj at bt,j) or [at,j, bt,j] (if Gj is continuous at bt,j). In either

case the contribution of wt,j to the likelihood is

P (Wt,j = wt,j) = P (Gj(Pt) = Gj(pt)) = FP (bt,j)− FP (at,j) .

If Pt ̸∈ Gj then wt,j satisfies P(Wt,j ⩽ wt,j) = P(Pt ⩽ pt) and pt = G−1j (wt,j), the unique

inverse of Gj at wt,j. The contribution to the likelihood is a density contribution given by

fW (wt,j | θ) =
fP (pt | θ)
G′j(pt)

.

The general form of the realized likelihood given wj = (w1,j, . . . , wn,j)
′ is thus

LWj
(θ | wj) =

∏

pt∈Gj

(FP (bt,j)− FP (at,j))
∏

pt ̸∈Gj

fP (pt) | θ)
G′j(pt)

For the measures ν1 and ν2 the sets G1 and G2 may differ at most by a null set. Let us assume

that each realized point pt is either in both of the sets G1 and G2 or in neither of the sets.

If pt ∈ G1 and pt ∈ G2 then the agreement of the supports on (0, 1) implies that at,1 = at,2

and bt,1 = bt,2. Thus the likelihood contributions are identical.

If pt ̸∈ G1 and pt ̸∈ G2 then the likelihoods differ only by the scaling factor G′j(pt) which

does not involve the parameters θ. This factor will appear in the log-likelihood only as an

unimportant additive term and cancel out of the LR test statistic.
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It follows that the likelihoods LWj
(θ | wj) are maximized by the same values θ̂ and the

LR-test statistics are identical.

A.3 Proof of Theorem 4.1

Let Xt = (Xt,0, . . . , Xt,m)
′ be the (m + 1)-dimensional random vector with Xt,i = ✶{1′Wt=i}

for i = 0, . . . ,m. Under (4) Xt has a multinomial distribution satisfying E(Xt,i) = θi,

var(Xt,i) = θi(1− θi) and cov(Xt,i, Xt,j) = −θiθj for i ̸= j.

Now define Yt to be the m-dimensional random vector obtained from Xt by omitting the

first component. Then E(Yt) = θ = (θ1, . . . , θm)
′ and ΣY is the m×m submatrix of cov(Xt)

resulting from deletion of the first row and column. Let Y = n−1
∑n

t=1 Yt. A standard

approach to the asymptotics of the Pearson test is to show that

Sm =
m∑

i=0

(Oi − nθi)
2

nθi
=

m∑

i=0

(
∑n

t=1 Xt,i − nθi)
2

nθi
= n(Y − θ)′Σ−1Y (Y − θ), (A.1)

and hence to argue that Sm ∼ χ2
m in the limit as n → ∞ by the central limit theorem. It

remains to show that the right-hand side of (A.1) has the spectral test representation (6).

Let A be the m×m matrix with rows given by (e1−e2, e2−e3, . . . , em) where ei denotes

the ith unit vector. It may be easily verified that Yt = AWt, θ = AµW and ΣY = AΣWA′.

It follows that

n(W − µW )′Σ−1W (W − µW ) = n(Y − θ)′Σ−1Y (Y − θ) = Sm.

B Conditional bispectral Z-test

The conditional spectral Z-test generalizes to a conditional multispectral Z-test. In the

bispectral case, we construct two sets of transformed reported PIT-values (Wt,1,Wt,2) for
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t = 1, . . . , n, and form the vector Yt of length k1 + k2 + 2 given by

Yt =
(
h′t−1,1(Wt,1 − µW,1),h

′
t−1,2(Wt,2 − µW,2)

)′
, (B.1)

where µW,i is the mean of Wt,i under the null hypothesis and ht−1,i = (1, hi(Pt−1), . . . , hi(Pt−ki))
′.

Parallel to the univariate case, let Y n,k = (n − k)−1
∑n

t=k+1 Yt for k = k1 ∨ k2, and let Σ̂Y

denote a consistent estimator of ΣY := cov(Yt). By the theory of Giacomini and White

(2006), for n large and (k1, k2) fixed,

(n− k) Y
′

n,k Σ̂
−1
Y Y n,k ∼ χ2

k1+k2+2. (B.2)

Under the null hypothesis ΣY = AW ◦H, where ◦ denotes element-by-element multipli-

cation (Hadamard product). The matrices are

H =



E
(
ht−1,1h

′
t−1,1

)
E
(
ht−1,1h

′
t−1,2

)

E
(
ht−1,2h

′
t−1,1

)
E
(
ht−1,2h

′
t−1,2

)


 , AW =




σ2
W,1Jk1+1,k1+1 σW,12Jk1+1,k2+1

σW,12Jk2+1,k1+1 σ2
W,2Jk2+1,k2+1




(B.3)

where Jm,n denotes the m×n matrix of ones and σW,12 = E ((Wt,1 − µW,1)(Wt,2 − µW,2)). To

estimate ΣY we generalize (15) by setting

Σ̂Y = (n− (k1 ∨ k2))
−1Aw ◦

n∑

t=(k1∨k2)+1

(h′t−1,1,h
′
t−1,2)

′(h′t−1,1,h
′
t−1,2). (B.4)
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Abstract

We elaborate on certain results in our paper published in Journal of Banking and

Finance. To avoid confusion with references to tables, figures and equations in the main

paper, we prepend “S” when numbering tables, figures and equations contained in this

supplement.

Code

All Z-tests described below are implemented in the spectralBacktest package for R.

It is available for download at https://github.com/ajmcneil/spectralBacktest.
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S.A Moments for the beta kernel

We provide a general solution to the moments and cross-moments of the transformed PIT

values when the kernel densities take the form

gν(u) =
(u− α1)

a−1(α2 − u)b−1

(α2 − α1)a+b−1B(a, b)

for parameters (a > 0, b > 0) and α1 ⩽ u ⩽ α2. The normalization guarantees that

Gν(α2) = 1, and helps align the solution with standard beta distribution functions provided

by statistical packages. In R notation, the kernel function is simply

Gν(u) = pbeta

(

max{α1,min{u, α2}} − α1

α2 − α1

, a, b

)

.

Solving for moments and cross-moments of kernels (g1(P ), g2(P )) for uniform P involves

the following integral:

M(a1, b1, a2, b2) =

∫ α2

α1

(1− u)g1(u)G2(u)du

=
B(a1 + a2, 1 + b1)

a2B(a1, b1)B(a2, b2)
3F2(a2, a1 + a2, 1− b2; 1 + a2, 1 + a1 + a2 + b1; 1)

=
B(a1 + a2, 1 + b1 + b2)

a2B(a1, b1)B(a2, b2)
3F2(1, a1 + a2, a2 + b2; 1 + a2, 1 + a1 + a2 + b1 + b2; 1) (S.1)

where 3F2(c1, c2, c3; d1, d2; 1) denotes a hypergeometric function of order (3, 2) and argument

unity. The final line follows from the Thomae transformation T7 in Milgram (2010, Appendix

A). Due to the normalization of the kernels, M does not depend on the choice of kernel

window.

When its parameters are all positive, as in the final form in (S.1), numerical solution to

3F2(c1, c2, c3; d1, d2; 1) is straightforward via the standard hypergeometric series expansion.

In practice, we are most often interested in integer-valued cases for which M has a simple

closed-form solution.

For given kernel window and PIT value, let Wa,b be the transformed PIT value under

a beta kernel with parameters (a, b). A recurrence rule for the incomplete beta function

(Abramowitz and Stegun, 1965, eq. 6.6.7) leads to a linear relationship among “neighboring”

transformations:

(a+ b)Wa,b = aWa+1,b + bWa,b+1 (S.2)

An immediate implication is that the uniform, linear increasing and linear decreasing trans-
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formations (parameter sets (1,1), (2,1) and (1,2), respectively) are linearly dependent. Any

pair of these kernels would yield an equivalent bispectral test, and a trispectral test using

all three kernels would be undefined due to a singular covariance matrix ΣW . By iterating

the recurrence relationship, we can derive linear relationships among sets of kernels with

integer-valued parameter differences ai − aℓ and bi − bℓ, which would lead to redundancies

among the corresponding j-spectral tests.

S.B Backtest sample size in the test of unconditional cov-

erage

In this appendix, we explore the effect of backtest sample size n on the size and power

of unconditional Z-tests and LR-tests. Our purpose is to demonstate that the findings

of Section 4.3 of the main paper are robust to the choice of n. Recall that the baseline

sample size is n = 750, which corresponds approximately to a three-year sample of bank

data. Here we consider n = 250 (one year) and n = 500 (two years) as well. All mnemonic

kernel identifiers are as defined in the main paper.

We report in Table S.1 the percentage of rejections of the null hypothesis at the 5%

confidence level based on 2
16

= 65,536 replications. The bottom panel, for n = 750, repli-

cates Table 2 in the main paper. Comparing to the results for n = 250 (upper panel) and

n = 500 (middle panel), we confirm that size and power improve as n increases, as one

would expect. Comparing across columns, we find that the qualitative description of results

in Section 4.3 holds for each value of n.

In Table S.2, we compare the size and power of LR-tests against Z-test counterparts.

The bottom panel, for n = 750, replicates Table 3 in the main paper. Whereas for n = 750

the three-point multinomial LR-test is most oversized, for n = 250 and n = 500 it is the

one-point Kupiec (1995) LR-test (LR1) that is most oversized. When the true model F is

the scaled t5, the Z-tests in each case offer greater power than the corresponding LR-test

with a minor exception for the BIN vs. LR1 comparison under n = 500. When the true

model F is the scaled t3, the Z-tests typically offer more power than the LR-tests on the

narrow window but less power on the wide window.
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Monospectral Bispectral Trispectral

window F | kernel BIN ZU3 ZU ZA ZE ZL+ ZL
−

PE2 ZLL ZPP PE3 ZPUP

n = 250

narrow Normal 4.1 4.2 3.9 3.9 3.9 4.1 3.7 6.1 5.3 5.2 5.0 6.0
Scaled t5 17.4 19.6 18.5 18.9 18.0 22.0 14.6 27.3 20.9 22.6 18.0 19.6
Scaled t3 13.4 15.3 14.3 14.7 13.8 19.2 9.7 27.2 20.8 23.4 17.5 19.1

wide Normal 4.1 4.4 4.8 4.8 4.8 4.7 4.8 6.2 4.8 5.0 5.2 5.3
Scaled t5 17.4 8.1 5.9 6.3 5.7 8.9 4.9 32.0 17.2 25.6 23.0 20.9
Scaled t3 13.4 9.1 7.7 9.1 6.8 6.3 10.9 49.7 30.2 42.7 36.1 31.3

n = 500

narrow Normal 3.9 4.6 4.6 4.6 4.5 4.6 4.6 3.8 4.7 4.7 5.4 5.4
Scaled t5 22.1 27.1 26.5 26.9 25.7 31.5 21.6 31.7 30.2 33.1 30.9 30.0
Scaled t3 15.9 20.2 19.6 20.1 18.7 26.4 14.0 35.3 31.0 35.7 31.8 30.5

wide Normal 3.9 4.7 4.9 4.9 4.8 4.7 4.9 4.5 4.8 4.8 5.1 4.9
Scaled t5 22.1 9.7 6.3 6.5 6.0 10.6 5.4 44.2 31.3 43.3 40.3 36.6
Scaled t3 15.9 11.3 12.8 14.8 11.1 6.8 21.5 78.9 64.9 77.5 70.9 67.7

n = 750

narrow Normal 6.1 4.9 4.7 4.7 4.7 4.6 4.8 4.8 4.8 4.8 5.3 5.2
Scaled t5 33.9 35.0 33.8 34.4 33.0 40.3 27.1 44.0 40.0 45.3 40.3 39.3
Scaled t3 24.0 24.8 23.9 24.3 23.3 32.7 16.5 50.7 43.3 50.9 43.4 42.7

wide Normal 6.1 5.0 4.9 4.9 4.9 4.9 4.9 4.8 5.0 4.9 5.1 5.0
Scaled t5 33.9 10.7 6.4 6.6 6.1 11.9 5.8 60.7 45.1 59.2 55.5 51.8
Scaled t3 24.0 13.5 17.7 20.4 15.4 7.4 31.9 94.0 85.8 93.0 90.6 88.4

Table S.1: Estimated size and power of unconditional Z-tests.
We report the percentage of rejections of the null hypothesis at the 5% confidence level based on
2
16

= 65,536 replications. The narrow window is [0.985, 0.995] and the wide window is [0.95, 0.995].
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window F | test BIN LR1 PE2 LR2 PE3 LR3 ZPP LRB

n = 250

narrow Normal 4.1 9.3 6.1 5.7 5.0 3.2 5.2 7.0
Scaled t5 17.4 10.6 27.3 17.9 18.0 13.5 22.6 17.8
Scaled t3 13.4 9.0 27.2 22.5 17.5 15.1 23.4 22.5

wide Normal 4.1 9.3 6.2 4.6 5.2 4.2 5.0 5.7
Scaled t5 17.4 10.6 32.0 24.5 23.0 19.6 25.6 24.0
Scaled t3 13.4 9.0 49.7 53.1 36.1 43.6 42.7 52.2

n = 500

narrow Normal 3.9 7.0 3.8 5.6 5.4 5.9 4.7 5.8
Scaled t5 22.1 22.5 31.7 25.4 30.9 25.6 33.1 26.9
Scaled t3 15.9 16.5 35.3 33.3 31.8 33.0 35.7 35.3

wide Normal 3.9 7.0 4.5 6.1 5.1 6.0 4.8 5.2
Scaled t5 22.1 22.5 44.2 41.1 40.3 38.2 43.3 41.3
Scaled t3 15.9 16.5 78.9 82.4 70.9 78.1 77.5 82.5

n = 750

narrow Normal 6.1 4.1 4.8 6.3 5.3 8.2 4.8 5.5
Scaled t5 33.9 24.0 44.0 36.5 40.3 34.3 45.3 37.6
Scaled t3 24.0 16.1 50.7 47.7 43.4 46.5 50.9 49.2

wide Normal 6.1 4.1 4.8 5.9 5.1 7.3 4.9 5.1
Scaled t5 33.9 24.0 60.7 57.1 55.5 53.0 59.2 57.7
Scaled t3 24.0 16.1 94.0 94.8 90.6 93.0 93.0 95.0

Table S.2: Estimated size and power of unconditional Z-tests and LR-tests.
We report the percentage of rejections of the null hypothesis at the 5% confidence level based on
2
16

= 65,536 replications. The narrow window is [0.985, 0.995] and the wide window is [0.95, 0.995].
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S.C A regression derivation of the conditional spectral

Z-test

Consider the regression model

Wt − µW = β′ht−1 + ϵt, t = k + 1, . . . , n.

The least squares estimator of β is β̂ = X ′(W − µW1) where X is the (n − k) × (k + 1)

matrix whose rows are given by ht−1 for t = k+1, . . . , n, W = (Wk+1, . . . ,Wn)
′ and 1 is the

(n− k)-vector of ones. Moreover, under the usual assumptions of time series regression (see,

for example, Hayashi (2000)) β̂ is asymptotically normal with covariance matrix σ2
W (X ′X)−1.

Under our null hypothesis β = 0 and µW and σ2
W are known and a test may be based on

the statistic

σ−2

W (W − µW1)′X(X ′X)−1X ′(W − µW1) ∼ χ2

k+1 .

This may be shown to be identical to (14) on observing that Y n,k = (n−k)−1X ′(W −µW1)

and Σ̂Y = σ2
W (n− k)−1X ′X.

S.D Size and power of tests of conditional coverage

In this appendix, we explore the effect of kernel choice and true model F on the size and

power of MD-tests of conditional coverage. Our purpose is to demonstate that the findings

of Section 5.2 of the main paper are robust. The CVT choices are defined in Table 4 in the

main paper. Note that when CVT takes the value None, the test is an unconditional test.

Table S.3 estimates the size of the tests when samples are uniformly distributed and

serially independent. The same messages emerge as in the excerpt in Section 5.2: when

the CVT is DQ or V.BIN the tests are quite badly oversized, particularly for the former;

choosing V.4 or V.1⁄2 as CVT substantially mitigates (but does not eliminate) oversizing.

Table S.4 is an examination of power for the same kernels and CVT functions. The aim

of the underlying simulation is to produce pseudo PIT values that are (i) serially dependent

with a dependence structure that is typical when stochastic volatility in the data is ignored

and (ii) possibly non-uniform with the same distributions used for the unconditional tests.

The data generating process used is a VT-ARMA(1,1) model as described in McNeil (2020).

This process is designed to mimic the behavior of volatile financial return series, such as

daily log-returns on a stock index, and may be motivated as follows.

Given empirical loss data L1, . . . , Ln, suppose we form a version of the empirical cdf

by taking Fn(x) = (n + 1)−1
∑n

t=1
✶{Lt⩽x} and we use this to construct data Ût = Fn(Lt).
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Monospectral Bispectral

window CVT | kernel BIN ZU ZL+ ZL
−

ZLL ZPP

narrow None 6.2 4.8 4.6 4.9 4.9 4.9
DQ 13.3 14.4 16.0 11.5 11.8 14.2
V.BIN 8.0 9.0 10.4 8.4 8.5 14.6
V.4 6.8 6.7 7.2 6.4 6.6 7.9
V.1⁄2 6.7 6.7 7.0 6.4 6.6 7.7

wide None 6.2 4.9 5.0 4.9 4.9 4.8
DQ 13.3 8.5 9.2 8.3 8.3 14.8
V.BIN 8.0 7.3 8.1 7.0 6.9 12.1
V.4 6.8 5.3 5.6 5.2 5.3 7.4
V.1⁄2 6.7 5.5 5.7 5.3 5.5 7.3

Table S.3: Estimated size of tests of conditional coverage.
Replications = 65,536. The number of days in the backtest sample is n = 750. The narrow window is
[0.985, 0.995] and the wide window is [0.95, 0.995].

The transformed returns (Ût) are close to uniformly distributed in the open interval (0, 1)

and show negligible serial correlation. However, under the v-shaped transformation V (u) =

|2u − 1|, we obtain data (V (Ût)) which remain approximately uniformly distributed but

show strong serial correlation. For simplicity, assume n is even, as this guarantees that

the transformed data (V (Ût)) are in the open interval (0, 1).1 Now consider applying the

normal quantile function Φ−1 to the transformed data to get values that are approximately

standard normally distributed. The net effect of these three transformations is described by

the function Tn(l) = Φ−1(V (Fn(l))). If we fit Gaussian ARMA models to the transformed

data (Tn(Lt)) we often find that an ARMA(1,1) process fits well and typical values for the

AR and MA parameters are around 0.95 and -0.85.

A VT-ARMA(1,1) process (Lt) with marginal distribution F is a stochastic process that

mimics this behavior. If we define T (l) = Φ−1(V (F (l))), then the transformed process

(T (Lt)) is an ARMA(1,1) process. Such a process is straightforward to construct as shown

in McNeil (2020). In Table S.4 we simulate VT-ARMA(1,1) processes with different marginal

distributions F but the same underlying ARMA(1,1) serial dependence structure with AR

parameter 0.95 and MA parameter -0.85 under the transformation T . As for the uncondi-

tional tests, pseudo PIT values are obtained by the transformation Pt = Φ(Lt).

In Table S.4 we observe that there is generally a very large increase in power when we

move from the unconditional tests (CVT = None) to the conditional tests. This is evident

even when the distribution of the simulated data is uniform (F = Normal). The most

1To cover the case where n is odd we can use the transformation Vn(u) = |2u− 1|+ ✶{n is odd}/(n+ 1).
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powerful tests are bispectral tests applied to the wider window using the CVT functions V.4

and V.1⁄2.2

S.E Identification of spurious PIT values

Consider a stylized Gaussian model in which loss is given by Lt = σt−1Zt, where (Zt) is an iid

sequence of standard normal random variables and volatility σt−1 is Ft−1-measurable. Time

variation in σt may arise from stochastic volatility or from changes over time in portfolio

composition. Suppose that the risk-manager knows the true underlying distribution and

the volatility. The risk-manager’s ideal value-at-risk forecast at α = 0.99 is then V̂aRt =

Φ−1(0.99)σt−1, where Φ is the standard normal cdf. We do not observe σt−1, but from

observing Lt and V̂aRt, we can back out the realized value of Zt as

Zt = Φ−1(0.99)× Lt/V̂aRt. (S.3)

Furthermore, the PIT values can be expressed as

Pt = F̂t−1(Lt) = Φ(Lt/σt−1) = Φ(Zt). (S.4)

In general, we would not expect the Zt to be Gaussian, so (S.4) will not hold. However,

so long as (Zt) is iid, there will still be a monotonic relationship between Zt (as defined

by (S.3)) and Pt. We find that the predicted relationship holds qualitatively for all bank-

reported portfolios, but with more noise in some portfolios than in others. This suggests

that we can use violations of monotonicity to identify spurious PIT values, but the threshold

for identification must vary across portfolios.

Let H(z; θi) : R → [0, 1] be a family of fitting functions with parameter θi for portfolio i,

and replace (S.4) by

Pi,t = H(Zi,t; θi) + ϵi,t (S.5)

where the ϵi,t are white-noise residuals. Since the H function should be increasing, it is

convenient to take H to be a cdf, even though it does not have a statistical interpretation

in our context. For convenience, we take H to be the normal cdf with unrestricted (µi, σi)

as θi.

For each portfolio i, we proceed as follows:

2The only exception to these observations is the case of the bispectral tests on the wide window kernel

when the true model is the scaled t3 distribution. In this case, the unconditional test is already so powerful

that the presence of additional moments in the conditional test tends to dilute the test.
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Monospectral Bispectral

window F CVT | kernel BIN ZU ZL+ ZL
−

ZLL ZPP

narrow Normal None 12.1 10.8 10.0 11.2 9.1 9.4
DQ 30.0 31.5 32.0 29.4 29.1 28.7
V.BIN 28.1 30.9 31.8 30.2 29.5 34.0
V.4 30.3 32.6 30.7 33.6 32.3 26.3
V.1⁄2 19.3 21.7 19.9 22.5 22.0 16.1

Scaled t5 None 36.0 36.2 40.9 31.4 41.2 45.6
DQ 47.4 54.9 59.7 46.1 53.4 59.1
V.BIN 48.4 52.7 56.8 49.5 54.7 64.3
V.4 56.4 60.7 63.1 57.2 61.1 65.6
V.1⁄2 49.6 54.5 57.3 50.5 55.6 59.9

Scaled t3 None 28.1 28.3 35.0 22.2 44.1 50.8
DQ 42.2 50.4 56.1 39.7 53.3 57.4
V.BIN 42.5 47.3 53.5 42.6 53.3 67.0
V.4 50.1 54.8 58.9 49.7 58.8 67.5
V.1⁄2 44.1 49.5 54.1 43.7 54.2 63.5

wide Normal None 12.1 17.8 15.9 18.3 14.6 15.2
DQ 30.0 31.1 30.1 31.6 30.4 30.9
V.BIN 28.1 36.0 34.5 36.2 34.6 34.4
V.4 30.3 52.1 46.4 54.1 51.2 30.7
V.1⁄2 19.3 44.9 36.9 48.0 44.7 20.2

Scaled t5 None 36.0 19.5 22.3 19.2 52.9 65.3
DQ 47.4 35.4 38.9 31.5 49.8 63.8
V.BIN 48.4 41.0 45.3 37.7 55.1 70.5
V.4 56.4 55.2 56.7 52.8 67.2 74.8
V.1⁄2 49.6 51.1 51.4 49.2 65.7 71.0

Scaled t3 None 28.1 28.4 18.5 39.3 87.6 93.9
DQ 42.2 32.8 32.6 34.2 71.1 79.7
V.BIN 42.5 38.8 38.7 40.1 75.3 87.6
V.4 50.1 50.7 48.4 52.7 82.5 91.5
V.1⁄2 44.1 48.1 43.4 51.2 83.6 91.0

Table S.4: Estimated power of tests of conditional coverage when DGP is a VT-ARMA(1,1) model.
Replications = 65,536. The number of days in the backtest sample is n = 750. The narrow window is
[0.985, 0.995] and the wide window is [0.95, 0.995].
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1. Fit θi by nonlinear least squares, and construct residuals ϵit = Pit −H(Zit; θ̂i).

2. The (ϵit) are bounded in the open interval (−1, 1), because H(Zit) does not produce

boundary values. We model ϵit as drawn from a rescaled beta distribution on (−1, 1)

with parameters (a = τi/2, b = τi/2). This distribution has mean zero and variance

1/(τi + 1), so we simply fit τi to the variance of the regression residuals.

3. Let B(ϵ; τ̂i) be the fitted beta distribution. We flag an observation Pit as spurious

whenever B(ϵit; τ̂i) < q/2 or B(ϵit; τ̂i) > 1− q/2, where q is a tolerance parameter.

4. We reestimate τi as in step 3 on a sample that excludes the spurious observations.

Repeat step 4 with the updated τ̂i. An observation is flagged as spurious if it is

rejected in either round of estimation.

In our baseline procedure, we set the tolerance parameter to q = 10−5, which is intended

to flag only the most egregious inconsistencies between Pit and the pair (Lit, V̂aRit). A

typical case involves a PIT value very close to zero or one associated with a modest P&L

such that |Lit| < V̂aRit. Setting q = 0 is equivalent to shutting down the identification of

spurious values.

The procedure yields imputed PIT values as P̂it = H(Zit; θ̂i). As noted in Section 6.3,

we use the imputed values to fill in for spurious values in forming regressors in the tests of

conditional coverage.
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