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Abstract

Despite many decades of study the physical origin of ‘dark matter’ (DM) in

the Universe remains elusive. In this letter we calculate the properties of a

completely new DM candidate—Bose–Einstein condensates formed from a

recently discovered bosonic particle in the light-quark sector, the d 2380*( )

hexaquark. In this first study, we show stable *d 2380( ) Bose–Einstein con-

densates could form in the primordial early universe, with a production rate

sufficiently large that they are a plausible new candidate for DM. Some

possible astronomical signatures of such DM are also presented.

Keywords: dark matter, BEC, hexaquarks

(Some figures may appear in colour only in the online journal)

1. Introduction

The physical origin of dark matter (DM) in the Universe is one of the key unsolved questions

for physics and astronomy. There is strong indirect evidence for the existence of such matter

[1] from measurements of cosmic primordial radiation, anomalies in the radial dependence of

galactic rotational curves and gravitational lensing. Despite its apparently pivotal role in the

Universe the physical origin of DM remains unknown, with significant research focused on

beyond standard model (yet currently undiscovered) particles such as axions, sterile neutrinos

and weakly interacting massive particles (WIMPs) [1]. Recent advances in experimental

searches have now eliminated significant fractions of the parameter space for WIMP candi-

dates and the initial motivation as a full solution to the DM problem appears weaker. For
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example, the upper abundance limits derived from the latest direct detection WIMP searches

[2] appear incompatible with many of the supersymmetric WIMP DM models.

As well as the exotic searches described above the possibility of DM deriving from light-

quark ingredients remains appealing as the mass of the ‘remaining’ visible matter in the

Universe is predominantly in this form, albeit mainly as fermionic (half-integer spin) con-

figurations of light u, d quarks such as the protons and neutrons within atomic nuclei. The

possibility for additional bosonic (integer-spin) forms of light-quark matter have been

investigated, particularly six-quark (hexaquark) systems such as the double-strange quark

containing ‘H-dibaryon’ [3]. However, despite recent ongoing work [4] such postulates went

out of favour as a H-dibaryon with the desired properties for a significant contribution to DM

was ruled out experimentally.

In this letter we present a new possibility for light-quark based DM, motivated by the

recent discovery of the d*(2380) hexaquark. The properties of the d*(2380) have been

established in recent years following its first experimental observation [5–13]. It has a mass of

=M 2380 MeVd* , vacuum width Γ=70MeV and quantum numbers I(JP)=0(3+) and

made of six light quarks; 3 u-quarks and 3 d-quarks. The spins of the quarks are aligned and

QCD based approaches, such as Chiral quark models, predict a highly compact structure,

smaller than a single proton [14]. It therefore offers a completely new bosonic and isoscalar

configuration into which light-quark matter can form.

In this letter we present the first estimates of the stability, properties and primordial

production rates of a d*(2380)-BEC, employing a range of simple theoretical ansatz and

physically motivated assumptions based on our current knowledge of the d*(2380) and its

interaction. We discuss how charge-neutral bound systems based on a d*(2380)-BEC core are

a new DM candidate and outline potential astronomical signatures that would arise from such

systems.

2. Estimates of d*(2380)-BEC stability

To estimate the stability of the d*(2380)-condensate we take ansatz used previously in the

evaluation of BEC properties and adapt these for the case of the d*(2380). The simplest such

approach for BECs is a modified liquid drop model. For a standard isospin symmetric nucleus

the liquid drop model gives the nuclear binding energy, BLD, per nucleon as

= - -
-

B A a a
A

a
Z Z

A

1 1
, 1v s cLD 1 3 4 3

· ·
( )

( )

where A is the mass number, Z the proton number, av the volume coefficient, as the surface

coefficient and ac the Coulomb coefficient.

To model a BEC the terms in the drop model need to be modified for bosonic rather than

nucleonic constituents. We follow the ansatz used for the modelling of other bosonic con-

densate systems, such as linear chain α particle condensates [15]. The surface term is assumed

obsolete; in a BEC all constituents have a common wavefunction forming a single object with

binding independent of radial position. This also influences the form of the volume term; the

equivalent interactions between all BEC constituents give a proportionality to A(A− 1), in

contrast to nuclear matter, where the dominance of nearest neighbour interactions produces a

proportionality of binding with A. The lack of surface effects in a BEC also influences the

form of the Coulomb term, as it is then energetically favourable for the condensates to form a

linear chain (where the Coulomb repulsion is minimised), rather than a sphere as assumed in

equation (1). Based on these modifications the drop model then gives the binding energy per
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d*(2380) (B/D) in a linear (lin) and spherical (sph) BEC configurations as:

r
r
r
r

= ¢ - - ¢ - ¢ =
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3

· ( ) ·
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· ( ) ·
( )

( ) · ( )
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where D is the number of d*(2380), ρ is the average condensate density and ρ0 is nuclear

matter density. The coefficients ¢av and ¢ac determine the relative strengths of the attractive

volume and the repulsive Coulomb terms (see appendix A). The magnitude of these

coefficients for the case of a BEC will be dictated by the average relative separations of the

constituents and the strength of the strong interactions between them. The isoscalar nature of

the d*(2380) interaction gives expectation of a force somewhat weaker than the isovector

N–N interaction. This is already established for the analogous (isoscalar) Λ–Λ hyperon

interaction, where the scattering length is an order of magnitude weaker than the

corresponding N–N. Recent calculations of the range of the d d* *– interaction [16]2 also

indicate an interaction of smaller magnitude and shorter range. We take ¢av over all values

from 0 up to the NN limit of 30MeV to to explore the sensitivity of the condensate properties

to the detailed nature of the d*(2380) interaction. We note that assuming an interaction

strength scaled from the ΛΛ-case, and consistent with recent d d* * interaction calculations,

would give ¢av of order ∼1MeV. As shown in equations (2), the size of ¢ac has a weak

dependence on matter density. The range of ¢ac covers densities up to ρ=10ρ0, reflecting the

expected shorter range of the interaction compared to the NN case. However, as will be

shown the results are rather insensitive to ¢ac over this wide range of densities. Experiments on

d*(2380) production in the nuclear medium, will help to determine the strength of the

d*(2380) interactions. Such experiments are planned to be done at CB@MAMI, JLab and

could be performed at several other facilities, like FAIR@GSI. An exploratory study was also

performed at WASA [17].

Figure 1 shows a plot of the predicted binding energy of the d*(2380)-BEC as a function

of d*(2380) multiplicity and ¢av . The results provide an indicative parameter space for a bound

d*(2380)-BEC, defining regions where the energy required to form the d*(2380) from

nucleons is exceeded by the binding energy available in forming the d*(2380)-BEC. For the

range of ¢av calculated (corresponding to a range of potential attractive/repulsive d*-forces)

the minimum multiplicity threshold for a stable d*(2380)-condensate ranges from the order of

hundreds (mass in the TeV range) to the order of millions. For the previously motivated value

of ¢ ~a 1 MeVv a multiplicity threshold of around 1000 d
*
(2380) is predicted for a stable

condensate. Ongoing experimental programmes aiming to better determine the d*(2380)

interaction in nuclear matter may allow tighter constraints on this multiplicity threshold. The

small relative contribution of the Coulomb term compared to the volume term means the

conclusions are rather insensitive to the adopted value of ¢ac or to the assumption of a linear-

chain configuration. The latter point is illustrated in figure 1 where the bound threshold for a

spherical condensate is also presented for 3 values of condensate density, ρ=3, 5 and 10ρ0.

2
Due to the isoscalar nature of the d

*
(2380), isovector meson exchanges (e.g. π, ρ) are excluded and higher mass

meson exchanges (e.g. η, η′ mesons) are known to have weak coupling. Therefore, estimates based on a modified NN

potential, accounting for the higher d*(2380) mass and assuming a dominance from the remaining σ-meson (scalar-

isoscalar two-pion exchange) and ω-meson exchange in the interaction and a meson-d*(2380) coupling a factor 2

larger than meson-N coupling to account for the six-quark rather than three-quark systems. This results in a force

showing suppression of longer range interactions and strong short range attraction with even stronger shorter range

repulsion. The detailed calculations will be published in a forthcoming paper [16].
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Significant deviations from the linear-chain configuration calculation,are only visible for

regions where ¢av is small.

In order to give further validity to the results, we can check for consistency with other

theoretical ansatz employed in BEC studies. The d*(2380)-BEC proposed here is in somewhat

analogous to the (few-particle) α-BEC attributed [18, 19] to the Hoyle states in 12C and 8Be.

Predictions in the Gross–Pitaevskii formalism (GPF) for a dilute isoscalar Nα-boson BEC

give predicted scalings of binding energy with multiplicity consistent with those in

equation (2) (the GPF formalism gives total kinetic energy T∝(N− 1) and two-body

potential energy V∝N(N− 1)/2).
Estimates of upper limits of d*(2380)-BEC stability can be obtained from recent generic

formulations for the properties of BEC formed from fundamental particles, which additionally

include gravitational binding. For a recent overview on self-interacting BEC DM see e.g.

[20]. The maximum BEC mass for an attractive condensate is = 
M

a Gm
max

∣ ∣
, [20], where a

is the scattering length, m is the particle mass and G is the gravitational constant. Using

=M 2.38 GeVd* and ~a 1∣ ∣ fm gives Mmax∼10
17GeV, corresponding to a d*(2380)-BEC

having size and mass limits of order Angstroms and grams, respectively, characteristic DM

scales well studied for the analogous ‘WIMPzilla’ scenarios [21].

3. Quantification of primordial production

For d*(2380)-BECs to be a plausible new DM candidate then a site with the potential to

produce sufficient quantities should be established. An estimate of d*(2380)-BEC primordial

production in the early universe can be obtained from thermodynamic considerations and in

our estimates we follow the methodology outlined in [22]. The most significant primordial

production would be expected during the transition from quark-gluon plasma (QGP) to

Figure 1. The d*(2380) binding energy (z-axis) presented as a function of the

multiplicity and the magnitude of ¢av (see text). The binding energy contours are shown

from 500MeV unbound (red) to 500 MeV bound (dark violet) in intervals of
100MeV. Unbound regions are identified by the hatching. Solid line correspond to the
bound threshold for linear condensates, assuming ρ=5rho0, while dotted, short-

dashed and long-dashed lines represent spherical condensate bound thresholds with ¢ac
corresponding to ρ=3, 5 and 10ρ0, respectively. Note the double-logarithmic scale.
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hadrons and this was estimated as a function of decoupling temperature and d*(2380)-BEC

binding energy per baryon (or equivalently its mass) (see appendix A). The predicted pri-

mordial abundance of d*(2380)-BEC as a ratio to conventional baryonic matter is presented as

a function of these quantities in figure 2. It is clear that for a wide range of (feasible) d*(2380)-

BEC binding energies the predicted primordial abundance greatly exceeds that of standard

baryonic matter. At the decoupling temperature of the QGP to hadrons (∼155MeV) very

significant primordial production of d*(2380)-BEC is evident for a wide range of binding

energies. Also displayed on the figure is the experimentally determined constraint on the DM

fraction in the Universe; ΩDM/Ωbaryon=5.3±0.1. Assuming dominant freeze out close to

the temperature of the QGP phase transition (∼155 MeV), and taking the limit where all

observed DM arises from d*(2380)-BECs, would necessitate a binding energy of order

∼200MeV (see figure 1 for the corresponding constraints on condensate multiplicities). This

could be reduced even further if condensate formation would also be possible at lower

decoupling temperatures in the hadronic phase, for example through «pn d 2380*( )

processes.

The concept of a new, light-quark QCD inspired DM candidate produced near the QGP

phase transition is also interesting due to the recently proposed separation of quarks and

antiquarks at freezeout [24]. The signatures of such CP violating effects are searched for in a

number of ongoing heavy-ion beam experimental programmes. If this is confirmed, the

possibility for a preferential formation of antimatter d 2380*¯ ( )-BECs is worthy of further study

due to the possibility to ‘hide’ primordially produced antimatter in the form of a BEC.

4. Potential astronomical signatures

The theoretical estimates for d*(2380)-BEC formation indicate it could be a plausible new

light-quark based DM candidate. As creating the necessary d*(2380) multiplicities and

densities for BEC formation (see section 2) is out of the reach of currently conceivable

experimental facilities, then confirmation of the existence of d*(2380)-BECs relies on

Figure 2. The primordial production of d*(2380)-BEC (expressed as a ratio to baryon

matter) calculated as a function of binding energy per baryon, B̂(see appendix B for
details) and decoupling temperature. The red line shows the loci corresponding to the
current experimental determination of the dark matter to matter ratio [23].
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astrophysical signatures. In this section we employ our current knowledge of the d*(2380)ʼs

properties to identify possible features that could be incorporated in future DM searches.

As discussed in section 2 our results indicate d*(2380)-BEC have a formation threshold

of around ∼1000 constituents if the d*−d* interaction scales simply from the nucleon–

nucleon case, or a threshold of many millions if the d*−d* interaction is weaker. The upper

d*(2380)-BEC multiplicity limits (for the assumed attractive d*−d* interaction) correspond to

masses at the gram scale. Such d*(2380)-BEC ‘nuclei’ would posses a very large positive

charge. As discussed in section 2 the expected absence of such a surface effect in the

d*(2380)-BEC favours ‘chain-state’ structures, in which the Coulomb repulsion between

constituents is minimised. Such behaviour is already observed for the analogous α-BEC

‘chain states’ in light nuclei [15]. Neutral atomic systems may form around the d*(2380)-

BEC, but the equivalent atomic number would be well in excess of standard atoms. Calcu-

lations of, and subsequent searches for, atomic line series from such high-Z, extended

structures may provide one route to the observation of d*(2380)-BECs, if transitions in the

d*(2380)-BEC atomic series are distinguishable from, and inconsistent with, known atoms.

With recent advances in x-ray telescopes anomalous transitions are already being identi-

fied [25].

However, if larger mass and therefore highly-charged d*(2380)-BEC form, the bound

electrons (and muons if the Fermi momentum is sufficiently high) may have such confined

radii that the structure tends towards mixed hadronic and leptonic matter. Such heavy ‘atoms’

would have a net zero charge while being gravitationally weak. Therefore observation

through standard astronomical methods based on atomic electromagnetic signatures may be

challenging or impossible.

The direct observation of decays products from a d*(2380)-BEC are likely to be the

clearest experimental signature. Condensate breaking would require an energy transfer to the

condensate (e.g. via cosmic ray interactions) greater than the gap between the condensed and

non-condensed states. Figure 3 shows the expected yield of reaction products from a complete

condensate collapse of a d*(2380)-BEC at rest, calculated using the established ‘free-space’

decay branches of the d*(2380). A very high multiplicity, localised and essentially instan-

taneous emission of γ radiation along with an intense flux of deuterons, nucleons and charged

Figure 3. The d*(2380)-BEC decay spectrum, presented as a flux per d*(2380), per
MeV of kinetic energy. The flux is separated into the contributions from gamma
(black), nucleons (green), deuterons (red) and charged pions (blue).
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pions would be expected from a condensate collapse3. Such characteristic emission spectra

could be searched for in astronomical observations.

The existence of d*(2380)-BEC decays in the Earth’s atmosphere or close to its surface

would produce energies comparable with cosmic-ray events, but without directionality. As

cosmic-rays should not be able to pass through the Earth based on our current understanding

of standard model physics, then upward going ‘cosmic-ray’ events may provide a potential

signal. The experimentally observed (and currently unexplained) upward going cosmic-ray

events [26] could also therefore be explored to put astronomical constraints on

d*(2380)-BECs.

An enhancement of any d*(2380)-BEC decay signal could be achieved if signatures of

the parent π
0 mesons, which dominantly produce the γ flux, could be identified. Such

measurements are already obtained for π0 produced from the Moon’s surface (e.g. with the

Fermi-LAT telescope [27]). However, better directional information and proximity to the

surface to localise the source would be of benefit, such as may be achieved in the Lunar

Prospector mission [28].

5. Conclusion

In this paper we present a first investigation into the feasibility of the formation of stable

Bose–Einstein condensates of bosonic, isoscalar, hexaquark matter formed from the recently

discovered d*(2380). The d*(2380) condensates are predicted to be stable for a multiplicity

threshold ranging from 1000ʼs to millions dependent on the detailed nature of the d*(2380)ʼs

self-interaction. Very significant primordial production at the QGP to hadronic phase trans-

ition appears feasible dependent on the condensate properties, suggesting a new potential

candidate for DM. Some possible astronomical signatures and search scenarios for estab-

lishing the existence of such matter are presented. The ongoing and planned x-ray and gamma

ray astronomy facilities could potentially set limits on the existence of d*(2380) condensates.

Appendix. A

The derivations of the form of the Coulomb terms and their density dependence for the case

of spherical and linear condensates are outlined below.

A.1. Spherical case

The electrostatic energy E of a spherical nucleus can be approximated by the energy of a

homogeneously charged sphere enclosing a charge, Q:

p p
= »

-
 

E
Q

R

Z Z

r A

3

5

1

4

3

5

1

4

1
, 3

0

2

0 0
1 3

( )
( )

where Z is the nuclear charge and r0 the parameter defining the average separation of nucleons

in the nucleus (or equivalently hexaquarks in a condensate). The r0 parameter is extracted

from the observed scaling of nuclear radii with mass number =R r A0
1 3 (or for condensate

R= r0D
1/3

). From comparison with the form of the Coulomb term in equation (1), ac is

given by:

3
The main decay channels are p p p p p p p p p p     * * * - * + * + - *d d d pn d pp d nn d d d, , , , ,0 0 0 0 0 0

p p+ -pn .
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p
a

= =



a

e

r

c

r

3

5

1

4

3

5
, 4c

0

2

0 0

( )

=a
r

MeV
0.86

fm
, 5c

0

( )
( )

( )

where ÿ is the reduced Planck’s constant, e the electron charge, α(∼1/137) the fine structure
constant and c the speed of light in vacuum. The standard nuclear value (r0= 1.25 fm) gives

ac=0.7 MeV. The formula for ac can also be expressed as a function of the dimensionless

parameter ρ/ρ0:

r
p r r

=  =
m A

r A
r

4 3

1.18 fm
, 6

N

0
3 0

0
3

( )

[ ]
( )

r r¢ = =a aMeV MeV 0.73 . 7c c 0
3( ) ( ) · ( )

This way the formula for the ac calculations can be generalised as a function of the matter

density, including for the case of condensate matter. Note that for the spherical case ¢ac and ac
(see text) are the same. Equation (7) illustrates the weak dependence of the ac term with

matter density.

A.2. Linear chain case

The Coulomb energy for a homogeneously charged rod of enclosed charge (Q), having length

l is given by electrostatic theory as:

p
=


E

Q

l

1

4
, 8

0

2

( )

a¢ =


a
c

l
, 9c ( )

¢ =a
l

MeV
1.43

fm
. 10c ( )

( )
( )

For the linear case the volume is defined by the width and the length of the cylindrical

volume. Therefore an additional parameter is needed, the radius of the d*(2380). Here we

adopt a value of =r 0.5 fmd* in accordance with 14. However, ¢ac has a rather weak

dependence on the adopted value.

r
p r r

=  =
m D

r lD
l

r

5.6 fm

fm
, 11d

d d
2 2 2

0

*

* *

( )

( ) · [ ]
( )

r r
=  =r l0.5 fm

22.4 fm
, 12d

0

* ( )
( )

[ ]
( )

r r¢ =a MeV 0.064 . 13c 0( ) · ( )

For the linear condensate the binding energy contribution per d* from the Coulomb term

is therefore constant i.e. independent of the number of participating d*ʼs. Note that this differs

from the volume term, which is proportional to the number of participants.
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Appendix. B

Boltzmann’s law give the number density of particles with mass m, degrees of freedom (g) as:

p
=

m-
n g

mT

2
e , 14

3 2
m

T⎜ ⎟
⎛

⎝

⎞

⎠
( )

where T is the temperature and μ is the chemical potential. For a non-strange medium at high

temperature ( -m m Td u  ), the number of u and d quarks approaches equality. For this

situation it is possible to compare the number density of the proposed ‘hexaquark matter’ with

‘proton–neutron’ matter.

The d* has spin S=3, giving 2S+1 degrees of freedom and =g 7d* . For the nucleonic

case the two nucleons can be either in spin S=1 or S=0 states. Summing these possibilities

gives gpn=4. Taking md*ˆ as the mass of the bound d* in condensate gives:

=
-n

n

m

m

7

4 2
e 15d

pn

d

N

3 2
MN md

T

2* * *
⎛

⎝
⎜

⎞

⎠
⎟

ˆ
( )

ˆ

Introducing the binding energy of the d
* in condensate per baryon as = -

B
M m2

2

N d*ˆ ˆ
we

can rewrite equation (16) with a matter density parameter Ω as:

W
W

=
-

= -
m B

m

B

m

7

4

2 2

2
e

7

4
1 e . 16

N

N N

DM
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5 2 5 2
B
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B
T

2 2
^ ^^ ^
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