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Abstract

Researchers interested in changes that occur as people age are faced with a number of methodological problems, starting with the

immense time scale they are trying to capture, which renders laboratory experiments useless and longitudinal studies rather rare.

Fortunately, some people take part in particular activities and pastimes throughout their lives, and often these activities are

systematically recorded. In this study, we use the wealth of data collected by the National Basketball Association to describe

the aging curves of elite basketball players. We have developed a new approach rooted in the Bayesian tradition in order to

understand the factors behind the development and deterioration of a complex motor skill. The new model uses Bayesian

structural modeling to extract two latent factors, those of development and aging. The interaction of these factors provides

insight into the rates of development and deterioration of skill over the course of a player’s life. We show, for example, that elite

athletes have different levels of decline in the later stages of their career, which is dependent on their skill acquisition phase. The

model goes beyond description of the aging function, in that it can accommodate the aging curves of subgroups (e.g., different

positions played in the game), as well as other relevant factors (e.g., the number of minutes on court per game) that might play a

role in skill changes. The flexibility and general nature of the new model make it a perfect candidate for use across different

domains in lifespan psychology.

Keywords Bayesianmodeling . Big data . Aging .Motor expertise . Skill development . Lifespan psychology . Basketball

Describing the changes in motor and cognitive skills over the

human lifespan is an important topic in psychology. For ex-

ample, developmental psychology is interested in continuous

changes in cognitive and physical domains with age (Grusec,

1992), research into aging looks at how older adults deal with

the unavoidable decline of general and domain-specific abili-

ties (Salthouse, 2004), whereas expertise researchers are inter-

ested in the development and retention of a particular skill

over the course of a person’s life (Vaci, Gula, & Bilalić,

2015). The investigation of changes affecting complex skills

over the course of the human lifespan poses several problems.

The time scale of such changes, as well as the complexity of

the skills in question, render laboratory experiments impracti-

cable. Similarly, longitudinal studies are difficult to conduct

and are consequently rather scarce. Most studies rely on cross-

sectional data that suffer from a number of problems (Hedden

& Gabrieli, 2004). Here, we exploit the existence of historical

records of a complex motor skill, basketball play, to demon-

strate changes in the skill levels of elite athletes. We analyze a

sample of over five decades’ worth of data from the National

Basketball Association (NBA) using a new way of dealing

with such data that is based on Bayesian structural modeling.

We extract latent factors of development and aging and show

how they differ depending on other external factors, such as

the particular position occupied by a player during the game or

a player’s activity level (e.g., number of minutes).

Age-related changes

Age-related changes are commonly assumed to bring a con-

sistent decrease over the course of the human lifetime.

Physiological and biological indicators such as muscle

strength, endurance, contraction time, and the number of fi-

bers in a muscle all increase throughout childhood, reaching

their peak in early adulthood around the age of 25. The de-

crease is initially slow, until about the age of 50, after which

there is a rapid decrease in basic motor indicators (Booth,
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Weeden, & Tseng, 1994; Faulkner, Larkin, Claflin, & Brooks,

2007; Goodpaster et al., 2006; Rogers & Evans, 1993; Thelen,

2003). Similarly, general cognitive abilities such as processing

speed and working memory decline as otherwise healthy

adults age (Salthouse, 2010, 2016; Verhaeghen & Salthouse,

1997). Just as with the motor indicators, negative age-related

changes in general cognitive abilities start in people’s 20s or

30s, and are continuous and qualitatively similar throughout

adulthood (Salthouse, 2016; Verhaeghen & Salthouse, 1997).

On the other hand, there are processes that offset the natural

declines of general abilities. They include processes that de-

pend on exercise and accumulated knowledge. The size of the

vocabulary is a good example of such a process; another is the

motoric skill of rolling cigars, for which knowledge and skill

logarithmically increase with experience and age (Crossman,

1959; Keuleers, Stevens, Mandera, & Brysbaert, 2015;

McCabe, Roediger, McDaniel, Balota, & Hambrick, 2010).

The knowledge of language is a good example of a domain

that never decreases over time, in that people always learn

new words, but rarely forget the previously learned ones

(see Ramscar, Hendrix, Shaoul, Milin, & Baayen, 2014).

The power-law increase in the case of vocabulary size is illus-

trated using a big-data approach by Keuleers and colleagues

(2015). Similarly, the declines in the case of chess perfor-

mance, which strongly depends on knowledge, are much

shallower than declines in games or sports that rely on speed

of processing (see Vaci et al., 2015). However, motor skills,

even basic ones, can also be influenced by the systematic

implementation of different types of exercises (Buford et al.,

2010; Faulkner et al., 2007; Rogers & Evans, 1993). The

question, then, is what happens with complex real-life motor

and cognitive skills. These skills inevitably rely on general

abilities, which undergo normative age-related decline.

However, they also depend on experience and acquired

knowledge, for which little or no decline should be expected

with age (Salthouse & Maurer, 1996). In other words, even

though people experience a decline in the general abilities

underpinning their skills, the accumulated knowledge should

preserve their skill and slow down the actual decline.

Currently, there is a lack of evidence concerning basic age-

related function in real-life skills. Often, researchers do not

have the data to model performance measures as people age.

In those rare cases in which they have some data, there are

usually not enough data points to capture the intricacy of the

nonlinear behavior of the age-related function. Here we pres-

ent a way of using archival data to model the age-related

changes in a complex real-life motor skill. We use profession-

al basketball player performance to model age-related chang-

es. The domains of competitive game performance are ideal

examples of tasks that depend on both general and domain-

specific abilities, where motor speed and power, as well as

experience and knowledge, come together to define the level

of performance (Bilalić, 2017; Starkes & Ericsson, 2003).

Competitive games and sports provide an excellent opportu-

nity for researchers to utilize a well-defined measure of per-

formance and to investigate age-related changes in greater

depth (Roring & Charness, 2007; Starkes & Ericsson, 2003;

Vaci & Bilalić, 2017).

Here, we will first illustrate different ways in which prac-

titioners have investigated the basic form of the age-related

function in the case of real-life performance, and comment on

the potential shortcomings of this common approach to deal-

ing with big data. We proceed by presenting a new way of

dealing with the data, which is based on Bayesian latent var-

iable modeling (Vandekerckhove, 2014). Finally, we demon-

strate how researchers can use the newly developed Bayesian

model, which we call B-Ianus. The first letter of the model’s

name denotes the Bayesian analytical philosophy that governs

the model estimation and its use, whereas BIanus^ refers to the

Roman god of beginnings, transitions, duality, passages, and

endings. This god is often depicted with two faces, one

looking to the past, and another looking to the future. In a

way similar to its divine counterpart, our model does the same

thing. By modeling two phases of age-related changes, devel-

opment and aging, we investigate the interactions between

them. In other words, once we reach the peak of performance

we are asking the question of whether we can predict the

future decline (aging) of our performance by knowing the

preceding increase to the peak (development).

Modeling age-related changes

The main goal in lifespan psychology is to examine the

general principles of development throughout the human

lifespan, that is, to describe the form of age-related chang-

es. Lifespan researchers have three goals: (1) generating

knowledge of the interindividual shape of the age func-

tion, (2) investigating whether overall function differs be-

tween groups and individuals, and (3) understanding how

more basic processes, the building blocks of age-related

changes, influence these changes (Baltes, 1987; Baltes &

Baltes, 1990; Baltes, Reese, & Nesselroade, 1977; Baltes,

Staudinger, & Lindenberger, 1999; Lerner, 1984). One of

the dominant views in lifespan psychology is the theory

of gain–loss relation (Baltes, 1987). This theory states that

development at all points in life is a joint expression of

features of growth (gain) and decline (loss). In other

words, the developmental progression across the lifetime

always displays adaptive properties, as well as declining

ones. The relation between the gains and losses changes

systematically over the lifetime. Childhood is character-

ized by allocation of resources toward gains, where most

of the increases in performance are expected to occur. The

middle life period tends to be focused on maintaining a

stable level of gains and losses, whereas in old age,
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resources are directed toward the management of loss.

When observing real-life skill performance, the continu-

ous interaction between the two overarching forces of

gains and losses that underlie this particular skill often

produces a nonlinear function over the years. In the fol-

lowing paragraphs, we provide an overview of modeling

approaches that are frequently used to investigate these

age-related changes, and we also indicate their limitations

when analyzing nonlinear behavior of data.

To capture the nonlinear changes that occur during life,

researchers often use polynomial regression, in which age

is transformed by the power functions (usually via qua-

dratic transformations). Polynomial regressions result in a

nonlinear fit of the relationship between age and perfor-

mance, which sheds more light on the form of the age-

related changes (Goal 1 in lifespan psychology). In

lifespan psychology, a second-order polynomial or qua-

dratic function is often the relation of choice when model-

ing age-dependent changes. These studies indicate that

performance follows two phases of development with

one transition point. For example, practitioners of speed-

dependent sports, such as baseball, peak at the age of

about 27 years on most measures of performance, and

then start to decline relatively quickly (Allen &

Hopkins, 2015; Bradbury, 2009; Brander, Egan, &

Yeung, 2014; Dendir, 2016; Hollings, Hopkins, &

Hume, 2014; Lailvaux, Wilson, & Kasumovic, 2014;

Schulz, Musa, Staszewski, & Siegler, 1994). Similarly,

studies investigating cognitive skills such as chess have

shown that players improve quickly and reach the peak of

performance in their late 30s (Roring & Charness, 2007;

Vaci & Bilalić, 2017; Vaci, Gula, & Bilalić, 2014, 2015).

After this peak, chess performance starts to decline as

people age.

We have recently demonstrated that a third-order poly-

nomial, or cubic function, fits the data better in cognitive

domains (Vaci et al., 2015). The cubic function adds a

third phase of development in addition to development

and decline. The peak performance is indeed followed

by a decline, but the decline is not constant. The cubic

function reveals a potential third phase of age-related de-

velopment, in which players stabilize in their performance

and preserve it in the face of increased age (Vaci et al.,

2015). In comparison to the quadratic relationship, the

cubic function adds theoretically relevant implications

concerning additional aging stages. This scenario could

also represent a significant theoretical and practical differ-

ence between the general processes (e.g., memory and

reasoning) and domain-specific abilities (e.g., decision

making in chess) in their changes across the lifetime.

However, both quadratic and cubic polynomial func-

tions suffer from multiple drawbacks when they are used

for analyzing real-life performance. One problem is that

individual polynomial coefficients are highly correlated.

In situations in which researchers are interested in the

underlying factors that influence age-related changes

(Goal 3 above), not just the basic form of the function,

but also the interaction between variables of interest with

polynomial coefficients, can result in strong overfitting of

the data. In addition to this problem, the polynomial func-

tions are symmetric around the point of inflections (max-

imal and minimal value of the function). When applying

them to behavioral and psychological data, for example in

sports, a sharper decrease of the function after the peak of

performance does not necessarily mean a sharper decline.

It might simply indicate that this player increased much

more quickly and dramatically than other people in the

dataset. In other words, the subgroup analysis, one of

the main interests of lifespan psychology (Goal 2 above),

is problematic. The cubic function alleviates this problem

to some extent by adding a third phase and a prolonged

tail of the function, which inflects the decrease and indi-

cates that this player is not experiencing a dramatic de-

cline. In other words, it adds more flexibility and degrees

of freedom in the model, which can subsequently adapt

better to the data. However, every polynomial regression

suffers from this problem to the same extent.

One way around the problems inherent in polynomial

regression is to use exponential functions. Just like the

polynomial function, exponential functions provide us

with an understanding of the basic form of changes

over the course of life. However, they are more flexible

than the polynomial function when fitting sudden

changes of performance around the peak value. For ex-

ample, instead of using a single function, Schroots

(2012) utilized double logarithmic functions to describe

age-related changes in the functional capacity of people.

The first function describes the development before the

peak, whereas the second function fits the decrease after

the peak. Similarly, Simonton (1997, 2015) used a

double-exponential function to describe the creative po-

tential and changes in the output of ideas throughout a

person’s life.

Both models are preferable to the common polynomial

models, because they adjust the age-related function for the

group and individuals much more accurately. In other

words, the exponential function allows us to test and com-

pare the behavior of cognitive processes between the

groups, as well as between the processes themselves. For

example, the model of career trajectories and landmarks

showed different rates in the creative potential of practi-

tioners in different fields, indicating that novelists generate

original ideas more slowly, and take longer to develop them,

than poets do (see Simonton, 1989). These models were also

used to illustrate the differences between the lifespan chang-

es in fluid and crystallized abilities (Schroots, 2012). Fluid
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intelligence follows a two-step function with one inflection

point: that is, people increase in fluid abilities until their

mid-20s, when they reach the peak, which is followed by

constant decline as people age. In the case of crystallized

abilities, lifelong changes progress through three stages

with two inflection points. People slowly build up crystal-

lized abilities until their late 30s, when they reach the peak.

This is followed by maintenance of the abilities, which stay

at the same level until old age, when people’s abilities slow-

ly start to decline.

However, these models still have a problem with taking

into account the building blocks of age-related changes

(Goal 3)—that is, the different factors that influence lifelong

function. Additional variables cannot be interacted with expo-

nential coefficients during the model fitting. A possible way

around this problem—namely a two-step analysis, in which

exponential coefficients are estimated in the first step and

regressed jointly with the factors of interest in the second

step—suffers from generated regressor bias (Pagan, 1984).

In other words, using generated values from regression to

draw valid inferences in the second step can be problematic,

since we are using aggregated results that are sensitive even to

small biases in the data. When the resulting value from the

first regression suffers from sampling bias, the regression

analysis in the second step results in biased estimates and

inflated effect sizes and test statistics (Boehm, Marsman,

Matzke, & Wagenmakers, 2018).

Finally, the researchers can use nonlinear data-driven

methods such as generalized additive models (GAM; see

Wood, 2006). The GAM is a data-driven method designed

to estimate the nonlinear relation between the covariates and

the dependent variable. A generalized additive model is noth-

ing other than a generalized linear model with a linear predic-

tor over a sum of smooth functions of covariates. Therefore,

the main goal of this analysis is to estimate the space of func-

tions that can represent the nonlinear shape of the data (see

van Rij, Vaci, Wurm, & Feldman, 2018). In contrast to the

standard linear model, in GAM we do not have to specify the

function (polynomial terms, exponential equation, etc.), be-

cause it iteratively optimizes the smooth function (basis) and

proposes an optimal structure between the dependent and in-

dependent variables. The main problem with the nonlinear

methods is that the results of the GAM model cannot be

interpreted in standard linear regression terminology, in which

the results tell us about the change in the dependent variable

for one unit increase or decrease in the independent variable.

The GAM provides information about the wiggliness of

the regression line (summarization of all individual

functions), and whether the function is significantly dif-

ferent from zero. As in the case of most data-driven and

nonlinear methods, the visualization is a necessary tool

when interpreting the results, whereas we cannot quan-

tify the information behind the estimated parameters.

Here we primarily used exponential functions to model the

changes with age seen in expert performance in basketball.

We modeled the age-related changes separately before and

after the peak. We do, however, also provide additional anal-

ysis in which we calculated the inflection point, the exact age

when the increase in performance turns negative, using the

Heaviside functions (Bracewell, 1986). In addition to only

modeling the age-related changes, we propose a structural

model constructed using a Bayesian latent cognitive variable

modeling approach, which offers more information on the

research questions proposed in the domain of lifespan psy-

chology. We show how this model can be used on natural

and large datasets to investigate age-related changes, as well

as the different factors that influence these changes. Finally,

we quantify the relationship between two factors and show

how development (the prepeak increase) interacts with aging

(postpeak decline).

Method

Dataset and measures of basketball skill

Unlike many real-life domains, in competitive games and

sports it is possible to quantify the skill of players using per-

formance measures (Franks &Goodman, 1986). In the case of

this study, we used large datasets that measure basketball per-

formance (BBasketball Statistics and History,^ n.d.). This type

of dataset, which collects demographic and performance-level

variables for players who compete at a professional level, is

usually maintained by official sport federations. Since there

are multiple ways of quantifying basketball performance, we

chose the three measures that are most commonly used in

today’s basketball performance analyses: win shares (WS),

value over replacement player (VORP), and player efficiency

rating (PER; for more information, see Kubatko, Oliver,

Pelton, & Rosenbaum, 2007). WS is an estimate of players’

contributions (to the team) in terms of wins: it attempts to allot

shares in the credit for a team’s success to the individuals on

that team (Kubatko, n.d.; Oliver, 2004). WS is widely used,

since it is one of the onlymeasures that takes into account both

the defensive and offensive contributions of players to a

team’s win (while other measures rely more on offense-

related statistics). The WS measure also takes into account

the time the player spent on court as well as the pace of the

game during the player’s time on court. VORP is an estimate

of each player’s overall contribution to the team, measured

against what a theoretical replacement would provide (the

replacement being either a player given a minimum salary

or a player who is not a regular part of the team’s rotation:

Myers, n.d.; see also Barzilai & Ilardi, 2008). It is an esti-

mate of the number of points a player is producing above or

below a replacement player per 100 team possessions in a

Behav Res (2019) 51:1544–1564 1547



season. Even though it is standardized for a specific season

(thus allowing players that played during the same season to

be compared), VORP relies heavily on offense-related sta-

tistics, and hence is not a very good defense measurement

tool. PER is a measure of how productive and efficient a

player is during the time spent on court (BCalculating PER,^

n.d.; Hollinger, 2002, 2011).

It is clear that all three measures have their own advantages

and disadvantages. Given that the topic of this article is model-

ing of the aging function of motor expertise, we have chosen

to showcase, in the main text, the analysis conducted on the

WS measure, because it is the only one of the three that takes

into account a broader range of abilities (e.g., defense and

offense). However, since WS, unlike the other two measures,

is lacking in standardization and does not take into account the

pace of the game and the time spent of court, we also conduct-

ed analyses on PER and VORP, and these can be found in the

supplemental materials and the Appendix.

We illustrate our B-Ianus model on WS in the main text,

and provide the same analyses for the other two measures in

the Appendix. The details and descriptive statistics on the

complete data, including cross-validation on the polynomial

regressions and all following investigations, are described in

the online materials, together with accompanying R codes

(https://osf.io/yhmja/). We structured our analyses around the

three goals of lifespan psychology: (1) describing the changes

in performance over the course of the careers of NBA players;

(2) the different career trajectories of different groups, in this

case the position they play in the game; and (3) investigating

how other factors, in this case the playing time, influence the

age-related function. The first analysis, on the form of age-

related changes, we conducted using the whole sample, which

contains 50 years’ and 2,845 players’ worth of data. The sec-

ond two analyses, on the subgroups and activity (minutes per

game played), were performed on a randomly chosen sample

of 400 basketball players.1 All analyses are carried out as a

methodological illustration of the model, which can be

employed in different domains. In this particular case, player

position and time spent on court were among the available

variables. In other domains, other variables may be available

that are more pertinent than those used here.

Goal 1: The form of age-related changes

In the first step of our investigation, we compared different

exponential functions that can explain age-related changes in

the case of basketball performance. An illustration of the raw

data can be seen in Fig. 1, with general age-related changes

(Fig. 7) and age-related changes moderated by players’ activ-

ity (total minutes per game played). To be able to estimate the

complete form of the lifespan function, we separated the age-

related changes into the prepeak increase and the postpeak

decrease and modeled them as two different processes. For

each of the two parts, we examined various exponential func-

tions that can explain age-related changes (see Table 1). First,

we included the power law function behind age-related in-

crease and decrease in performance, as previous studies had

shown that this function explains the majority of activity-

related changes in performance (Newell & Rosenbloom,

1981; Ritter & Schooler, 2001). Second, we included an ex-

ponential growth curve as a potential underlying function,

which had proved useful in previous studies (Schroots,

2012; Simonton, 1989, 1991, 1997). The third function that

we examined was logistic growth, which is a good way of

capturing the accumulation of knowledge (Keuleers et al.,

2015). Finally, we included linear changes in the model, be-

cause these should indicate a potential constant increase to the

peak and decrease after it (Roring & Charness, 2007;

Salthouse, 2010, 2016).

The power law and logistic growth functions indicate

that the age-related increase in performance slows as

players reach the peak of their performance. In other

words, the accumulation of skill is rapid at the beginning

of the skill acquisition period, when every exercise brings

new gains. As players get older, the increase in perfor-

mance slows down and approaches the upper plateau as-

ymptotically. The main difference between these two

functions is in the beginning of the skill acquisition peri-

od, during which the logistic function predicts slower ac-

quisition of the skill. In contrast with the logistic and

power law functions, the exponential function does not

assume that the speed of skill acquisition decreases at

the peak, but rather that it continues in the same manner.

Finally, the linear function assumes that the acquisition of

skill follows a continuous increase until the peak level of

performance. The same interpretation of exponential func-

tions applies to the age-related decrease in the second part

of the lifespan, when the age-related changes become

more negative.

We used Bayesian hierarchical modeling, in which the

exponential functions were fitted separately for the

prepeak increase and postpeak decrease for every player

in the dataset, as well as the age at which the increases in

real-life performance transition to a consistent decrease.

Following the lifespan theory, we do not assume that all

the individual processes that underlie real-life perfor-

mance decline at the estimated age, nor that all players

decline at the same time. However, this is the moment

when the product of individual processes results in

1
The analyses presented here are a primer on how the B-Ianus model can be

used. Analyzing all data would require computational resources that the au-

thors currently do not have at their disposal. To calculate the model on the 400

players, we utilized Amazon AMI services that run a 3.0-Ghz Intel Xeon

scalable processor with 32 GB of memory. Using this service, the estimation

of the parameters was running for approximately 12 h per model. The high

computational cost is the main limitation of the proposed model.
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negative changes. We employed an ad hoc division of the

age-related function in order to test the shape of the func-

tions, and model-based estimation of the inflection point

to test the age at which this transition between two func-

tions occurs. To estimate the age at which the transition

between two functions occurs, we used step or Heaviside

functions (Bracewell, 1986), which govern the conditional

influence of the parameters in the model (see the

Inflection Point section in the online materials). In the

case of our model, the Heaviside function defines and

estimates the age at which the prepeak increase changes

to postpeak decrease. This type of model is often referred

to as a broken-stick model (Flora, 2008; Hall, Ying, Kuo,

& Lipton, 2003; Lange, Carlin, & Gelfand, 1992). The

simple broken-stick model, which calculates the pre- and

postpeak slopes as well as the inflection point, was

estimated on the sample data (400 random players) with

50,000 samples as the adaptation phase, 10,000 burn-in

samples, and 5,000 samples with a thin factor of 5.

To test the shape of the functions, we chose age 27 as

the value at which the prepeak increase would turn toward

the postpeak decrease. This value was based on estimates

from previous studies (Benedict, 2017; Faulkner, Davis,

Mendias, & Brooks, 2008; Lailvaux et al., 2014; Schulz

et al., 1994; Wakim & Jin, 2014), reflecting that the ag-

gregated performance across players becomes negative at

27 years, and the results from Heaviside functions showed

that the inflection point falls within this age range.

Although ad hoc division of the peak value can result in

individual player biases to the overall functions, this ap-

proach decreased the complexity of the overall model,

since it was not necessary to calculate the peak for every

player in the dataset. For the shape of the functions, we

ran 5,000 samples as an adaptation phase, 8,000 burn-in

samples, and 5,000 samples with a thin factor of 5.

To investigate how well the mathematical functions fit

the observed data, we used the deviance information cri-

terion (DIC) as an analogue to the Akaike and Bayesian

information criteria. All of these measures indicate the

relative quality of a statistical model for a given dataset.

DIC is particularly suited to Bayesian model estimation in

which the results have been obtained by Markov chain

Monte Carlo (MCMC) simulations. As well as measuring

how well the model fits the data, the information criterion

penalizes for the number of parameters used. When com-

paring two models with equal fits to the data, the more

complex model will have a higher (i.e., worse) DIC mea-

sure than the less complex one.

Fig. 1 Illustration of the raw data for win share (WS) performance across

players’ ages. The top panel illustrates nonlinear age-related changes in WS

performance. The line indicates change in the mean WS performance across

ages, whereas the shaded area shows 95% confidence intervals for the mean.

The bottom panel illustrates the relation between the summed minutes per

game individuals played during their lifetimes and their age-related changes in

WS performance. The heat map indicates region of higher (red) and low

(white) performance, as measured by WS and how this changes over age

(x-axis) and total minutes per game played (y-axis)

Table 1 Mathematical functions used to model the age-related prepeak

increase and postpeak decrease of performance in basketball

Function Equation

Power law Performancepi ¼ α*age
βp

i

Exponential

growth

Performancepi =α∗ exp(βp
∗agei)

Logistic growth Performancepi ¼
δp

1þα*exp βp
*ageið Þ

Linear function Performancepi =α + βp
∗agei

The parameters in different models refer to the same age-related process.

Performance refers to the rating of an individual player (p) at a time point (i).

The α parameter estimates the starting number of performance points, the β

parameter estimates the rate of the change, and the δ parameter estimates the

upper limit or maximal level of performance
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Age of inflection

To estimate the age of inflection, we calculated the global

intercept and individual slopes for the age variable, and

the age of inflection was then adjusted for every player in

the data. Age was centered at 0, to make the estimate of

the cutoff point easily interpretable, and we fitted models

with linear and exponential functions (see the Inflection

Point section in the online materials). The results showed

that, with all three measures, the change in net perfor-

mance occurred at similar ages: Players increase in per-

formance up to 28 or 29 years old and start declining from

that point on, whereas the individual inflection points

ranged from 24 to 33 years for all three performance mea-

sures. In other words, the function that models the in-

crease in performance is active until age 28 (including

the age of 27) to 29 (including the age of 28), when the

slope that governs the decrease becomes active. The re-

sults from our model confirmed findings from previous

studies that have shown that the peak should be expected

at around 27 or 28 years old.

Shape of the function

The results show that in the case of a prepeak increase,

exponential and power-law functions resulted in the lowest

DIC, when compared with the other functions (see

BPrepeak^ in Table 2). In the case of WS, the prepeak in-

crease follows an exponential function, reflecting that the

rate of increase in players’ skill increases more rapidly than

a linear change. The VORP initial increase follows a power-

law function, whereas PER is best described by a linear

increase (see Table 4 in the Appendix). For the postpeak

decrease, the results show that the power-law function has

the lowest DIC measure across all three measures of perfor-

mance (see BPostpeak^ in Tables 2 and 4). These results

indicate that basketball players decrease in skill quickly

after the peak of performance, but the rate of the decline is

not constant and slows down in older age.

In addition to comparing the different functions that can

explain age-related changes in performance, we also investi-

gated the necessity of adjusting the random structure of the

models. We compared models with and without random ad-

justments for the intercept and slope of the final function used.

The results indicate that the chosen slope adjustment for each

player in the dataset was well founded, whereas the intercept

adjustment did not seem to be necessary. However, once we

adjusted the slope for every player in the data, the general

slope of the function lost statistical significance. Even though

we are not primarily interested in p values and the interpreta-

tion of significance, this is a potentially interesting result that

may indicate a high degree of variability in the increases and

decreases in performance over a player’s career (see Table 3,

as well as Table 5 in the Appendix). This suggests that some

players, in fact, do not decline as they age, or that the addi-

tional increase in the first part of the career is limited to players

who are already highly skilled on entering the league. Overall,

the results indicate that age-related changes isolated from oth-

er potentially impactful variables do not have great explana-

tory power for the players’ performance in basketball.

In the next step of the analysis, we combined the two func-

tions that provided the best fit to the age-related changes, in a

joint model that aimed to investigate how different variables

influence these changes, and potentially to answer the ques-

tion of increased variability in the changes. Finally, we calcu-

lated the correlation between the two phases, development and

aging, to understand and produce a complete function of per-

formance over players’ careers.

Bayesian approach

The Bayesian statistical approach is based on the idea

that probability can be defined as the degree of knowl-

edge about a particular hypothesis (Gelman et al., 2014;

Kruschke, 2014; Lee & Wagenmakers, 2014). The prob-

ability is expressed as the prior belief in or probability

of an idea or hypothesis, which is updated when we

observe the new evidence coming from the collected

data, resulting in the posterior probability. In other

words, the probability of a hypothesis is an orderly

opinion expressed as a probability distribution, and in-

ferences coming from the data (likelihood) offer revi-

sion of that opinion in light of relevant new informa-

tion. In the Bayesian approach, we can easily use these

probability distributions to represent knowledge and un-

certainty about the variables of interest. More important-

ly, this knowledge can be processed, summarized, up-

dated, and manipulated using the laws of probability

theory (Lee, 2004, 2008).

Table 2 Deviance information criteria for exponential functions used to

model age-related changes in WS, given separately for the prepeak increase

and postpeak decrease

WS

Prepeak Postpeak

Power law 51,118 34,974

Exponential 50,911 44,277

Logistic 56,360 NA

Linear 51,515 35,345

The NA (estimate not available) indicates that the models with the logistic

function for the postpeak decrease could not be estimated
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One of the prominent ways in which the Bayesian

approach can be employed is to build models that relate

psychological processes to the observed data (Lee,

2004; Lee & Wagenmakers, 2014; Scheibehenne,

Rieskamp, & Wagenmakers, 2013). This is not identical

to the data analysis approach, in which practitioners use

statistical tests, such as analysis of variance, to test a

theoretical assumption. Instead, the goal is to create a

more detailed statistical model of a particular aspect of

cognitive functioning or behavior and to relate this

model to the data. The memory retention or diffusion

models are good examples of such an analysis, where

the estimated parameters describe the decay rate of in-

formation and the drift rate (accumulation of informa-

tion) over time (Ratcliff & McKoon, 2008). These pa-

rameters represent aspects of the assumed cognitive or

theoretical process, which can then be isolated and in-

vestigated in more depth. This is one of the main rea-

sons why we decided to use the Bayesian approach to

data modeling. Leaving aside the oft-reported benefits

of Bayesian analysis, we primarily used this environ-

ment because the proposed B-Ianus model requires

high-dimensional integration with no known analytical

solution. In other words, we do not have mathematical

optimizers for the likelihood functions with which the

B-Ianus model operates. This is mainly due to the ne-

cessity of investigating the interaction of lifelong chang-

es with potentially interesting covariates. In this case,

Bayesian modeling that relies on numerical integration

methods such as MCMC (Robert & Casella, 1999) can

estimate the parameters of the proposed model by sam-

pling the values of the parameters from simulated pos-

terior distributions.

Bayesian latent cognitive variable modeling

In this study, we combined age-related modeling proce-

dures with factor analysis to build a more informative

model of age-related changes in real-life skills. In the first

part of the modeling process, we used exponential func-

tions to investigate age-related changes in performance in

basketball (as we introduced in the Age-Related Changes

section of the introduction). In the present section of the

study, we show how the age-related functions can be

interacted with variables of interest using latent variables,

which results in a cognitive latent variable model (CLVM;

Vandekerckhove, 2014). Therefore, we combined expo-

nential modeling of age-related changes with individual

differences in performance (Cronbach, 1957). The model

we propose is built on three different levels: random ef-

fects, manifest predictors, and latent predictors.

The first level of the model represents a random-effect

structure for the parameters of interest. This is a set of

parameters that are assumed to be drawn from some su-

perordinate distribution (Baayen, Davidson, & Bates,

2008; Radanović & Vaci, 2013). For example, the sam-

pled participants in the experimental setting represent just

a small fraction of the variance of, for example, basketball

skill in the whole population. In the case of this study, we

adjusted the β parameter (slope) of the increase and de-

crease functions for every player in the database. By do-

ing so, we modeled the rate of growth and decline of

performance for every player over the course of their ca-

reer. The individual slopes are defined as β1p (prepeak)

and β2p (postpeak) in the Fig. 2.

The second level of the model comprised the mani-

fest predictors—all the measures that can explain vari-

ability in the dependent variable. There are multiple

ways in which researchers can model these predictors,

from an analysis of variance or regression approach, in

which we usually assume a linear structure between the

dependent and independent variables, to nonlinear re-

gression analysis (e.g., GAMs) and cognitive models

(e.g., diffusion models). We used the previously ex-

plored exponential functions that capture age-related

changes in the measures of performance (WS, VORP,

and PER), but we also included the playing position

of the player and how many minutes per game were

played during a player’s prepeak and postpeak career

periods. The manifest predictors are illustrated with the

shaded nodes in Fig. 2.

The third level in the model comprised the latent factors,

which offer us a joint explanation of the covariance between

the set of observed variables. In other words, the latent fac-

tors are not observed but are estimated from the covariance

matrix of the observed variables. Even though this approach

is often used in the psychology of personality and intelli-

gence, estimation and assumptions regarding potential

Table 3 Estimates of the intercept

and the slope for WS, given

separately for the prepeak increase

and postpeak decrease

Function Parameters

Intercept Slope

Mean (95% CI) Mean (95% CI)

WS Prepeak Exponential 1.34 (1.27 to 1.40) .000 (– .00091 to .0020)

Postpeak Power law 2.00 (1.96 to 2.16) – .012 (– .022 to – .0018)
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latent structure are rarely used in age models (but see

Oberauer, Süß, Schulze, Wilhelm, & Wittmann, 2000). In

the case of our model, we included two latent factors that

correspond to the skill acquisition and aging periods. Unlike

previous models proposed in the domain of age-related

changes, latent factors offer the possibility of modeling

age-related changes in performance together with other pos-

sibly interesting variables (Goal 3). Latent factors are notat-

ed as the ϕ nodes in Fig. 2.

Before going into the results, we will explain the basis of

the model step by step (for a detailed introduction to CLVM,

see Vandekerckhove, 2014). For the data level, we used

exponential functions that modeled the age-related changes,

as well as the positions of the players and the total number of

minutes played during the prepeak and postpeak periods. In

the next step, we specified two latent factors of age-related

changes, prepeak development and postpeak aging. In es-

sence, we used the confirmatory model approach in a facto-

rial analysis. Factorial analysis is usually represented by the

linear equation Y = Λ * Φ + E, where Φ is the matrix of

person-specific factor scores, Λ is a matrix of factor load-

ings, and E is a matrix of independent, zero-centered,

normally distributed errors. Because the latent factors are

not at a level accessible to measurement and are, therefore,

completely theoretical, we needed to define which manifest

variables are allowed to be related to the latent variable. The

usual approach is to relate the first group of manifest var-

iables to the first latent factor and the second group to

the second latent factor, usually known as a simple

structure or congeneric factor model (Anderson &

Gerbing, 1988; Meredith, 1993).

Two different versions of the model were tested. The

first version had the cutoff age for prepeak versus

postpeak manually defined by the authors. In the second

version, this inflection point was automatically calculat-

ed using Heaviside functions (see BB-Ianus Model 1^

and BModel 2^ in the Model section of the online ma-

terials). Besides the difference in defining the inflection

point across ages, the two models differed slightly in

overall structure. Model 1 had two separately defined

likelihoods, one for the prepeak increase and one for

postpeak decrease. Model 2 had only one defined like-

lihood, for age-related changes in performance. This dif-

ference between specification of the likelihoods results

Fig. 2 The graphic representation of the B-Ianus model of age-related chang-

es in sports (Model 1). Plates 1 and 2 indicate prepeak increases and postpeak

decreases in performance, which were modeled separately. In each plate, p

shows independent repetitions over participants, and i shows independent

repetitions over trials. The α1 and β1 parameters represent the increase in

performance, whereas the α2 and β2 parameters model the decrease of the

performance across age. The β1 and β2 parameters are loaded onto the latent

development (ϕ1) and aging (ϕ2) factors by setting the λ1 and λ2 constraints.

The covariates—minutes per game and position (X1p and X2p), in our case—

are loaded onto the respective latent factors through the weight (γ) param-

eters. Finally, the B-Ianus model also estimates the relation between the

development factor and the aging factor, which is done by means of the ρ

parameter
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in different complexity, when it comes to the estimation

and retrieval of parameters. Model 2, with automatic

estimation of the inflection point, had higher complexi-

ty, since it had an additional parameter (the inflection

point) and slope parameters that were jointly estimated.

In combination with the latent structure, the model had

a problem converging and retrieving the possible param-

eter values in a feasible number of MCMC runs. In

contrast, Model 1, with separate likelihoods, converged

on the highest probable value of the parameters in the

same number of runs.

In the case of both models, the rate of increase was

loaded onto the first factor, whereas the rate of decrease

was loaded onto the second factor. The players’ position

and total minutes played per game were loaded onto

both factors. We aggregated these variables for every

player into the prepeak and postpeak values, choosing

27 years as a cutoff value. Additionally, the loading

values (λ nodes in Fig. 2) for the slope of the prepeak

increase and postpeak decrease functions (β parameters)

were fixed at a value of 1 for each factor: In this way,

the measurement of a latent factor was defined as the

rate of performance change before and after the peak.

Consequently, this allowed us to investigate how the

position played and the minutes contributed to each

game correlated with the change in performance with

age for basketball players. Positive β values in the de-

velopmental latent factors meant that players improved

more dramatically, whereas positive β values in the ag-

ing factor meant that players decreased in skill at a

slower rate. Finally, we specified the correlation struc-

ture between the two latent factors and investigated how

the rate of prepeak increase influenced the postpeak

decrease of performance in NBA players (lifespan

interaction, illustrated as the ρ parameter in Fig. 2).

The complete overview of the model is illustrated in

Fig. 2. Starting from the bottom of the graph, we can

see that the change in performance is modeled as an

exponential function for the prepeak increase, and a

power-law function for the postpeak decrease. These

funct ions were adjus ted for every measure of

performance—that is, for WS, VORP, and PER. The β

(rate of change) was estimated for every player in the

database. Therefore, the βs are drawn from superordi-

nate distributions that tell us about individual differ-

ences in these parameters. On the second level,

expertise-related activity, expressed as the total number

of games played, together with the β parameter, is load-

ed onto the latent factors (skill acquisition and aging).

The λ1,2 and weight1,2 parameters are the loadings, re-

spectively, of the rate of change and the player’s posi-

tion or total minutes per game on the latent factors,

where the λ parameters are constrained to be 1.

Therefore, the measurement scale of the latent factors

is inferred from the slope of the age-related changes.

This allows us to investigate all other auxiliary variables

that could influence age-related changes in performance,

such as intelligence, motivation, and personality dimen-

sions (Bilalić, McLeod, & Gobet, 2007a, 2007b; de

Bruin, Rikers, & Schmidt, 2007; Burgoyne et al.,

2016; Charness, Tuffiash, Krampe, Reingold, &

Vasyukova, 2005; Ericsson, Krampe, & Tesch-Römer,

1993). In other words, the model offers the possibility

of investigating the building blocks of age-related

changes in real-life performance. Finally, we investigat-

ed the interactions between the two latent factors, by

including a correlational structure between prepeak in-

crease and postpeak decrease. This parameter offers the

possibility of estimating the relationship between the

skill acquisition function and the aging function. The

same model is illustrated more graphically in Fig. 7.

Estimation of the model

The full model that included all relations and underlying

latent factors was calculated only for the random sample

of 400 players. We also transformed the relation be-

tween the performance measures and age to an approx-

imate linear relation. This improved model optimization

and decreased the time required to sample the posterior

distribution of the parameters. In particular, in the case

of the power-law relationship, we logarithmically trans-

formed both the performance measure and age, whereas

in the case of the exponential relationship, only the

performance measure was transformed with the logarith-

mic transformation. The final estimates can easily be

transformed back to the original values by using expo-

nential transformations on the predictions of the model.

To estimate the model, we used the Amazon AMI ser-

vice, utilizing its cloud computing capabilities and re-

ducing the time necessary for sampling out the complex

posterior distribution calculated by this model. For each

batch, we used 50,000 samples to adapt the model,

10,000 burn-in samples, and 10,000 samples with a thin

factor of three steps.

Results

Goal 1—Basic form of the age-related function
(continued)

The intercept and the slope (the α and β parameters,

respectively; see Fig. 3 for the slopes) were estimated

similarly to those for the separate models for the devel-

opment and aging functions (see the Goal 1 section
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above). The results indicate that people vary in the de-

gree of change during the prepeak and postpeak, where

a more positive parameter indicates either greater devel-

opment or a more positive aging function—that is, less

decline. The histogram plots show the possible values

of parameters for the age-related changes and interac-

tions. In the case of WS (see Fig. 3) and VORP (see

Fig. 12 in the Appendix), the development slope is cen-

tered slightly above zero, with a prolonged tail on the

positive values of the parameter. This shows that most

players do improve during the first period of their ca-

reer, whereas some players show a marked development,

indicated by the large positive parameters. Negative

values for the prepeak slope indicate that decline in

performance can also occur during the prepeak phase.

This is prominent in the case of the PER measure (see

Fig. 8 in the Appendix), which seems to decline in the

case of most players, indicated by the number of nega-

tive values.

In the case of the aging function, the results show that most

players decline in all measures, since the highest density of the

distribution covers negative values of the parameters.

Interaction of prepeak and postpeak changes

As well as investigating the prepeak and postpeak chang-

es, the B-Ianus model also estimates how these two pe-

riods interact with each other for each player in the

dataset. In the case of all measures of performance, the

results show that the rate of increase during the develop-

ment phase correlates with the rate of decline in the aging

phase (Fig. 4). In other words, the players that have a

stronger and positive prepeak increase display a shallower

and slower decline in later life, and the players with the

strongest developmental phase barely decline in their per-

formance at all. The additional measures also indicate

similar interactions (see Figs. 9 and 13 in the Appendix)

Goal 2: Group analysis

The B-Ianus model also offers the possibility of inves-

tigating whether overall age-related function differs be-

tween groups and individuals (the second goal of

lifespan psychology). Here we included the position of

the player as the numeric covariate in the model. The

position of the player, together with the slope of the

prepeak or the postpeak function, was regressed onto

the latent factor. We used five main positions: PG, point

guard; SG, shooting guard; SF, small forward; PF, pow-

er forward; and C, center. In this way, we investigated

the potential interaction between the position of the

players and the sizes of their slopes during age-related

changes. The results show that player position does not

change the slope of the increase or decrease during the

prepeak and postpeak changes for WS, nor does it

change it for other measures (see Figs. 5, 10, and 14

for the other measures).

Goal 3: Building blocks of real-life performance

In the final step, we investigated potential building blocks

of the performance and different variables that can influ-

ence changes in performance (the third goal of lifespan

psychology). We used the total minutes per game that

players contributed during the prepeak and postpeak

changes (for a similar measure, the total number of games

played during the career, see the supplementary mate-

rials). The results show that, during the prepeak increase,

Fig. 3 Estimated parameters for prepeak (development) and postpeak (aging)

changes (slope of the function used). The panels show the possible values of

parameters for the slope during the prepeak and postpeak periods when we

approximated the exponential and power-law changes with linear functions.

The intercepts of the functions were not adjusted for the individual players;

thus, they were estimated to be equal, as in the case of the previous analysis

(see the Shape of the Function section), and are not presented here
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contributing more minutes per game has a positive inter-

action with the slope. That is, the players who increase in

performance during the first part of their careers also play

more minutes per game. Similarly, players that play more

minutes per game tend to decrease less in their perfor-

mance than do the people contributing fewer minutes

per game (see Fig. 6, as well as Figs. 11 and 15 for the

other measures of performance).

Discussion and conclusion

The relationship between performance and cognitive

functioning, on the one hand, and age, on the other,

has a long history of investigation. These changes have

been investigated from different perspectives, ranging

from skill acquisition studies, which focus on age-

related improvements that take place in early life

(Donner & Hardy, 2015; Gasch le r, Progscha ,

Smallbone, Ram, & Bilalić, 2014; Heathcote, Brown,

& Mewhort, 2000; Tenison & Anderson, 2016), to ag-

ing studies, which focus on decline in cognitive perfor-

mance that occurs in later life (Bugg, Zook, DeLosh,

Davalos, & Davis, 2006; Lindenberger & Ghisletta,

2009; Salthouse, 2001, 2010). Even though studies in

these domains have provided an invaluable body of ev-

idence on age-related changes, understanding of the

general age-related function of real-life performance, as

Fig. 5 Differences in the size of the slopes for win shares, based on the

different positions in basketball: PG, point guard; SG, shooting guard; SF,

small forward; PF, power forward; and C, center. The y-axis illustrates the

size of the slopes for the prepeak and postpeak changes, whereas the x-axis

shows the different positions in basketball. The panels show the possible

values of parameters for the slopes of the prepeak (left) and postpeak (right)

functions when we approximated the exponential and power-law relation-

ships with linear ones. The slopes in this case represent this relation in log–

linear and log–log space

Fig. 4 Interaction between the slope of the prepeak increase and the slope of

the postpeak decrease for 400 random players in the database. (Left) Sizes of

the correlation between the prepeak and postpeak slopes. (Right) Values for

prepeak increase and postpeak decrease for the 400 random players in the

dataset. The x-axis shows slope size for the prepeak change, whereas the y-

axis illustrates slope size for the postpeak change. Positive values indicate a

stronger increase and shallower decline, and negative or smaller values show

a shallower increase to the peak and a stronger decline after it. The panels

show possible values of the slope parameters for the prepeak and postpeak

functions when we approximate the exponential or power-law relationship

with linear functions. The slopes are estimated in log–linear and log–log space
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well as the factors that change this function, has proved

elusive. We believe that this is due to two main reasons:

the difficulty of obtaining large sample sizes of mea-

surements in real-life domains and the complexity of

modeling nonlinear changes in the aging function.

In this study, we have provided a potential solution to

those problems, by proposing a methodological and sta-

tistical environment in which practitioners can investigate

age-related changes in greater detail by modeling natural

datasets of real-life performance in sports. We used

Baye s i a n cogn i t i v e l a t e n t v a r i a b l e mode l i n g

(Vandekerckhove, 2014) to investigate age-related chang-

es across the complete lifespan and to quantify the inter-

actions between age-related improvements and declines in

basketball performance. Besides investigating complete

career performance, we also demonstrated how the age-

related changes that occur over the course of a basketball

player’s career can be jointly investigated with other var-

iables of interest, such as the player’s playing position and

activity levels.

In comparison with previously proposed models, such

as the Janus model or the model of career trajectories and

landmarks (Schroots, 2012; Simonton, 1991, 1997), the

B-Ianus model offers estimation of additional parameters

that are of interest for the investigation of different theo-

retical proposals. First, researchers can investigate the op-

timal underlying function that explains age-related chang-

es in performance, and can use these functions to model

the changes. In other words, the B-Ianus model allows

practitioners to use different age-related functions (e.g.,

power law, exponential, linear), whereas previous models

have used prespecified double-exponential or double-

logistic curves. Second, it is possible to adjust the random

structure of the model: That is, we can estimate individual

differences in the parameters that are used to describe age-

related changes. In this way, practitioners can calculate

individual peaks (maxima) or the rate of performance

change for individual people or different groups of indi-

viduals. Adjustment of the random structure and individ-

ual differences are particularly useful when dealing with

complex data, since this flexibility solves problems with

the aggregation of the data (Heathcote et al., 2000).

Another advantage is that the random adjustments

help alleviate the problems of outliers, since these

values shrink toward the mean of the distribution for a

particular parameter (Baayen et al., 2008; Radanović &

Vaci, 2013). The model also allows for the inclusion of

time-invariant variables and investigation of their rela-

tionship with age-related changes over the course of the

career. Ultimately, B-Ianus enables us also to investigate

interaction between the rates of prepeak increase and

postpeak decrease. The model estimates the potential

relationship between the growth rate in the first function

and the rate of decrease in the second, given any other

variable that can influence and change this relationship.

The quantification of this parameter has proved elusive

in the case of most modeling endeavors. In the case of

polynomials, the individual parameters are (by the math-

ematical definition of a polynomial) correlated, even

though this need not be the case with the data.

Contrary to this, exponential functions require two-step

procedures, where in the first step researchers estimate

the prepeak and postpeak functions, and in the second

step they calculate the correlation between these esti-

mates. Finally, nonlinear models, such as GAMs, even

though they calculate the optimal nonlinear function,

Fig. 6 Interaction of prepeak and postpeak slopes for WS performance with

the total minutes per game contributed by players during their careers. The y-

axis illustrates the total number of minutes per game players contributed

during the prepeak (left) and postpeak (right) periods, and the slopes of the

functions, estimated from the prepeak and postpeak changes, are illustrated

on the x-axis. Positive values of the slope indicate stronger positive change

during the prepeak period and less decline during the postpeak period
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provide this information only on the visual level,

through interpretat ion of the f i t of the model

(illustrated in Fig. 1b). In practical terms, the B-Ianus

model quantifies the relationship presented in Fig. 1b, in

the case where we divide the age-related progression

into prepeak increase and postpeak decrease.

Using the B-Ianus model, we showed how the three

goals of lifespan psychology can be investigated in

more detail. In the case of the basic form of the age-

related function (Goal 1), we demonstrated that three

frequently used measurements of basketball performance

(WS, PER, and VORP) differ during the first part of the

career, when which some of them change exponentially,

linearly, or in a power-law fashion. It is likely that the

different developmental patterns of these measures re-

flect differing cognitive processes (e.g., Heathcote

et al., 2000; Newell & Rosenbloom, 1981), especially

when we take into account the fact that the measure-

ments aim to quantify different aspects of performance.

Contrary to the prepeak development, the decrease after

the peak, for all three measurements, follows a power-

law function. People decrease rapidly immediately after

reaching their peak, but as they age, this decrease in

performance lessens and slows down. The B-Ianus mod-

el also indicated that there are no differences in the

changes in performance over the career between the

different positions that players play. The rates of in-

crease and decrease—the slopes of the functions—do

not change on the basis of playing position. In this

way, we investigated the second goal of lifespan

psychology—changes in the aging function—on the ba-

sis of subgroup analysis.

However, adding these types of covariates can also tell

us more about the aging function, especially if we can

identify people who drop out at an earlier or later stage

of their career. Including this information in the model

could potentially give more information regarding wheth-

er the decrease in the postpeak decline is influenced by

dropout rates, where stabilization of the decline might

occur just because of the higher-performing individuals.

In addition, the B-Ianus model also showed that the num-

ber of minutes played per game correlates with the slopes

of the prepeak and postpeak functions, thereby meeting

the goal of lifespan psychology—that is, revealing the

potential building blocks of real-life performance. The

players who show greater development in the first part

of their careers seem to contribute more minutes per game

than their slower-developing teammates. The same result

was obtained in the second part of the career, in that

players who contribute more minutes per game display a

shallower age-related function. In this particular instance,

it is not possible to claim with certainty that the activity

improves the skill acquisition process or reduces the neg-

ative age-related changes. The amount of time spent on

court is dependent on how well players perform.

Obviously, those who perform better at later stages of

their career will play more than their less well-

performing peers.

One of the most intriguing results in the present study

is the B-Ianus parameter that estimates the interplay be-

tween prepeak and postpeak changes. The results on all

three measurements of performance showed that players

showing greater development during the first part of their

careers displayed shallower declines in performance as

they aged. This indicates potentially preserving effects

of the skill acquisition phase, in which players who excel

in the domain collect more knowledge and skill. On the

one hand, basketball is a speed- and strength-dependent

sport (Latin, Berg, & Beachle, 1994), in which greater

declines in performance are expected (Faulkner et al.,

2007; Goodpaster et al., 2006; Rogers & Evans, 1993;

Thelen, 2003), given the general finding of more decline

in physical than in cognitive domains (Fair, 2007). On the

other hand, we were investigating a complex real-life skill

for which people acquire a vast amount of knowledge and

continue to do so in the later stages of their careers (as,

e.g., in the case of vocabulary). In basketball, that knowl-

edge is of a kinetic nature and may involve one’s own and

one’s opponents’ movements, as well as team-specific

patterns (Bilalić, 2017). Once the decline in performance

begins, related to diminishing physical abilities, more

knowledgeable or more able players may utilize their

knowledge to preserve their current performance in the

face of aging. It is possible that other factors—such as

physical ability, personality, motivation, or even general

genetic makeup—that enable certain players to acquire

knowledge and skill more quickly may act as mediators

of this correlation. In any case, the result runs counter to a

large body of evidence that has demonstrated that age is

not kinder to more able people (Blum & Jarvik, 1974;

Vaci et al., 2015).

The B-Ianus model and the way it is estimated can be

used in different domains of real-life performance, but

also in domains in which researchers need to model non-

linear changes over time. In the case of this study, we

showed how researchers can use it on a natural dataset

collected in the basketball domain. The flexible nature

of the Bayesian framework that underlies B-Ianus allows

for the application of this model to any other domain.
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Appendix

Other basketball performance measures (PER
and VORP)

Table 4 Deviance information

criteria for the functions used to

model the age-related changes in

VORP and PER, treating the

prepeak increase and postpeak de-

crease separately

PER VORP Postpeak

Prepeak Postpeak Prepeak

Power law 45,614 27,569 24,870 19,026

Exponential 45,307 28,176 25,118 20,000

Logistic 45,286 NA NA NA

Linear 45,032 27,580 25,252 19,264

NA (estimates not available) indicates that models with the specified functions could not be estimated for the prepeak increase or postpeak decrease.

Table 5 Estimates of the intercept and the slope for the PER and VORP measures, given separately for the prepeak increase and postpeak decrease

Function Parameters

Intercept Slope

Mean (95% CI) Mean (95% CI)

PER Prepeak Linear 12.34 (12.01 to 12.51) .0045 (– .0018 to .011)

Postpeak Power law 12.02 (11.81 to 12.28) – .0029 (– .0072 to .0012)

VORP Prepeak Power law 0.062 (0.048 to 0.77) .035 (.004 to .065)

Postpeak Power law 0.340 (0.304 to 0.374) – .030 (– .048 to – .0115)

1558 Behav Res (2019) 51:1544–1564



Fig. 8 Estimated parameters for prepeak (development) and postpeak (aging)

changes in PER. The panels show the possible values of parameters for the

slope of the prepeak (left) and postpeak (right) functions when we modeled

the PER changes with a linear function until the peak and approximated the

power-law relationship with a linear one after the peak. The slopes in this case

are represented in either linear (development) or log–log (aging) space

Fig. 7 Illustrative representation of the B-Ianus model of age-related changes

in sports (Model 1). Performance is modeled as a prepeak increase (before 27

years old) and postpeak decrease (after 27 years). The slopes of the increase

and decrease (β) are adjusted for every participant, indicated by normal dis-

tributions as the basis of the functions. The slopes are loaded onto latent

factors by the λ parameter; setting this parameter to 1 defines the

measurement scale of the latent factor. The player’s position during his career

and the total minutes per game were also loaded onto the latent structures

through the weight parameters. Finally, the prepeak increase and postpeak

decrease estimates, adjusted for other variables in the factorial structure, are

correlated with each other. This is illustrated by the Life-span parameter
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Fig. 9 Interaction between the slope of the prepeak increase and the slope of

the postpeak decrease in PER for 400 random players in the database. (Left)

Sizes of the correlation between the prepeak and postpeak slopes. (Right) The

x-axis shows slope size for the prepeak change, and the y-axis illustrates slope

size for the postpeak change. Positive values indicate stronger increase and

shallower decline, and negative values show a shallower increase to the peak

and a stronger decline after it

Fig. 10 Differences in the size of the slope for the PER measure, based on

the different positions in basketball: PG, point guard; SG, shooting guard; SF,

small forward; PF, power forward; and C, center. The y-axis illustrates the

sizes of the slope for the prepeak and postpeak changes, and the x-axis shows

the different positions in basketball

Fig. 11 Interaction of the prepeak and postpeak slopes for PER performance

with the total minutes per game contributed by players during their careers.

The y-axis illustrates the total number of minutes per game players

contributed during the prepeak and postpeak periods, whereas the slopes

for the functions, estimated from the prepeak and postpeak changes, are

illustrated on the x-axis

1560 Behav Res (2019) 51:1544–1564



Fig. 12 Estimated parameters for prepeak (development) and postpeak

(aging) changes. The panels show the possible values of parameters for the

slopes of the prepeak and postpeak functions when we approximated power-

law changes in the VORP measure with linear functions before and after the

peak. The slopes in this case are represented in log–log space (for develop-

ment and aging)

Fig. 13 Interaction of the prepeak and postpeak slopes for VORP

performance for 400 random players in the database. (Left) Sizes of the

correlation between the prepeak and postpeak slopes. (Right) The x-axis

shows slope size for the prepeak change, and the y-axis illustrates slope size

for the postpeak change. Positive values indicate stronger increase and

shallower decline, and negative values show a shallower increase to the peak

and a stronger decline after it

Fig. 14 Differences in the size of the slope for the VORP measure, based on

the different positions in basketball: PG, point guard; SG, shooting guard; SF,

small forward; PF, power forward; and C, center. The y-axis illustrates the

sizes of the slope for the prepeak and postpeak changes, and the x-axis shows

the different positions in basketball
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