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Molecular graphs and molecular conduction: the d-

omni-conductors†

Patrick W Fowler,∗a Martha Borg,a Barry T. Pickup,a and Irene Scirihab

Ernzerhof’s source-and-sink-potential (SSP) model for ballistic conduction in conjugated π sys-

tems predicts transmission of electrons through a two-wire device in terms of characteristic poly-

nomials of the molecular graph and subgraphs based on the pattern of connections. We present

here a complete classification of conduction properties of all molecular graphs within the SSP

model. An omni-conductor/omni-insulator is a molecular graph that conducts/insulates at the

Fermi level (zero of energy) for all connection patterns. In the new scheme, we define d-omni-

conduction/insulation in terms of Fermi-level conduction/insulation for all devices with graph dis-

tance d between connections. This gives a natural generalisation to all graphs of the concept

of near-omni-conduction/insulation previously defined for bipartite graphs only. Every molecular

graph can be assigned to a nullity class and a compact code defining conduction behaviour; each

graph has 0, 1, >1 zero eigenvalues (non-bonding molecular orbitals), and three letters drawn

from {C, I,X} indicate conducting, insulating or mixed behaviour within the sets of devices with

connection vertices at odd, even and zero distances d. Examples of graphs (in 28 cases chem-

ical) are given for 35 of the 81 possible combinations of nullity and letter codes, and proofs of

non-existence are given for 42 others, leaving only four cases open.

1 Introduction

The SSP (source-and-sink-potential) model was introduced by

Ernzerhof et al. 1–14 as a simple but effective description of bal-

listic molecular conduction. In its graph theoretical (Hückel) in-

carnation,15–25 it predicts transmission as a function of energy for

a two-wire device from an expression involving a functional of

four characteristic polynomials: those of the molecular graph and

three subgraphs. In the context of π systems, a chemical (molecu-

lar) graph is one that is connected and has a maximum degree of

3 or less. All-carbon frameworks, as treated here, are represented

by unweighted graphs. The graph theoretical formulation of SSP

leads to ‘selection rules’ for conduction at the Fermi level, couched

in terms of nullities, η, of the molecular graph and the subgraphs

(i.e. the numbers of non-bonding π orbitals of the corresponding

molecules).21,26

Response of the molecular device is thereby specified by the

underlying molecule and the pattern of connection to the leads.
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Devices are distinct, with leads connected to a pair of graph

vertices, or ipso, with both leads connected to a single vertex.

For unweighted graphs, the theory takes on a particularly sim-

ple form. Properties of molecules that contain conjugated het-

eroatoms can be considered by perturbation methods, as in classic

approaches to difficult problems such as the electronic spectrum

of porphyrins, where useful results already emerge from treat-

ment as a carbon framework with modified electron count.27

A natural question relates to omni-conduction and omni-

insulation: are there molecular graphs that are predicted in the

SSP picture to conduct or insulate at the Fermi level consis-

tently for all connection patterns? These graphs would be re-

spectively omni-conductors or omni-insulators. 22 Various types of

omni-behaviour can be defined in terms of consistent behaviour

for distinct, ipso or all devices: these lead to the definition of dis-

tinct, ipso and strong omni-conductors/insulators. Nullity again

plays a key role.22

This variety of behaviour can be captured with a simple classi-

fication system. Division into nullity classes 0, 1, and >1, com-

bined with conduction (C), insulation (I) or mixed (X) behaviour

for distinct and ipso devices leads to a classification of molecular

devices into at most 27 categories, each labelled by a two-letter

acronym and nullity class. The 27 categories reduce to exactly 13

that are realisable by graphs.25

There are families of chemical graphs for which omni-
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conducting behaviour is not possible. For them we can define

the notion of a near-omni conductor, by making a well defined

partition of the set of devices arising from a molecular graph. An

important class of conjugated systems, including polyenes and

benzenoids, consists of the alternant hydrocarbons. For these

molecules, the molecular graph is bipartite. The vertices of a bi-

partite graph separate into two sets, assigned different colours,

such that no edges join vertices of the same colour. The colours

correspond to the starred and unstarred atoms of the alternant

hydrocarbon.28 Bipartite molecular graphs cannot have full omni-

conduction, for well understood mathematical reasons, but we

can make a near-omni25 classification by separating distinct de-

vices into inter and intra types: in an intra device the two con-

nection vertices belong to the same partite set; in an inter device

they belong to different partite sets. For ipso devices, we can ig-

nore the colour of the connection vertex. The nullity class (η = 0,

1 and > 2) is again important. Bipartite graphs therefore allow

a three-letter acronym (TLA) for each nullity class. Therefore, in

the three-letter formulation, devices are characterised by their in-

tra, inter and ipso behaviour, further distinguished by nullity. It

can be proved that the 81 conceivable classes reduce to exactly

14.25 This treatment suggests a generalisation for near-omni non-

bipartite graphs.

The central idea used in this generalisation is to partition con-

duction, insulation and mixed behaviour of a non-bipartite graph

according to graph-theoretical distance, d, between the connection

vertices. This leads to the definition of d-omni-conductors and in-

sulators, and a new interpretation of the three-letter acronyms25

such that they will apply to all graphs, whether bipartite or not,

and hence cover all possible conjugated hydrocarbons.

Fig. 1 Schematic of the d-conductor. Here, a pair of connection ver-

tices at fixed distance d = 3 is chosen for attachment to wires in a set of

devices.

Specifically, we imagine incorporation of a molecular graph in

a circuit through connections chosen via a pair of calipers with a

fixed-jaw opening (see Figure 1). For simplicity, we suppose that

the calipers span a fixed graph-theoretical distance: the calipers

touch contacts separated by a fixed distance d (d is the length in

edges of a shortest path between connection vertices L and R in

the molecular graph, G) drawn from the set {d} = {0, 1, . . ., D},

where D is the diameter of the graph.29

We can ask the omni-conduction/insulation question for each

d, leading to a (D + 1)-dimensional code for each graph. Re-

duction to three categories (odd-d, (non-zero) even-d, and zero-

d) then gives a three-letter short code, which is applicable to all

graphs. This classification by distance maps neatly onto the inter

(odd d), intra (even d 6= 0) and ipso (d = 0) cases for bipartite

graphs. (All edges of a bipartite graph connect vertices of differ-

ent colour, and a bipartite graph can contain no odd cycles, so

distances between vertices of the same (resp. opposite) colours

are all even (odd). Hence, inter ≡ odd-d, intra ≡ even-d, ipso ≡

zero-d, and every bipartite graph keeps the same label as before.)

The three-letter classification again gives a maximum of 81 hypo-

thetical cases when C, I, X are combined with nullity classes η =

0, 1, >1.

In the present paper, we explore the possibilities for d-omni and

near-d-omni conductors and insulators, show that the 81 cases

reduce to a significantly smaller number, and discuss systematics

for long and short codes in various families of bipartite and non-

bipartite graphs of interest in chemistry. Hence, we will arrive

at a compact, universal scheme for classification of Fermi-level

conduction within the graph theoretical SSP approach.

2 Background

2.1 The Hückel hamiltonian

The Hückel hamiltonian of an n-centre π-conjugated system can

be written

H = α1+ βA, (1)

where α and β are the Hückel Coulomb and resonance integrals,

1 is the n×n identity matrix, and A is the adjacency matrix of the

molecular graph, with Ars = 1 for edges, and Ars = 0 otherwise.

The eigenvectors of H correspond to molecular orbitals, and the

eigenvalues {λi} to orbital energies, through ǫi = α + λiβ. En-

ergies are specified with respect to an origin at α and in units of

|β|.

2.2 The SSP model

In the graph-theoretical version of the SSP approach,15 a device

is represented as a molecular graph G attached by internal ver-

tices (atoms) L and R to source (L) and sink (R) vertices that

represent the effect of two semi-infinite wires, which respectively

deliver and remove a fraction T of an electron in steady-state bal-

listic conduction. The transmission T is a function of electron

energy, E. The (n+ 2)-vertex device incorporating molecular and

distinct source and sink vertices is illustrated in Figure 2.

Fig. 2 An SSP molecular device. The molecule is a conjugated π sys-

tem. Its molecular graph G has n vertices, of which L and R are con-

nected to semi-infinite leads. (L and R coincide in the ipso device.)

Each lead is replaced by an extra vertex: source (L) or sink (R), respec-

tively. The whole device is modelled by the (n + 2)-vertex graph, with

complex weights on source and sink, and real weights (Hückel Coulomb

and resonance integrals, α and β) on internal vertices and edges. In

this specific example, the molecule is a pentalene framework, with non-

bipartite molecular graph G, and ‘para’ connections via opposite apices

of the five-membered rings.
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In the SSP treatment, the equation to be solved for transmis-

sion is an (n+ 2)× (n+ 2) extension of the eigenvalue equation

for the molecular π system, where complex source and sink po-

tentials1 on the diagonal of the modified adjacency matrix create

an electron current consistent with the elastic boundary condi-

tions. Solution of the resulting inhomogeneous equation at each

energy E provides a device wavefunction from which the transmis-

sion factor and all bond currents can be calculated.1,15,23 Explicit

examples of the matrices involved are given for small molecules

in, for example, Refs. 5,6.

It turns out that T (E) depends on E through s, t, u and v, the

characteristic polynomials of the four graphs G, G − L , G − R

and G− L −R . At E = 0 (the Fermi energy) the transmission is

given by the limit of a ratio of high-order polynomials:22

T (0) = lim
E→0

42β̃2

[

(s− vβ̃2)2 + (u+ t)2β̃2

] . (2)

where 2 is the determinantal combination ut− sv and β̃ is a de-

vice parameter determined by relative magnitudes of resonance

integrals for intra-wire, wire-to-molecule, and intra-molecule

contacts.17 The transmission spectrum, the curve of T as a func-

tion of E, typically varies rapidly and repeatedly within its al-

lowed range of zero to one. These oscillatory features tend to

be smoothed out in the current-voltage device response curve.

Selection rules for transmission are independent of the precise

values of the parameters that go to make up β̃.

2.3 Selection rules

Selection rules21,26 for Fermi-level conduction of the devices

{G,L ,R } follow from Eq. (2) by considering the nullities of the

graphs G, G−L , G−R and G−L −R , or equivalently the num-

bers of zero roots of the characteristic polynomials s, t, u and v.

The Cauchy Interlacing Theorem30 leads to a small set of possi-

bilities, as listed in Table 1, predicting Fermi-level conduction or

insulation of a device according to 11 distinct and 3 ipso cases.

2.4 Vertex types

The Interlacing Theorem allows partition of the vertices of the

molecular graph into three types: lower, or core vertices (CV) and

core-forbidden vertices (CFV) of types middle and upper.22,31,32

Deletion of a CV lowers nullity by 1, deletion of a middle CFV

leaves it unchanged, and deletion of an upper CFV increases the

nullity by 1. Bipartite graphs cannot have middle vertices, as n

and η necessarily have the same parity for these graphs.

The CV/CFV terminology comes about because the vertices that

lower the nullity on deletion are exactly those that have a non-

zero entry in some vector in the graph nullspace, i.e. are ‘within

the core’ of the graph. In chemical terms, core vertices are those

with a non-zero contribution to the charge/spin density resulting

from half/full occupation of the set of non-bonding orbitals in

the π system. Conversely, a core-forbidden vertex makes zero

contribution in these cases.

One simple consequence of the definitions is that if a vertex has

one CV neighbour, then it must have at least two, as the neigh-

Table 1 Selection rules for Fermi-level conduction of molecular devices

based on graphs with nullity ηs = η. Each signature {ηt, ηu, ηv , η}
for nullities of the subgraphs and zero roots of the combination || =√
ut− sv leads to a prediction of T (0) 6= 0 (conduction), or T (0) = 0

(insulation). Devices are labelled D for distinct and I for ipso

Rule ηs ηt ηu ηv ηj T (0)

D1 η η+1 η+1 η+2≥ η+1 = 0

D2 η η+1 η+1 η η 6= 0

D3 η η+1 η η+1≥ η+1 = 0

D4 η η+1 η η η 6= 0

D5 η η+1 η−1 η ≥ η = 0

D6 η η η η+1 η 6= 0

D7.1 η η η η η 6= 0

D7.2 η η η η ≥ η+1 = 0

D8 η η η−1 η−1≥ η = 0

D9 η η−1 η−1 η η−1 6= 0

D10 η η−1 η−1 η−1 η−1 6= 0

D11 η η−1 η−1 η−2≥ η−1 = 0

I1 η η+1 = 0

I2 η η 6= 0

I3 η η−1 6= 0

bourhood of every vertex i in a non-bonding vector obeys a zero-

sum rule for entries on the neighbours j of i.

Furthermore, one useful observation is that the distance be-

tween a pair of CV that are neighbours of a middle CFV is not

always 2; it might be 1 if G contains triangles. This awkward fact

complicates construction of proofs.

2.5 Calculations

Spectral representations and Laurent expansions allow calcula-

tion of all the various required nullities needed for the selection

rules directly from the eigenvectors and eigenvalues of the adja-

cency matrix of G alone,22,25 with assignment of cases D1 to I3

and prediction of conduction or insulation, device by device. This

gives an algorithm for detection of conduction behaviour across

the whole family of devices based on a particular graph. This

toolkit was earlier used to find two- and three-letter acronyms,

and is employed again here to obtain the three-letter d-omni clas-

sification.

3 Classification of conduction behaviour

We discuss three levels of classification: the two-letter code, spe-

cialisation to a three-letter code for bipartite graphs, and gener-

alisation of this code to cover all graphs.

3.1 Two-letter codes (all graphs)

We classify devices based on a given graph G (chemical or other-

wise) as either distinct or ipso. For each class of devices we assign

a letter {C, I, X} to denote respectively the cases where all devices

conduct at the Fermi level, all insulate, or the class has mixed be-

haviour (or is empty). We further label the classes of devices by

nullity of G with η = 0, η = 1 and η > 1.
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Fig. 3 Venn-like diagram showing the two-letter (distinct/omni) classifica-

tion of conduction behaviour in the SSP model of all possible molecular

graphs where C, I and X stand for conduction, insulation and mixed, and

subscripts denote the nullity classes (0, 0 and 1, >1, all or none) for which

the two-letter code applies.

Of the 27 class labels consisting of two letters and a nul-

lity, it can be proved 25 that 13 correspond to realisable devices

{G,L ,R } and the others label empty classes (impossible de-

vices). A special case is II, which is not realisable for any nul-

lity.22 Figure 3 shows the realisable combinations of two letters

and nullity. Another way of representing these data is through

eight realisable two-letter pairs, with four sets of nullity restric-

tions. This is illustrated by the shading scheme in the on-line

colour version of the figure, where each colour is common to re-

gions of the diagram that have the same combination of nullity

classes.

Table 2 Expansion of two-letter to three-letter acronyms. Each combi-

nation is labelled with allowed nullity values. 25 Note that II → III is an

impossible combination. 22 Not all TLA compatible with a given 2LA exist.

Nullity 2LA TLA

0, 1 CC CCC

0 CI CCI

0 CX CCX

>1 IC IIC

none II III

>1 IX IIX

0, 1, >1 XC CIC, CXC, ICC, IXC, XCC, XIC, XXC

0 XI CII, CXI, ICI, IXI, XCI, XII, XXI

0, 1, >1 XX CIX, CXX, ICX, IXX, XCX, XIX, XXX

3.2 Three-letter codes (bipartite graphs)

At the next level of classification we treat only bipartite graphs,

and partition the distinct devices into inter and intra, according

to whether connections L and R belong to different or identical

partite sets. Again, we use an alphabet of three letters {C, I, X}

for omni-conducting, omni-insulating, and mixed or non-existent

sets. The nine two-letter combinations split into 27 three-letter

combinations, as shown in Table 2. This table already shows that

there are some disallowed combinations of letter code and nullity.

If G is bipartite, it can be proved25 that only 14 out of the 27

× 3 combinations of letters and nullities are possible. The al-

lowed classes of bipartite devices having inter-intra-ipso conduc-

tion types of the three kinds, for graphs with n ≥ 4 vertices and

nullity η are:

η = 0 CII,XII;

η = 1 IXX,XXX;

η > 1 ICC, IIC, IIX, IXC, IXX,XIX,XXX.

The three connected bipartite graphs with n < 4 each uniquely

realise a conduction type: K1 (isolated vertex) is apparently the

only bipartite graph of type XXC, though other non-bipartite ex-

amples exist (see below); CXI appears for K2 (ethene), and ICX

for P3 (allyl).

3.3 Three-letter codes (all graphs)

What happens if we use an alternative subdivision of distinct de-

vices? Distinct devices have L and R at non-zero graph theoret-

ical distance, d. We can make a subdivision into distinct devices

with odd-d, and even-d, respectively. (For brevity, we can call

these odd and even devices, respectively.) For bipartite graphs G,

the odd/even dichotomy maps exactly onto the inter, intra sub-

division, so bipartite graphs retain their old codes, but now non-

bipartite graphs G can also be included in a common scheme.

We now investigate how many of the 27 × 3 = 81 combina-

tions of three letters and nullity type are possible for chemical

graphs (connected graphs with maximum degree at most three)

and general graphs (connected graphs with no limitation on de-

gree), whether bipartite or non-bipartite.

As in previous work we adopt a two-pronged approach. First,

we check large sets of examples to find which classes (combina-

tions of a three-letter acronym and nullity type) have examples

amongst small graphs. Then we attempt to prove the emptiness

of the remaining classes.

Assignment of conduction behaviour was carried out by tak-

ing sets of graphs from various graph generators, and using the

previously developed22 conduction/insulation decision-tree fil-

ters based on the selection rules. Numerical eigenvectors of the

adjacency matrix of G are used to compute coefficients in Laurent

expansions of scaled structural polynomials t̂ = t/s, û = u/s,

v̂ = v/s and ̂ = /s, and use them with the filters to assign

conduction or insulation.

The datasets of graphs were generated with nauty 33 (gen-

eral and chemical graphs), plantri34 (cubic polyhedra), fullgen35

and CaGe36 (for fullerenes and benzenoids). We also searched

databases of larger vertex-transitive and two-orbit graphs, pro-

vided by Gordon Royle. 37 All graphs considered here are simple

(with no loops or multiple edges) and connected.
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Nucifer

CCC CCI CCX CIC CII CXC

CXI CXX XCC XCI XCX XIC

XII XII XIX XXC XXI XXX

CCC ICX IXX IXX XCC

XCX XXC XXC XXX XXX

ICC ICC IIC IIC IIX IIX

IXC IXC IXX IXX XCC XCX

XIC XIX XIX XXC XXX XXX

Fig. 4 Realisation of d-omni-conduction types classified by three-letter acronym and nullity. The top panel shows the cases for η = 0, and the entry

‘Nucifer’ is a placeholder for the smallest example of class CCI. The graph for category CIC is the skeleton of the icosahedron. The middle panel shows

η = 1. The bottom panel shows η > 1, and case IIC is the ‘utilities graph’, K3,3, which appears to be the only chemical graph in this class. In each

case, a chemical example is given,if we have one, and bipartite and non-bipartite examples are given where we have both.
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Table 3 Distribution over allowed classes for two-letter codes of chemical graphs on n ≤ 14 vertices

Case η Vertex count

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CC 0 1 1 1 2 5 8 13 48 77 333 858 3721

CI 0 1

CX 0 5 9 151

XC 0 1 4 11 25 108 270 1178 3553

XI 0 1 6 24 132 902 7669

XX 0 1 2 7 17 71 177 707 1904 8762 25469 126365

CC 1 1 8 9 27 23

XC 1 1 1 2 10 7 42 54 285 539 2773

XX 1 1 6 3 35 27 261 322 2660 3963 32252 55733

IC >1 1

IX >1 1 1 1 2 2 3 6 10

XC >1 1 1 1 1 1 8 21 48 110 317 729

XX >1 6 4 49 52 429 663 4784 8676 61317

Total count 1 1 2 6 10 29 64 194 531 1733 5524 19430 69322 262044

Table 4 Distribution over allowed classes for three-letter codes of bipartite chemical graphs on n ≤ 14 vertices

Case η Vertex count

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CII 0 1 2 4 11 47

CXI 0 1

XII 0 1 4 18 96 605 4691

ICX 1 1

IXX 1 1 4 12 62 366

XXC 1 1

XXX 1 2 10 61 413 3311

ICC >1 1 1 2 2

IIC >1 1

IIX >1 1 1 1 2 2 3 6 10

IXC >1 1 1 3 3 5 5 13

IXX >1 4 3 17 21 85 141 530 1014 3904

XXX>1 2 14 5 105 80 918 934 8585

Total count 1 1 1 3 4 12 18 52 101 295 701 2074 5636 17252
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Table 5 Distribution over allowed classes for three-letter codes of chemical graphs on n ≤ 14 vertices

Case η Vertex count

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CCC 0 1 2 5 8 13 48 77 333 858 3721

CCX 0 5 9 151

CII 0 1 2 4 11 47

CXC 0 1 1 1 2 1 11 9 65 87

CXI 0 1

CXX 0 1 1 6 7 33 49 157

XCC 0 3 4 29 20 214 205

XCX 0 1 1 8 18 14 59 291

XII 0 1 5 19 105 658 5079

XIX 0 1 1 1 5 1 23 5 153 21

XXC 0 4 6 20 68 241 899 3261

XXI 0 3 23 233 2543

XXX 0 1 7 15 68 166 698 1856 8710 25208 125896

CCC 1 1 8 9 27 23

ICX 1 1

IXX 1 1 5 18 93 552

XCC 1 1 1 2

XCX 1 1 1 1

XXC 1 1 2 10 7 41 54 285 539 2771

XXX 1 4 3 30 27 242 322 2567 3963 31699 55733

ICC >1 1 1 2 2

IIC >1 1

IIX >1 1 1 1 2 2 3 6 10

IXC >1 1 1 3 4 6 6 15

IXX >1 5 3 22 26 118 200 807 1643 6709

XIC >1 1 7

XXC>1 1 7 18 44 95 311 712

XXX>1 2 1 27 26 311 463 3977 7033 54608

Total count 1 1 2 6 10 29 64 194 531 1733 5524 19430 69322 262044
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4 Results

4.1 Allowed d-omni codes

A search of chemical graphs with vertex counts n ≤ 14, general

graphs with n ≤ 11, and vertex-transitive and two-orbit graphs

with n ≤ 24 already supplies examples of 35 of the 81 conceivable

combinations of TLA and nullity class.

Tables 3, 4 and 5, show statistics derived from these searches

on occurrence of two and three-letter codes for chemical graphs.

Equivalent statistics for general graphs are collected in tables in

the ESI.†

Throughout the tables, cases not listed are provably forbidden,

have smallest examples outside the range of n (CCI, η = 0, CIC

η = 0, IXC η > 1), or are unresolved (CIC η = 0, ICC η = 1, IXC

η = 1, ICX η > 1). An exhaustive search of all 1,006,700,565

general graphs on 11 vertices adds only IXC η > 1 to the list of

found cases obtained for n ≤ 10.

One interesting case is that of the nuciferous graphs (or nu-

cifers), which are non-singular graphs (i.e. with η = 0) that are

conducting for all distinct devices but insulating for all ipso de-

vices, i.e. with code CCI for graphs where inter, intra and ipso

classes of device are all non-empty. K2 is the trivial nucifer with

no intra devices, and unique TLA CXI. All non-trivial nucifers

are non-chemical;38 vertex-transitive examples are known with

n ≥ 24,39 and in the present work we were able to find smaller

examples, with n ≥ 18, by considering graphs with two orbits of

vertices. Hence, the class CCI with η = 0 is in fact populated,

though not by chemical graphs. Fig. 4 shows small examples

for the 35 cases (chemical where we have one, and bipartite and

non-bipartite where we have both).

Next we concentrate on eliminating impossible combina-

tions. Limitations imposed by the unrealisable subset of two-

letter/nullity codes 22 can be used to rule out some three-

letter/nullity codes. This removes 25 of the 81 cases.

A further simple argument about non-zero entries in the inverse

adjacency matrix removes all codes of type I** with η = 0, hence

eliminating a further six cases.

Appendix A lists these and other theorems that can be used

to prune the possibilities still further. Table 6 shows the state of

play, where 35 classes have examples and 42 are provably empty.

At present, we have 4 stubborn classes that are undecided, with

neither examples nor a proof that there can be none.

The populations of the various classes for small numbers of

vertices vary considerably. Chemical graphs are found in nearly

all the mathematically possible classes, though some classes are

very sparsely represented. Statistically, XXX is expected to be the

most common label. In such cases, the SSP model predicts mixed

behaviour across all devices in the odd, even or ipso subclasses

that can be derived from the given molecule. The interesting fact

is that so many chemical graphs do have specific conduction be-

haviour. With the near-omni classification, 25 it was found that all

cata-fused benzenoids are covered by one case (CII with η = 0),

and all Kekulean benzenoids by two (CII and XII, η = 0) . Simi-

larly, with the d-omni classification derived here, most fullerenes

translate to CCC.20

Incidentally, Table 6 constitutes an alternative proof of the suf-

ficiency of the 13 2-letter codes to describe all graphs. Theorem

A.1 rules out 13 cases, and another, CX with η = 1, is ruled out

by theorem A.3 or by the simpler argument that for this nullity,

C* implies a nut graph, but a nut graph implies *C.

4.2 Expanded d-omni codes

Useful though the short three-letter acronyms are in labelling

families of bipartite and non-bipartite graphs, it could be inter-

esting to explore the more detailed information afforded by the

full d-omni approach. We define the long code for a molecular

graph as a string of (D + 1) letters drawn from the alphabet {C,

I, X}, where each letter refers to the conduction behaviour of de-

vices with a fixed value of d, drawn from the range d = 0, 1, ..., D,

where D is the diameter of the graph. Notice that the entries in

the long code are ordered strictly by increasing d, with alternat-

ing even and odd devices starting from ipso d = 0. Instead, the

TLA has ipso at the final position, for consistency with previous

usage.25

Some long codes are obvious, determined entirely by a three-

letter acronym that contains no X in the first two positions. Others

show more complex patterns. The final figure and table of the

ESI† analyse long codes for a number of graph families.

5 Conclusions

An important advantage of the SSP (Source-and-Sink-Potential)

model for ballistic conduction is its essentially graph theoretical

nature, which enables qualitative prediction (selection rules) for

conduction or insulation at the Fermi level. These allow classifica-

tion of the whole set of devices associated with different patterns

of connection of two wires to a given molecular structure. In

previous work, the initial concepts of omni-conduction and omni-

insulation22 have been successively refined to describe system-

atics of conduction within chemically significant subsets of these

devices. A scheme for bipartite graphs was reported earlier. 25 The

present paper has presented a new classification based on graph

distance, which can deal with the molecular graph of any conju-

gated π system. Of the 81 hypothetical conduction types, 77 have

been resolved: 35 are realised by small graphs; 42 are unreal-

isable by any graph; 4 are still open. Of the 35 realised cases,

at least 28 are exemplified by a chemical graph representative of

a conjugated π system. The new scheme is compatible with the

previous classification of bipartite graphs but now covers all π

systems, alternant and non-alternant.

The classification derived here is complete, in that every pos-

sible single-molecule, two-lead device based on a carbon frame-

work has its place within the structure. Benzenoids fit within

the near-omni classification already; important non-alternant

molecules such as the fullerenes are captured by the new scheme.

Binary conduction/insulation classification of single devices al-

ready yields useful correlations with experiment for alternant

molecules (see Ref. 21 for a real-world application where the rules

correctly distinguish between isomeric devices that have conduc-

tivities differing by two orders of magnitude 9,40). The new classi-

fication extends this range to the full space of carbon frameworks.
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Appendix A Theorems for d-omni codes

The tripartite classification of vertices into lower (core, CV), mid-

dle (CVF) and upper (CFV) types will be used repeatedly in this

section. Wildcard characters are used to stand for arbitrary letters

drawn from the {C, I, X} alphabet. Hence, A*B indicates a code

with behaviour A at odd d, B at zero d and C, I or X at even d.

A remark on notation: the dual use of the letter X to signify ei-

ther the absence of devices in a class or the presence of mixed

conduction/insulation for device in a class requires some care

when comparing two- and three-letter acronyms. For example,

the complete graph Kn for n > 2 is a strong omni-conductor. The

two-letter acronym for Kn>2 is CC but the TLA is CXC, as d ≤ 1

for any complete graph on n > 1 vertices, so the class of devices

with even distance d ≥ 2 is empty. For 2 ≤ n ≤ 6 the code CXC

applies in this sense to complete graphs; from n ≥ 7 there are

also graphs with the same TLA code, but now with the X standing

for mixed behaviour for distinct devices with even distance be-

tween the connections. The distinction is obvious from the long

code, or just from the graph diameter, but it needs to be kept in

mind when looking at how two- and three-letter acronyms are

correlated.

In deriving rules for exclusion of cases, we begin by noting the

combinations that are forbidden by previous results. From the

theorems proved in Ref. 22, 25 of the 81 TLA can be ruled out

immediately.

Theorem A.1 The following 25 cases are not realisable by any

graph.

η = 0 IIC, III, IIX

η = 1 CCI,CII,CXI, ICI, IIC, III,

IIX, IXI,XCI,XII,XXI

η > 1 CCC,CCI,CCX,CII,CXI, ICI,

III, IXI,XCI,XII,XXI

Furthermore, a simple argument based on linear algebra elimi-

nates more classes for η = 0. The key result is:22

Theorem A.2 For η = 0, a device with connections L and R is

conductive at the Fermi level if and only if the corresponding off-

diagonal element in the inverse of the adjacency matrix of the graph

is non-zero.

Proof: For η = 0, the device with connections L and R conducts

if and only if 
LR

= adj(A)
LR

6= 0, and since the determinant of

A is not zero for η = 0, the device therefore conducts if and only

if (A−1)
LR

6= 0.

Corollary A.1 TLA I∗∗ is not realisable by any non-singular con-

nected graph.

Proof: TLA I∗∗ implies (A−1)ij = 0 for all edges i-j (d = 1). But

then (AA−1)ii =
∑

j∼i
Aij(A

−1)ji = 0 for all i, in contradiction

of the defining property of the inverse that

(

AA−1
)

ii
= (A−1A)ii = 1.

The corollary adds a further six to the list of unrealisable cases

listed in Theorem A.1. An easy consequence of the property used

in the proof of Corollary (A.1) is that every vertex L of a non-

singular connected graph G is part of at least one conducting de-

vice where R is a neighbour of L . There are at least ⌈n/2⌉ such

edgewise-conducting devices. In particular, all leaves u-w in a

non-singular graph G define a conducting device (G, u,w).

Another straightforward observation is

Lemma A.1 X in the ipso position implies that both middle and

upper vertices are present (for η = 0), and at least upper and lower

vertices are present (for η ≥ 1).

This is used to prove:

Theorem A.3 C*X with η ≥ 1 is not realisable.

Proof: By Lemma A.1, X in the ipso position implies vertices CV

and upper CFV are present in G. Middle CFV vertices may also

be present. As the graph is connected it must have at least one

edge (d = 1) connecting a CV and either an upper or a middle

CFV, which are Cases D5 and D8, respectively, and insulating,

contradicting the claimed conduction for all devices with odd d.

Theorem A.3 eliminates a further five cases.

Lemma A.2 All graphs with η ≥ 1 on n > 2 vertices have at least

two core vertices.

Proof: For η = 1, the nullspace contains a unique eigenvector.

Either the graph has only core vertices and |CV| = n and by hy-

pothesis n > 1, or there is a core–forbidden vertex v adjacent to

a core vertex u and the zero–sum rule for entries in the eigenvec-

tor on the neighbourhood of v demands at least one additional

neighbour of v to be a core vertex.

For η > 1, the nullspace contains η independent eigenvectors

and a given core vertex u can be assigned a zero entry in at least

one vector by taking a linear combination, but again by the zero–

sum rule for the neighbourhood of each vertex, this vector must

contain at least one non–zero entry, and so |CV| ≥ 2.

An alternative proof of Lemma A.2 is the following. For η ≥ 1,

CV is not empty and the zero-sum rule for a neighbour of a vertex

in CV forces at least two non-zero entries in a kernel eigenvector.

Lemma A.3 If η ≥ 1 and G has at least one CFV (i.e. G is not a

core), then there exists an edge CV-CFV.

Lemma A.4 If η ≥ 1 then there exist at least two CVs, which must

have ipso conduction exists, and hence ∗∗I is impossible.

Lemma A.5 If η ≥ 1 and the TLA code is ∗∗C, then the graph has

no upper CFV vertices.

Theorem A.4 CIC and CXC with η = 1 are not realisable.

Proof: The TLA code with C in the ipso position means one of two

things: either the graph G has only core vertices and it is a nut

graph with the TLA code CCC. Or else, G must have core vertices

and middle CFV. Since G is connected, there exists an insulating

1–11 | 9



Table 6 Summary of conduction behaviour of π-conjugated hydrocarbons, showing the existence status of the 81 conceivable combinations of odd-

even-ipso device behaviour with nullity of the molecular graph. ‘Some’ indicates that at least one example has been found. An entry ‘A:number’ refers

to the first theorem that can be used to rule out a given case. Cases marked with a star are unresolved

Case Nullity, η Case Nullity, η Case Nullity, η

0 1 >1 0 1 >1 0 1 >1

CCC Some Some A.1 ICC A.2 * Some XCC Some Some Some

CCI Some A.1 A.1 ICI A.2 A.1 A.1 XCI Some A.1 A.1

CCX Some A.3 A.1 ICX A.2 Some * XCX Some Some Some

CIC Some A.4 A.5 IIC A.1 A.1 Some XIC Some A.6 Some

CII Some A.1 A.1 III A.1 A.1 A.1 XII Some A.1 A.1

CIX * A.3 A.3 IIX A.1 A.1 Some XIX Some A.6 Some

CXC Some A.4 A.5 IXC A.2 * Some XXC Some Some Some

CXI Some A.1 A.1 IXI A.2 A.1 A.1 XXI Some A.1 A.1

CXX Some A.3 A.3 IXX A.2 Some Some XXX Some Some Some

CV-CFV edge (Case 8) contradicting the C in the first position of

the TLA codes CIC and CXC.

Hence, two further combinations are eliminated.

Theorem A.5 CIC and CXC with η > 1 are not realisable.

Proof: C in the ipso position implies that G has CV and possibly

some middle vertices. However, there can be no CV-middle edge,

as this would imply insulation for at least one device with d = 1

device, and in the TLA we have C for all odd d. Hence there are

no middle vertices, and G is a core.

Consider a CV-CV edge pair u, v. Choose a kernel vector that

has non-zero entries at positions u and v. The device {G, u, v} is

not Case 11, because this would be an insulator, in contradiction

of the C entry in the first position of the TLA. Hence, there exists

a basis containing x such that all vectors other than x in this basis

must have zero entries at position u and position v, as otherwise

we would have a Case 11 (insulating edge). G is connected, so

by induction on edge pairs it is possible to choose a kernel eigen-

vector with all entries non-zero, forcing all other kernel vectors

to be filled by zeroes. This is a contradiction of the claim that G

has η > 1.

Note that CCC is already proved impossible for η > 1 by Theo-

rem A.1, which follows from Theorem 4.3 in a previous paper,22

so in fact we have that C*C is impossible for η > 1.

Theorem A.6 XIC and XIX with η = 1 are not realisable.

Proof: Let G be a graph with TLA code XIC or XIX. First note

that G is not a nut graph (as the TLA code is not CCC). An entry

C or X in the ipso position implies that G has at least 2 CVs and at

least one middle CFV, because it is an ipso omni-conductor that

is not a nut. Therefore, there exist Cases 5 or 8 insulation for a

CV–middle CFV pair or a CV–upper CFV pair that are either at odd

or even distance apart. XIC and XIX allow both.

All CV–CV pairs give conduction since Case 11 cannot occur

(owing to η = 1). As the TLA implies that all pairs with d even

must give insulation, it follows that members of every CV–CV pair

are separated by an odd distance.

Possibility 1: All CVs induce a core which is the union of cliques

(Kp, p > 1). This gives a contradiction since the core has to in-

duce a singular graph. (Note that complete graphs are not singu-

lar, for p > 1.)

Possibility 2: There exist CVs that form an independent set such

that each pair is at distance 3, 5, etc apart. Each middle CFV

adjacent to a CV must be adjacent to at least 2 CVs, by the zero–

sum rule. Hence, either there exists an edge between the two CVs

and so a middle CFV and its two adjacent CVs are on a triangle, or

else, there is no edge between the 2 CVs that are adjacent to the

middle CFV. In the former case where there is an edge between

the 2 CVs, then the CVs are not independent and so give rise to

a clique that is non–singular. In the latter case where there is no

edge between the 2 CVs, these 2 CVs are an even distance apart

and these can only give rise to conduction by Case 9 or 10. Thus,

in either of these two cases, a contradiction results for XIC and

XIX.

The combination of Theorems A.1 and A.6, shows that XI* with

η = 1 is not realisable. Thus, the codes CIX with η = 0, ICC and

IXC with η = 1 and ICX with η > 1 are the only codes left either

to be proved unrealisable or furnished with an example.
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