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Design of annulene-within-an-annulene systems by

the altanisation approach.

A study of altan-[n]annulenes

Matteo Piccardo,a Alessandro Soncini,∗a Patrick W. Fowler,b Guglielmo Monaco,∗c and
Riccardo Zanasic‡

The altanisation strategy, devised to design molecules with large and paratropic perimeter circu-
lations, is applied to the family of [n]annulenes to give [2n,5]coronenes. Analytical expressions are
obtained for the eigenvalues of the Hückel Hamiltonian for altan-[n]annulenes, and used in con-
junction with selection rules derived from the ipsocentric approach to predict patterns of global ring
current in these systems. Density-functional calculations performed on seven altan-[n]annulenes,
three neutral and four charged, give current-density maps in essential agreement with the pre-
dictions obtained at the unperturbed Hückel level. All but one of the systems show patterns with
the tropicities expected for isolated annulenes, in line with the altanisation concept. The apparent
exception is altan-[11]annulene−, the only singlet system with a well defined open-shell character
in the studied set. The key role of open-shell character can be accommodated by appropriate
choice of the occupation numbers of the initial Hückel molecular orbitals, where the anion altan-
[11]annulene− is considered as an [11]annulene inside the [22]annulene anion.

1 Introduction

In the search for new stable molecules as possible candidates
for development of electronic devices, particular attention has
been paid to antiaromatic molecules.1–4 Designs based on
introduction of a cyclooctatetraene ring,2 pentalene units,3

or structures with 4N conjugated π electrons in stripes of
pentagonal and benzenoid rings4 have all been discussed. A
different approach starts from the finding that the induced
current density computed for [2n,5]coronenes5,6 is consistent
with the annulene-within-an-annulene model,7,8 even though
this is generally a poor model for most coronenes.9–16 This
unusual behavior is understood considering that all bonds linking
the two annulenes (the spokes) are fixed single bonds, and this
typically determines the onset of isolated patterns in the full
whole current-density map.17 In such a case, counting carbon
atoms is sufficient to anticipate the tropicity of the annulenes,
and this expectation can be used to design closed-shell molecules
where the perimeter current loop has sufficient area to lead to an
overall average paramagnetic response for the whole molecule.6
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Further insight into the unusual behaviour of [2n,5]coronenes
is obtained by inspection of molecular orbitals. Considering
the perimeter as a starting fragment, it can be seen that one of
its degenerate frontier orbitals does not have the correct nodal
structure to couple with the π orbitals of the inner annulene
(the hub).5,6,18 Thus, the degenerate pair splits on connecting
the two annulenes, and a paratropic circulation on the perimeter
can be predicted according to the ipsocentric approach19,20 (this
kind of symmetry-breaking differs from the one considered in the
pioneering study on paramagnetic ring currents21, as it is based
on alteration of diagonal, rather than extradiagonal, elements of
the adjacency matrix). [2n,5]coronenes were recognized as par-
ticular cases of the class of altan-molecules,18,22–26 constructed
from parent molecules by the formal topological operation that
transforms a parent [2n]annulene into a [2n,5]coronene. This
operation, later called altanisation,25 consists in the replacement
of the exo C–H bonds of the parent molecule by C–C bonds
to alternate three-cooordinate C atoms of an outer annulene
perimeter. Altanisation as a topological operation was formal-
ized by Gutman, considering any subset of C-H bonds.24,27

[2n,5]coronenes are equivalent to altan-[2n]annulenes, and we
will adopt this terminology in the following.
A simply connected (totally fused) Kekulean molecule has no
endo C-H bonds and has an even number of exo C-H bonds
(see note 9 of ref.28). When altanisation is performed on such
a molecule, the unique perimeter has 4N π electrons and is
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expected to hold a paratropic current.
Computational tests of the effectiveness of the altanisation
strategy have been generally positive.18,23,25,26,29 Exceptions
are the diatropic perimeters reported for altan-kekulene18,23

and altan2-[10]annulene.25,28 These molecules, which appear
at the bottom of the list of studied annulenes, when sorted for
the ratio of the perimeters of the altan and its parent molecule
(their ratios being 1.20 and 1),26 are predicted to be open-shell
singlets.28 Beyond antiaromatic species, molecules with an
open-shell singlet ground state are also attracting attention as
candidates for organic electronic devices.30 Altanisation may be
a versatile strategy in the quest of efficient new materials.
Recently, the first two altan-molecules have been synthe-
sized.31,32 These stable cyclopenta-ring-fused oligo(m-
phenylene) macrocycles, which have been named 8MC and
10MC on the basis of the number of five or six membered rings
present in the macrocycle, can be recognized as the altans of two
annulenes, that are not themselves in an all-cis conformation.
Using the IUPAC recommended abbreviations T and C for cis and
trans,33 the conformation of the hub of 8MC can be recognized
as (CTT)8; thus, 8MC is altan-(CTT)8[24]annulene and, similarly,
10MC is altan-(CTT)10[30]annulene (Figure 1). The presence of
T configurations of double bonds in the parent annulene leads
to altan-derivatives that have belts of alternating hexagons and
pentagons, thus releasing the strain expected for altans of all-cis
annulenes. For both molecules, the paratropic loops that would
be predicted on the basis of simple C atom counting (hub and
rim in 8MC, and rim in 10MC) turn out to be diatropic instead.
As with the two failures of the altanisation prediction found by
calculations,26,28 the ground states of 8MC and 10MC are open
shells. Interestingly, 8MC and 10MC can still be considered as
formed from decoupled annulenes, but with one or both in the
triplet state and thus hosting a diatropic current, consistently
with Baird’s rule of aromaticity.34,35 However interpreted, it is a
matter of fact that the only two altan-molecules synthesized so
far have a diatropic perimeter, pointing to the case for revisiting
the design strategy. To investigate further, we decided to study
altans of charged annulenes with a 4N + 2 perimeter, which can
be expected to host a diatropic current, if the two annulenes
are fully decoupled. We focused on altan-[9]annulene±1 and
altan-[11]annulene±1, which bracket the hub size in planar
altan-[10]annulene ([10,5]coronene5,36). In these charged
systems, the spokes are not fixed single bonds, so the assump-
tion of a decoupled perimeter fails, as it would in a neutral
altan-molecule, if a double bond is allowed to un-pair to account
for the open-shell singlet character. Taking altan-[11]annulene
as an example (Fig. 2), there are 11 × 2 resonance structures
with single bonds on all spokes (and a hub-localised charge)
and 112 resonance structures with one double-bond spoke and
the charge localized on the rim. An 8-electron circuit can be
easily recognized in resonance structures such as a11a-II, and
competition between diatropic and paratropic circulations on the
rim can be anticipated.37,38 In general, there are n/2 times as
many structures with the charge on the rim as there are with the
charge on the hub, and thus their influence can be expected to
grow with the dimension of the parent annulene.

Fig. 1 Structure of the synthesized altan-(CTT)8[24]annulene.

Fig. 2 Limiting resonance forms of an ion altan-[11]annulene. Form I has
all spokes as single bonds, and form II has a double bond on one spoke.
A 4N (8) π-electron circuit occurs in form II.
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This investigation of an altanisation strategy gives us the op-
portunity to consider the systematics of the whole class of altan-
[n]annulenes, for even and odd n. In the following, we review
the model for predicting the tropicity of a transition within the ip-
socentric approach,19,20 link it to the systematics of the eigenval-
ues of altan-[n]annulenes within the tight-binding approach and
the consequences for the selection rules that determine overall ap-
pearance of their ring-current patterns, and, finally, we confront
these considerations with full ab initio calculations for charged
and neutral altan-[n]annulenes. Open-shell character is shown to
be a key factor for the nature of the perimeter currents in altans.

2 Ipsocentric predictions

According to the ipsocentric Ansatz for solution19,39–41 of the
gauge problem, the current-density induced by an external mag-
netic field is a sum of contributions from virtual transitions al-
lowed under linear- and angular-momentum selection rules.42

Transitions are between occupied and empty orbitals. Consid-
eration of a small number of transitions between orbitals close
to the Fermi level is generally sufficient to predict the sense
of the current,43 often in a near-quantitative manner. The
linear-momentum (translational) transitions give diatropic con-
tributions, and the angular-momentum (rotational) transitions
give mainly44 paratropic contributions. Although the ipsocen-
tric method is not restricted to the tight binding level, it is known
that for conjugated hydrocarbons, currents obtained at this level
are often sufficient to give the same global tropicities obtained
ab initio.45 The simplest predictions require the determination
of energy levels and identification of the character of transitions
between orbitals close to the Fermi level. Identification of the na-
ture of the transitions is simplified in cases where the system has
non-trivial point-group symmetry. In that case the consideration
of the azimuthal node-count is particularly helpful.
For regular [n]annulenes, with a Cn symmetry axis, orbitals can
be labelled by a quantum number which, following a suggestion
by Mulliken, has been called orbital ring quantum number q,46 or
quasi-angular momentum m,47–49 or angular momentum (k 20 or
λ 43,50) for short. The value of q can be inferred from the Mul-
liken symbol (for Cn groups, representations A, B and Eq have ring
quantum number 0, n/2 and q), or by inspection, since its modu-
lus |q| is equal to half the azimuthal node count (HANC).22 Char-
acter tables show that rotationally and translationally allowed
transitions are characterized by ∆q = 0 and ∆q = ±1, respec-
tively.20 Consideration of the frontier orbitals then predicts diat-
ropic/paratropic currents for 4N+2/4N singlet annulenes,20 and
paratropic/diatropic currents for 4N+2/4N triplet annulenes.51

Upon lowering the Cn symmetry, q is no longer a proper quan-
tum number, but the HANCs change slowly, so that identifica-
tion of translationally or rotationally allowed transitions as those
with ∆(HANC)= 0 or ±1 is often successful. In particular, for
altan-[n]annulenes the maximum order for a rotation axis is n,
and thus, even in the highest possible symmetry, q cannot ex-
ceed n/2. However, if the distortion of the outer annulene by
the inner is sufficiently small, orbitals of the isolated outer an-
nulene with q > n/2 can preserve HANC >n/2 even in the altan-
[n]annulene, and the ∆(HANC)= 0,±1 rule can still be used as

Fig. 3 Type of carbon atoms in an altan-[n]annulene.

a guide to the character of the transition. We label the or-
bitals of altan-[n]annulenes (HANChub±HANCrim), depending on
whether the hub and rim orbitals are in- or out-of-phase. HANC
labelling can then be used to predict diatropic currents for hub
(∆(HANChub)= ±1) or rim (∆(HANCrim)= ±1) stemming from
translationally allowed transitions. For rotationally allowed tran-
sitions the HANC changes on the two annulenes are insufficient
and the relative sign of orbitals on hub and rim is needed: for
a transition with ∆(HANChub) = ∆(HANCrim) = 0 and in- or out-
of-phase combinations of the annulenic orbitals in both occupied
and virtual orbitals, two paratropic circulations are expected, but
if the occupied orbital is an in-phase and the virtual orbital an
out-of-phase combination (or vice-versa), the current on the hub
will be diatropic.44,52 In contrast with [n]circulenes, no pairs with
combinations of opposing phase are found in altan-[n]annulenes,
and rotationally allowed transitions between Jahn-Teller-split de-
scendants of degenerate pairs are therefore expected to give para-
tropic currents on both hub and rim.
The ipsocentric prediction of a paratropic perimeter for altan-
molecules is based on the assumption of small coupling of annu-
lene orbitals with the orbitals of the hub. If the coupling is strong
enough, one can expect other orbitals to intrude between the
splitting pair and introduce translationally-allowed transitions, so
that the prediction is reversed. This intrusion has been verified in
the case of altan-kekulene and altan2-[10]annulene.28

3 Tight-binding Energy Levels

An altan-[n]annulene in Cn symmetry has three symmetry-unique
C atoms (Figure 3): one (CA) ) in the hub, and two (CB and CC)
on the rim; CB is connected to three C atoms and CC is connected
to two C atoms. For each such atom, e.g. CA, the n atomic orbitals
(χA

1 , χA
2 . . . χA

n for CA), can be used to form n symmetry-adapted
linear combinations (ψA

q = ∑ j c jqχA
j ), with complex coefficients

c jq =
1√
n

n−1

∑
j=0

exp

(
2πi jq

n

)
, (1)
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with j = 0,1, . . .n− 1 counting atoms, and q = 0,±1,±2... ±( n
2 −

1), n
2 the ring quantum number (where n/2 is allowed only for

even n). Symmetry allows mixing of orbitals of equal q only, and
this implies that the Hückel Hamiltonian for an altan-[n]annulene
is block-diagonal, with 3×3 blocks for each q. In order to inves-
tigate the interpretation of altan wavefunctions in terms of annu-
lene wavefunctions, rather than symmetry-adapted linear combi-
nations, it is expedient to write the Hückel Hamiltonian as

Ĥ = Ĥrim + Ĥhub + Ĥspoke,

and take as basis functions the solutions in the absence of Ĥspoke,
i.e., the eigenfunctions of independent [n] and [2n]annulenes
(ψhub

q and ψ rim
q ), where the coefficients are given by equa-

tion (1) and the eigenvalues are εq = 2cos(2πq/n), for the
[n]annulene, and by the same function with n replaced by 2n for
the [2n]annulene. Ring quantum numbers on hub and rim will
be denoted q and q′, respectively.

The coupling elements between annulenes are then

〈
ψ rim

q′

∣∣∣Ĥspokes

∣∣∣ψhub
q

〉
=

β

n
√

2
∑

j

exp

[
2πi j(q′−q)

n

]
= (2)

=
β

n
√

2

1− exp [2πi j(q′−q)]

1− exp
[

2πi j(q′−q)
n

] , (3)

which vanish unless q′−q =±kn, with k an integer, when they are
β/

√
2. This implies that ψq is coupled with ψrim

q and ψrim
n−q only.

The two q values for the rim can be understood as stemming from
in- or out-of-phase combinations of the symmetry-adapted linear
combinations on the degree-3 and degree-2 rim C atoms:

ψrim
q′ =

1√
2

ψrim
q,3 ± 1√

2
ψrim

q,2 .

Here the plus sign corresponds to q′ = q and the minus sign to
q′ = n−q. The 3×3 block of the Hückel Hamiltonian on the subset(

ψrim
q ,ψrim

n−q,ψ
hub
q

)
is therefore

Hq =




2cos( πq
n ) 0 1√

2

0 −2cos( πq
n ) 1√

2
1√
2

1√
2

2cos( 2πq
n )


 .

The eigenvalues of the above matrix satisfy the following cubic
equation,

x3 −2cos

(
2πq

n

)
x2 −

(
4cos2

(πq

n

)
+1

)
x+8cos2

(πq

n

)
cos

(
2πq

n

)
= 0, (4)

which can be written

x3 − εqx2 −
(
εq +3

)
x+ ε2

q +2εq = 0. (5)

Eq. (4) provides the link between the energies and q-symmetry
of the parent [n]-annulene: each q for the parent generates three
states of the derived altan-[n]annulene. The spectrum of the altan

is therefore the sum of three (distorted) copies of the annulene
spectrum. Several properties of the altan-[n]annulene spectrum

can be derived immediately on the basis of Eq. (5) :
1. Every degenerate eigenvalue of the [n]annulene corresponds to
+q and −q partners. Since Eq. (4) depends on cosine functions of
q only, it follows that each degenerate level produces three dou-
bly degenerate levels in the altan-[n]annulene spectrum.
2. Every even annulene has top eigenvalue εn/2 = −2, so that
the final coefficient in the cubic (5) vanishes and we obtain
xn/2

(
x2

n/2
+2xn/2 −1

)
= 0. Hence, every altan-[n]annulene de-

rived from an even annulene has at least one non-bonding orbital
xn/2 = 0, one bonding level xn/2 = 1 +

√
2, and an antibonding

level xn/2 = 1−
√

2. The zero is always associated with a q = n/2
orbital that has nonzero weights on alternating atoms of the rim.
3. If the parent [n]-annulene has an antiaromatic count (n =
4N, N = 1, 2... ), its spectrum contains two non-bonding levels
with angular momentum q = n/4, leading to the generating cu-
bic x3

n/4
−3xn/4 = 0. In this case, the altan-[n]annulene spectrum

contains a doubly-degenerate level at xn/4 = 0, and two doubly de-
generate levels at xn/4 =±

√
3. It follows that every [4N]annulene

generates an altan-[4N]annulene with at least three non-bonding
molecular orbitals (a general proof that altanisation leads to in-
crease by one the number of null eigenvalues of the adjacency
matrix can be found in ref.27, which can be considered an addi-
tion to the previously known cases of nullity of graphs53).
4. As the cubic can be written as (x−α1)(x−α2)(x−α3) = 0 in
terms of its roots α1, α2 and α3, it follows, by comparison with Eq.
5, that εq(εq +2) =−α1α2α3 and εq = α1 +α2 +α3. The bonding
orbitals of the parent annulene (positive eigenvalues) thus pro-
duce three roots such that α1α2α3 < 0 and α1 +α2 +α3 > 0, that
is: two positive roots and one negative. This implies that each
bonding q shell of the parent annulene generates two bonding
and one antibonding shell in the altan-[n]annulene.
5. The same reasoning can be used to show that the antibond-
ing orbitals of the parent [n]annulene produce two antibonding
and one bonding copies in the altan-[n]annulene spectrum. One
of the copies of the antibonding stack of orbitals in the altan-
[n]annulene spectrum to be reversed with respect to the original,
meaning that q for the hub will not increase regularly with energy
of the orbitals of the derived altan.

3.1 altan-[4N +2]annulenes

From point 4, it follows that the n/2 bonding orbitals of an
[n]annulene with n=4N+2 give rise to n bonding orbitals in
the altan-[n]annulene. The remaining n/2 bonding orbitals of
the altan-[n]annulene are generated from the antibonding or-
bitals of the parent annulene. Since any altan-[n]annulene has
3n π-electrons, it follows that altan-[n]annulenes with n = 4N +2

have all bonding levels completely filled.36 Also, from point 2
we know that the LUMO of an altan-[n]annulene generated by a
[4N+2]annulene is non-bonding, with n/2 angular nodes on the
rim. From straightforward calculation of the roots of the cubic for
[4N +2] annulenes, exemplified in Fig. 4 for altan-[10]annulene,
we can also infer that (i) The two groups of bonding copies of the
[n]annulene bonding orbitals can be described as in- and out-of-
phase combinations of rim and hub orbitals with ring quantum
numbers q and q′ = q. Within these groups, ordering by q is pre-
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served. The set of antibonding copies of the [n]annulene bonding
orbitals arise from out-of-phase combination of hub and rim or-
bitals with ring quantum numbers q and q′ = n− q. Within this
set the q-ordering is reversed.
(ii) The two sets of antibonding descendants of the [n]annulene
antibonding orbitals can be described as in- and out-of-phase
combinations of rim and hub orbitals with ring quantum num-
bers q and q′ = n− q. Within the out-of-phase set q-ordering is
preserved, while it is reversed in the in-phase group. The set of
bonding copies of the [n]annulene antibonding orbitals are in-
phase combinations of hub and rim orbitals with ring quantum
number q and q′ = q. Within this set, the ordering by q is pre-
served. The three bonding frontier orbitals of the systems are
( n

2 +
n
2 )≡ ((2N+1)+(2N+1)) and the pair ( n−2

4 − n−2
4 )≡ (N−N),

i.e (5+5) and (2-2) for the example in Fig. 4. These orbitals
are close in energy, and their order changes with n: the non-
degenerate orbital is the HOMO for n = 6 and n = 10, but has
a lower energy than the pair for n ≥ 14 (N ≥ 3).
As already observed, the LUMO of the system is always the non-

−3

−2

−1

0

1

2

3

ε 
/ 

|β
|

(5−5)

(4−6) (1−9)
(2−8) 
(3−7) 

(3+7)  

(∅5)

(5+5)

(4+4) 

(1−1) 

(3+3) 

(2+2) 

(1+1) 
(0+0)

(5)

(4) 

(3) 

(2) 

(1) 

(0)

(10)
(9) 

(8) 

(7) 

(6) 

(5) 

(4) 

(3) 

(2) 

(1) 
(0)

[10]annulene altan−[10]annulene [20]annulene

 (0−10)

(0−0)

 (2−2)

(4+6)

Fig. 4 Solutions of cubic equation (5) with azimuthal node-count labelling
HANChub±HANCrim for altan-[10]annulene. Spectra of [10]annulene and
[20]annulene are also shown for comparison. To keep track of the weights
of the annulenic orbitals in the linear combination, HANC values are given
in bold for annulenic orbitals with a population higher than 0.1. In case of
null contribution of orbitals of an annulene (weight smaller than 1·10−4),
the ∅ sign is used.

bonding orbital with HANC label (∅ n
2 ) ≡ (∅ 2N+1). The LUMO

has therefore the same HANCrim as one bonding frontier orbital.
Hence, the bonding-to-non-bonding transition (HOMO→LUMO
transition for smaller annulenes, HOMO−1→LUMO transition for
higher annulenes) gives rise to a strong paratropic ring-current on
the rim.
Among the lowest lying antibonding orbitals of the altan-
[n]annulene (LUMO+1 for n=6, LUMO+3 for higher annulenes)
there is always a copy of the LUMO of the parent annulene, with
label ( n+2

4 + 3n−2
4 ) ≡ ((N +1)+(3N +1)), i.e., a frontier orbital

whose HANChub is one unit larger than the HOMO/HOMO−1
discussed above. It follows that in altan-[n]annulene, with n =

4N+2, the second strongest transition is purely diatropic and pro-
duces current that concentrates on the hub.

3.2 altan-[4N]annulenes

For altan-[4N]annulenes (Fig. 5), the same considerations apply:
the parent bonding stack of levels produces two bonding copies
that preserve q ordering and one reversed antibonding copy; the
parent antibonding stack of levels produces one bonding copy
with the same q-order, and two antibonding copies, the lower in
energy having the reverse q-order. However, in equilateral parent
[4N]annulenes the bonding and antibonding energy level stacks
touch at the doubly degenerate non-bonding level. We have al-
ready seen from point 3 that, in fact, a [4N]annulene generates
two additional zeros in the altan-[4N]annulene spectrum corre-
sponding to q = n/4 = N, to give a total of three non-bonding
levels. For a small distortion of the geometry (Jahn-Teller insta-
bility), the zero resulting from the non-bonding orbital described
in point 2 will remain antibonding, but a gap opens up in the
q = n/4 = N doubly degenerate level. This implies that the 3n

π-electrons of the altan-[n]annulene will occupy the n (bonding
for a Jahn-Teller distorted system) levels generated by the n/2
bonding stack of the parent annulene, and the n/2 (bonding) lev-
els generated by the n/2 antibonding stack of the parent annu-
lene. This leads to frontier orbitals with a well-defined q charac-
ter. The HOMO of the altan-[4N]annulene is always given by the

−3

−2

−1

0

1

2

3

ε 
/ 

|β
|

(0−8)
(1−7)  

(2−6) 

 

(∅4) 

(4+4)

(3+3)  

(0−0)

(2+2) 

(1+1) 

(0+0)

(4)

(3) 

(2) 

(1) 

(0)

(8)
(7) 

(6) 

(5) 

(4) 

(3) 

(2) 

(1) 
(0)

[8]annulene altan−[8]annulene [16]annulene

(1−1)

(2−2)

(3+5)

(3−5)

(4−4)

Fig. 5 Solutions of cubic equation (5) with azimuthal node-count labelling
for altan-[8]annulene. Spectra of [8]annulene and [16]annulene are also
shown for comparison. The degenerate (2-2) pair will be Jahn-Teller split,
and thus generate a doubly occupied HOMO and the LUMO+1. Details
of the labelling as in Fig. 4.

Jahn-Teller split rotational partner and derives essentially from
the HOMO of the [4N]annulene; it has HANCrim = n

4 ≡ N. As
in the case of the large [4N+2] annulenes, the HOMO−1 of the
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altan-[n]annulene is generated by the top antibonding level of the
parent annulene, and has HANC label ( n

2 − n
2 ) ≡ (2N − 2N). The

LUMO of the system, again as for the [4N+2] parent-annulene,
is always given by the non-bonding orbital concentrated on the
rim of the system, and has HANC label (∅ n

2 ) ≡ (∅2N). Finally,
the LUMO+1 of the altan-[4N]annulene is given by the anti-
bonding component of the Jahn-Teller split rotational partner,
and hence has HANC= n

4 ≡ N. It follows that the two dominant
transitions characterizing the ring-current response of any altan-
[4N]annulene arise from
1) HOMO−1 →LUMO (paratropic on the rim, as in [4N+2]parent
annulenes)
2) HOMO →LUMO+1 (paratropic on the hub).

3.3 altan-[4N +1]annulenes

The parent annulenes have 2N + 1 bonding orbitals and 2N anti-
bonding orbitals. Since the cubic (5) always produces two bond-
ing copies of the bonding level, and one bonding copy of the an-
tibonding stack, the generated altan-[4N+1]annulene graph will
have 2(2N+1)+2N = 6N+2 bonding orbitals. The typical spec-
trum is shown in Fig. 6 for altan-[9]annulene.
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Fig. 6 Solutions of cubic equation 5 with azimuthal node-count labelling
for altan-[9]annulene. The spectra of the parent annulenes are also
shown. Details of the labelling as in Fig. 4.

3.3.1 Monoanion

The altan-[4N+1]annulene graphs have 3n = 3(4N+1) = 12N+3

vertices, so that the anions have 12N + 4 electrons. From the
cubic, we know that there are exactly 6N + 2 bonding orbitals,
so that the monoanions altan-[4N+1]annulenes− are properly
closed-shell (as are the anions of the parent [4N+1]annulenes).

3.3.2 Monocation

The altan-[n]annulene graph has 3n = 3(4N + 1) vertices, so that
the cation has 12N+2 electrons. Hence, from the cubic, we know

that there are exactly 6N +2 bonding orbitals with a HOMO that
is doubly degenerate deriving from the q = n orbital of the parent
annulene. It follows that the cation is an open-shell system. A
Jahn-Teller distortion would lower the symmetry and open a gap
between the two components of the doubly-degenerate HOMO, so
that a new paratropic transition concentrated on the hub would
arise between the new non-degenerate HOMO with q = n, and
the new LUMO with q = n. Note that the diatropic ring current
on the rim is expected to survive, in this case generated by the
HOMO−1/HOMO−2 to LUMO+1/LUMO+2 translational transi-
tion discussed in the previous paragraph (see Fig. 6).

3.4 altan-[4N +3]annulenes

The parent annulenes have 2N + 1 bonding orbitals and 2N + 2

antibonding orbitals. As the cubic 5 always produces two bonding
copies of the parent annulene bonding level, and one bonding
copy of the parent antibonding stack, the generated altan-[4N +

3]annulene graph will have 2(2N + 1)+ 2N + 2 = 6N + 4 bonding
orbitals (Fig. 7).
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Fig. 7 Solutions of cubic equation (5) with azimuthal node-count labelling
for altan-[11]annulene. Spectra of the parent annulenes are also shown.
Details of the labelling as in Fig. 4.

3.4.1 Monocation

The graphs of altan-[4N + 3]annulenes have 3n = 3(4N + 3) ver-
tices, so that the cations have 12N + 8 electrons. From the
cubic we know that there are exactly 6N + 4 bonding orbitals,
so that altan-[4N + 3]annulenes+ are properly closed-shell (as
are the parent [4N + 3]annulenes+). From the HANC val-
ues of the eigenvalues of altan-[11]annulene (Fig. 7), the
current-density pattern can be expected to have a diatropic hub
(HOMO−2/HOMO−3 → LUMO+2/LUMO+3 transition) and a
diatropic rim (HOMO/HOMO−1 → LUMO/LUMO+1 transition).

6 | 1–11



3.4.2 Monoanion

A degenerate level is occupied by two electrons and a closed-
shell configuration can form upon Jahn-Teller splitting. In the
case of altan-[11]annulene the HOMO and LUMO would have
HANC labels (5+6) and the HOMO→LUMO transition should
be associated with a strong paratropic circulation on the rim,
counterbalanced by a diatropic circulation stemming from the
HOMO−1/HOMO−2→LUMO transition (for the use of bold fonts
for HANCs see the caption of Fig. 4). The hub can be expected
to support a paratropic current arising from the HOMO→ LUMO
transition, counterbalanced by a diatropic current arising from
the HOMO−3/HOMO−4→LUMO+1/LUMO+2 transition. It has
to be noted that upon binding to the rim, the degenerate pair
on the hub with HANC=3 splits in order to give the (3+8) and
(3+3) pairs, which are not the frontier orbitals.

4 Ab Initio Calculations

4.1 Computational Methods

Geometries and unperturbed Kohn-Sham orbitals were obtained
using the B97-2 functional,54 which gives geometries comparable
to B3LYP, but shielding constants superior to those obtained
by B3LYP and other functionals.55 The 6-31G(d,p) basis set
was adopted throughout. Geometries were determined at the
restricted level, and stability of the wavefunction checked using
the Stable function of Gaussian 09.56 Where UHF instability
was detected, geometries and currents were recomputed at
the unrestricted level, and in these cases, the character of the
wavefunction was further investigated through CAS(n,m)SCF
calculations, where the usual notation is used to indicate that
n electrons are distributed in all possible ways in m active
orbitals.57 A (2,2) active space was initially chosen according to
the UNO-CAS method.58 Tests with larger active spaces, (4,4)
and (6,6) were then performed. The chosen active spaces led to
smooth non-oscillating convergence.
Rather than the natural orbital occupation num-
bers, we will mainly report the poly-radical character
yi = 1

2 (n
odd
HONO−i + nodd

LUNO+i), where the nodd
HONO and nodd

LUNO

are the absolute values of the differences between the occupation
numbers of the natural and canonical orbitals for the highest
occupied and the lowest unoccupied orbital, respectively.59 A
value of y0 close to 1 is indicative of a well-defined diradical
character. Values of y1, y2,. . . close to 1 are indicative of
significant tetraradical, hexaradical. . . character.
Equalization of bond length is often considered a criterion of aro-
maticity.60 Rather than use one of the indicators proposed,60,61

which may have problems for rings with odd number of bonds,62

we will report simple arithmetic averages R and unbiased coef-
ficient of variations, which for samples of size nb bond lengths
can be computed as V ∗ = (1+ 1

4nb
)s(R)/R×100, where s(R) is the

sample standard deviation of the bond lengths.63

For closed-shell systems, current-density was computed at the
B97-2/6-31G(d,p) level with the CTOCD-DZ2 method, using
SYSMO64. For the open-shell molecules the first-order density
matrices perturbed by an external magnetic field, and the associ-
ated CTOCD-DZ2 current-density vector fields, were computed at

the B97-2/6-31G(d,p) level using an open-shell version51,65–67

of SYSMO, where the coupled-perturbed calculations were
started from unperturbed Kohn-Sham orbitals converged with
Gaussian 09 at the same level of theory. Sketches of the current
are obtained using a surface placed 1 au above the molecule.
For consistency with previous work,5,6 the probability current
density68 is plotted, so that paratropic/diatropic circulations run
in clockwise/anti-clockwise sense for a magnetic field pointing
out of the page. More details on the plots can be found in the
caption of Fig. 9.

4.2 Geometries and Nature of Ground States

Table 1 reports information on the optimized geometries. The
only planar molecules turn out to be altan-[10]annulene and al-

tan-[11]annulene±1; all others have a bowl shape, with the ex-
ception of altan-[12]annulene which resembles a twisted dough-
nut. All structures are local minima.
As a first remark, we note that for all molecules the spokes are
long bonds, which is consistent with the decoupling expected in
altanisation. With the single exception of altan-[9]annulene+1,
spokes are on average longer than the reference sp2 − sp2 single
bond: 1.478±0.012Å.69

For comparison, the spokes of the two synthesized altans, 8MC
and 10MC, are shorter, in the range 1.453-1.463 Å. Restricted
calculations show the expected behavior for rims and hubs in neu-
tral systems: 4N loops show bond-length variation (V ∗ > 0), while
4N + 2 loops show equalization (V ∗ = 0). Bond-length equaliza-
tion is also observed for 4N + 2 ionic altans, while for 4N ionic
altans some variation is present not only on the hub, but also on
the rim.
Use of the unrestricted optimization in the four molecules af-
fected by UHF instability led to minor changes in the case of
altan-[12]annulene alone, where the equilibrium geometry lies
on a very shallow hypersurface (the lowest vibrational frequency,
representing an overall puckering, is only 6.2 and 1.7 cm−1 at re-
stricted and unrestricted levels, respectively). The two geometries
are indistinguishable if an ultrafine grid is used for computing in-
tegrals. For the other three molecules affected by UHF instability,
the unrestricted optimization led to a complete equalization of
bond lengths and increased symmetry (from C4 to C8 for altan-
[8]annulene, and from C1 to C9v for altan-[9]annulene+). Ow-
ing to the open-shell nature of the systems, these changes cannot
be straightforwardly considered as aromatisation processes. In-
deed, singlet D4h cyclobutadiene is endowed with a strong para-
tropic current,70 and the same is expected for D8h cyclooctate-
traene,71,72 whereas the opposite behavior characterizes triplet
states.35. The UB97-2 solution has high spin contamination: in
all cases S(S+1)≃ 1 and only two natural orbital occupation num-
bers are different from closed-shell values, both taking the value
1.0.

The nature of the ground states was checked at the more ac-
curate CASSCF level. The differences ∆ST = ET − ES between
the energy of the lowest triplet ET and singlet ES state calcu-
lated at CASSCF level are reported in Table 2, together with
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Table 1 Geometrical features of the molecules studied: point group, av-
erages (in Å), standard deviations (in Å) and coefficient of variation of
bond-lengths in hub, rim and spokes (in Å). Geometrical optimization at
RB97-2 level (and UB97-2 where the point group is preceded by a U) in
the 6-31G(d, p) basis set.

Molecule PG Rav s(R) V∗

altan-[8]annulene C4 hub 1.393 0.050 3.68
rim 1.426 0.047 3.36
spokes 1.474 0.001 0.06

U C8 hub 1.391 0.000 0.00
rim 1.426 0.047 3.38
spokes 1.473 0.000 0.00

altan-[9]annulene+1 C1 hub 1.388 0.032 2.38
rim 1.420 0.004 0.29
spokes 1.467 0.004 0.31

U C9v hub 1.387 0.000 0.02
rim 1.421 0.001 0.06
spokes 1.466 0.002 0.13

altan-[9]annulene−1 C9v hub 1.386 0.000 0.00
rim 1.424 0.000 0.00
spokes 1.486 0.000 0.00

altan-[10]annulene C10h hub 1.380 0.000 0.00
rim 1.425 0.043 3.03
spokes 1.486 0.000 0.00

altan-[11]annulene+1 D11h hub 1.403 0.000 0.00
rim 1.399 0.000 0.00
spokes 1.490 0.000 0.01

altan-[11]annulene−1 C2v hub 1.410 0.025 1.82
rim 1.402 0.021 1.53
spokes 1.492 0.028 1.94

U C2v hub 1.410 0.021 1.49
rim 1.402 0.013 0.94
spokes 1.492 0.008 0.55

altan-[12]annulene C2 hub 1.423 0.047 3.34
rim 1.392 0.031 2.22
spokes 1.504 0.000 0.03

their polyradical characters. All the molecules are predicted to
have singlet ground states in their symmetrized geometries. The
ST gap ∆ST is larger than 1 eV for altan-[12]annulene, close to
0.5 eV for altan-[8]annulene and altan-[9]annulene+ and van-
ishingly small for altan-[11]annulene−. Consistently, the diradi-
cal character yS

0 is practically null for altan-[12]annulene, small
for altan-[8]annulene and altan-[9]annulene+1, and close to 1
for altan-[11]annulene−.

4.3 Current Density Patterns

4.3.1 Neutral systems

The current density maps computed at the restricted level for the
three neutral systems show what could be expected for disjoint
annulenes: diatropic or paratropic for 4N + 2 or 4N annulenes,
in full agreement with the altanisation design strategy.5,6 For the
sake of completeness, the maps for altan-[10]annulene and altan-
[12]annulene are shown in Fig. 8. However, altan-[8]annulene
is affected by a UHF instability. The unrestricted calculation for
altan-[8]annulene is qualitatively similar to the restricted calcula-
tion (Fig. 9). The absence of any qualitative change in the pattern

Table 2 Indices of polyradical character, y0 and y1, for the low-
est energy singlet (S) and triplet (T) states of altan-[8]annulene
(a8a), altan-[9]annulene+ (a9a+), altan-[11]annulene− (a11a-) and altan-

[12]annulene (a12a) at different CAS(n,m)SCF levels, in with the 6-
31G(d, p) basis set. ∆ST is the energy difference in eV. Indices y0 and
y1 are derived from the populations of natural orbitals. 59

(n,m) yS
0 yS

1 yT
0 yT

1 ∆ST

a8a (2,2) 0.11 - 1 - 0.50
a8a (4,4) 0.13 0.10 1.00 0.07 0.59
a9a+ (2,2) 0.11 - 1.00 - 0.39
a9a+ (4,4) 0.15 0.07 1.00 0.06 0.59
a9a+ (6,6) 0.18 0.95 1.00 0.07 0.44
a11a− (2,2) 0.40 - 1.00 - −0.11
a11a− (4,4) 0.96 0.08 0.97 0.00 −0.10
a11a− (6,6) 0.81 0.08 1.00 0.08 0.006

a12a (2,2) 0.002 - 1.00 - 1.88
a12a (4,4) 0.00 0.00 1.00 0.00 1.33

Fig. 8 Maps of probability-current density for altan-[10]annulene and
(left) altan-[12]annulene (right) computed at the B97-2/6-31G(d,p)//B97-
2/6-31G(d,p). The maps are computed on a surface placed at a height
of 1 bohr above the molecule. For the bowl-shaped molecule on the left,
the point of view is outside the bowl and far away. The isolated arrow in
each panel indicates the maximum value of the current density in ben-
zene computed at the same level ( jmax = 0.07 au). For a magnetic field
pointing to the viewer, a diatropic/paratropic probability current density is
anticlockwise/clockwise. Red/blue arrows indicate a current density vec-
tor with a nonclassical component parallel/antiparallel to the magnetic
field that exceeds 10%.
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is consistent with the small diradical character reported in Table
1.

d

f

c

b

e

Fig. 9 Maps of the probability current density of π electrons computed
at the B97-2/6-31G(d,p)//B97-2/6-31G(d,p) level (left) and UB97-2/6-
31G(d,p)//UB97-2/6-31G(d,p) levels (right) for altan-[8]annulene (a,b),
altan-[9]annulene+ (c,d), and altan-[11]annulene− (e,f) computed on a
surface placed at a height of 1 bohr above the molecule. For bowl-shaped
molecules (a-d), the point of view is outside the bowl and far away. Other
plotting details as in Figure 8.

4.3.2 (4N +2)π altan ions

The current-density map of altan-[9]annulene−1 and altan-
[11]annulene+1 show two strong concentric diatropic circula-
tions, as expected from the Hückel scheme above (Fig. 10).

4.3.3 4Nπ altan ions

At the restricted level, the current density map of altan-
[9]annulene+ shows a a strong paratropic hub inside a diatropic
rim, consistently with the Hückel analysis above, and with a pre-
diction of full decoupling of a charged annulene inside a 4N + 2

annulene. The symmetrization occurring at the unrestricted level
does not affect the overall tropicity, which remains diatropic on
the rim and paratropic on the hub.
For altan-[11]annulene−1 the current density maps at both re-
stricted and unrestricted level show a global paratropic response,
and the diatropic rim is absent. As with the geometry, the map ob-
tained at the unrestricted level is noticeably more symmetric. In-

Fig. 10 Maps of the probability current density of π electrons of altan-
[9]annulene−1 and altan-[11]annulene+1. Details of the maps as in Fig.
8.

terestingly, the pattern could also not be anticipated considering
only resonance structures with fixed single bonds on the spokes;
it requires significant participation of resonance structures such as
II in Fig. 2.

5 Conclusions

The altanisation strategy was introduced to design large para-
tropic circulations,22,26 of interest for application in organic
electronic devices.1,2,4 Here we have considered altanisation of
[n]annulenes, extending previous investigations5,6 to anions and
cations of altans of odd-membered [n]annulenes.
Analytical expressions for the eigenvalues of the Hückel Hamil-
tonian for altan-[n]annulenes have been derived and used to
predict the tropicities of the concentric rings of atoms. Finally,
density-functional calculations have been performed on seven
altan-[n]annulenes, three neutral and four charged. In presence
of instability of the closed-shell singlet wavefunction, its diradical
character has been studied by CAS calculations.
For neutral systems, already discussed as prototypal altan sys-
tems,18 there is at most a mild diradical character, and the trop-
icities are in wide agreement with what could be expected for
two decoupled annulenes. The charged systems always have a
4N + 2 perimeter and thus, in the annulene-within-an-annulene
framework, should all display a diatropic perimeter. The anion
altan-[11]annulene− is a notable exception among the molecules
studied: its current-density map shows two concentric paratropic
circulations. A first interpretation of this different behavior can be
obtained considering resonance structures such as II in Scheme 2,
which are characterized by 4N conjugated circuits.
Also within the ipsocentric approach, even operated at the tight
binding level, the paratropic circulation on the hub is understand-
able, because the frontier orbitals do not stem from the degener-
ate frontier orbitals of the [11]annulene− fragment.
It is noteworthy that the only altan-molecule studied here that
does not conform to the AWA scheme has a well-defined diradical
character in its singlet ground state (Table 2). From the perspec-
tive of resonance structures, it can be noted that just as the onset
of a single charge in an altan-molecule allows resonance forms
where the spokes are not single bonds, the presence of two or
more unpaired electrons, as needed to describe open-shell dirad-
icals and polyradicals, also allows double bond character of the
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spokes and thus hints at a stronger coupling of the perimeter and
the inner part of the altan-molecule.
From the perspective of Hückel molecular orbitals, an uncoupled
altan-[11]annulene− has 4 degenerate orbitals, labeled (3) on the
hub and (6) on the rim, Fig. 7. As these orbitals have no over-
lap, an open-shell singlet is well understandable, and can be de-
scribed as an [11]annulene radical within a [22]annulene anion.
Both annulenes can then be straightforwardly predicted to host a
paratropic current. We can anticipate that the altanisation strat-
egy will be in difficulties whenever the altan will be an open-shell
singlet, because of an incorrect identification of the parent units.
However, proper identification of the multiplicity of the parent
units will reconcile the counting of carbon atoms with the global
tropicities. This extension of the altanisation strategy could be
beneficial for the quest of new materials, also considering that,
thanks to the choice of a non-all-cis conformation of the parent
annulene, more altan-annulenes are likely to become available
experimentally in the future.32
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