
This is a repository copy of Toward robust and predictive geodynamic modeling : the way 
forward in frictional plasticity.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/158953/

Version: Published Version

Article:

Duretz, T., de Borst, R., Yamato, P. et al. (1 more author) (2020) Toward robust and 
predictive geodynamic modeling : the way forward in frictional plasticity. Geophysical 
Research Letters, 47 (5). ISSN 0094-8276 

https://doi.org/10.1029/2019gl086027

© 2020 American Geophysical Union. Reproduced in accordance with the publisher's 
self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Toward Robust and Predictive Geodynamic Modeling:
TheWay Forward in Frictional Plasticity

Thibault Duretz1,2 , René de Borst3 , Philippe Yamato1,4 , and Laetitia Le Pourhiet5

1Univ Rennes, CNRS, Géosciences Rennes UMR 6118, Rennes, France, 2Institut des Sciences de la Terre, University of

Lausanne, Lausanne, Switzerland, 3Department of Civil and Structural Engineering, University of Sheffield, Sheffield,

UK, 4Institut Universitaire de France (IUF), Paris, France, 5Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut

des Sciences de la Terre de Paris (iSTeP), Paris, France

Abstract Strain localization is a fundamental characteristic of plate tectonics. The resulting

deformation structures shape the margins of continents and the internal structure of tectonic plates. To

model the occurrence of faulting, geodynamic models generally rely on frictional plasticity. Frictional

plasticity is normally embedded in visco-plastic (V-P) or visco-elasto-plastic (V-E-P) rheologies. This poses

some fundamental issues, such as the difficulty, or often inability, to obtain a converged equilibrium state

and a severe grid sensitivity. Here, we study shear banding at crustal-scale using a visco-elasto-viscoplastic

(V-E-VP) model. We show that this rheology allows to accurately satisfy equilibrium, leads to shear band

patterns that converge upon mesh refinement, and preserves characteristic shear band angles. Moreover, a

comparison with analytic models and laboratory data reveals that V-E-VP rheology captures first-order

characteristics of frictional plasticity. V-E-VP models thus overcomes limitations of V-P and V-E-P models

and appears as an attractive alternative for geodynamic modeling.

1. Introduction

Lithospheric-scale strain localization is a crucial phenomenon that enables the occurrence of plate tectonics

(Tackley, 2000; Ulvrova et al., 2019). The emergence of faults allows for the nucleation of plate boundaries

and the specific shapes of tectonic plates, which subsequently can accommodate relative motions. While

lithospheric deformations mainly take place in the ductile regime, where processes such as shear heating

or grain size reduction control the emergence of strain localization (Bercovici et al., 2001; Kiss et al., 2019),

crucial contributions to the deformation of the lithosphere as a whole occur in the frictional plastic—or

brittle—regime. Indeed, in the colder regions of the lithosphere, that is, at shallow crustal levels and poten-

tially at the top of the mantle lithosphere, frictional plasticity is the governing mechanism. As a result, the

overall deformation is characterized by faulting and by the development of typical structural features such

as tilted blocks, tectonic nappes, and fault zones.

It is known from laboratory experiments that the strength of rocks in the plastic domain exhibits a strong

pressure dependence accompanied by a weak rate dependence (Byerlee, 1978; Rutter & Glover, 2012). This

observation has led to the development of frictional plasticity models, in which the shear strength is related

to the normal stress via the angle of internal friction and the cohesion. Another peculiarity of the defor-

mation of rocks is that plastic flow is virtually incompressible, definitely at high confining pressures. Thus,

the difference between the internal friction (�) and dilation (�) angles is large, which is a typical feature

of nonassociated plastic flow (Vermeer & de Borst, 1984). Under such conditions, theoretical derivations

(Anderson, 1905; Arthur et al., 1977; Vermeer, 1990) predict that faults occur at characteristic angles with

the principal stress direction, which was confirmed by early analog models (Hubbert, 1937; McClay, 1990),

as well as geological observations (e.g., Anderson, 1951; Brun et al., 1992; Coward et al., 1991; McLeod et al.,

2000; Ori, 1989).

In the past decades, numerical modeling has become pivotal for studying geodynamic processes. Numer-

ical models can analyze several physical phenomena simultaneously, for example, thermo-mechanical or

hydro-mechanical problems, while handling complex rheological models, ranging from the brittle to the

ductile regime. To this end, visco-elasto-plastic models (V-E-P) and visco-plastic models (V-P) have been

employedwidely (e.g., Fullsack, 1995; Gerbault et al., 1998; Poliakov et al., 1993;Willett, 1992). Suchmodels
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rely on a series (Maxwell-type) arrangement of the rheological elements and assume the plastic deforma-

tion to be rate independent. This approach is successful at capturing the characteristic angles of shear bands

formation (Kaus, 2010; Lemiale et al., 2008; Moresi et al., 2007). However, it is known that it is extremely

difficult, if not impossible, to reach a converged equilibrium state using these models (Fraters et al., 2019;

Spiegelman et al., 2016), which casts doubts on their reliability. Moreover, nonassociated flow or strain

softening in the plasticity model induces a severe mesh sensitivity (de Borst et al., 1993), which adds to

the questions regarding the reliability of geodynamic models to properly predict faulting. The behavior of

rate-independent plastic flow contrasts with that of power law viscous flow,which generally leads to globally

convergent and thus reliable numerical solutions (Adamuszek et al., 2016; Räss et al., 2017).

In the following, we apply an alternative rheological model, namely, a visco-elasto-viscoplastic model

(V-E-VP), to study the evolution of shear bands in geodynamicmodels. We present two-dimensional models

of crustal stress buildup in either extension or compression. It will be demonstrated that, besides a smooth

convergence toward an equilibrium state is obtained within a tight tolerance, shear band patterns also con-

verge upon mesh refinement, while preserving characteristic shear band angles. We compare our results to

those obtained with a widely used V-E-P formulation and show clear improvements. Finally, we verify our

results using fundamental analytical relationships and validate them by comparing numerically obtained

stress states with classical laboratory data.

2. Method andModel Configuration

We consider a rheological model that puts in series a viscous dashpot, an elastic spring, and a viscoplastic

element (Figure 1):

.
� =

.
�
v +

.
�
e +

.
�
vp
, (1)

where the superscripts v, e, and vp denote the viscous, the elastic, and the viscoplastic contributions, respec-

tively. The viscous element (Figure 1a, left) relates the deviatoric effective stress, �II =
√
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2
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law creep relation, with the effective viscous strain rate defined as
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where A is a coefficient, n is an exponent, T is the absolute temperature, Q is the activation energy, and R

is the gas constant. The elastic element (Figure 1a, center) linearly relates stress to strain, and the effective

deviatoric elastic strain rate reads

.
�eII =

.
�II

2G
, (3)

where G is the shear modulus. The viscoplastic element (Figure 1a, right panel) includes a dependence on

the pressure P and on the effective viscoplastic strain rate,
.
�
vp
II
. Herein, we use the viscoplastic consistency

model (Heeres et al., 2002; Wang et al., 1997), so that the yield function is expressed as

F = �II − C cos(�) − P sin(�) − �vp
.
�
vp
II

(4)

with C the cohesion, � the angle of internal friction, and �vp the viscosity of the damper. Different from

previous studies (Duretz, Souche, et al., 2018; Duretz et al., 2019), plastic flow is assumed to be incompress-

ible, so that the plastic strain rate is derived from a plastic potential, Q = �II. We employ a velocity-pressure

formulation coupled to an effective viscosity rheological implementation (Moresi et al., 2003). These

choices are deliberate in order to conform at most with classical implementations used in geodynamics

(visco-elastic-plastic rheology and Picard linearization). We note that neither C nor � depend on the plas-

tic strain history, so that strain weakening is not included in the present calculations. The methodology is

described in Text S1 in the supporting information.

The resulting rheology is termed a visco-elastic-viscoplastic (V-E-VP) model (de Borst & Duretz, 2020). It is

different from the widely used visco-elastic-plastic (V-E-P) model, which also obeys equation (1) but merely

has a plastic slider in the plastic element,making the plastic strain rate insensitive to the rate of deformation.
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Figure 1. (a) Rheological elements in the visco-elasto-viscoplastic model (V-E-VP). From left to right: temperature and
strain-rate dependent viscous creep, linear elasticity and pressure, and strain-rate-dependent viscoplastic flow.
(b) Model configuration and boundary conditions for the compression case. g represents the acceleration of gravity.

We solve the balance ofmomentum together with the constitutivemodel that describes the V-E-VP rheology

using a finite difference scheme. The code is based on the M2Di routines (Räss et al., 2017), which allow for

solving the resulting set of nonlinear algebraic equations using global Newton-Raphson iterations. At the

grid level (vertices and centroids), the nonlinear rheological equation, equation (1), is solved at each global

iteration using local Newton-Raphson iterations (Popov & Sobolev, 2008; Schmalholz & Duretz, 2017). The

related scripts are made publicly available as part of the M2Di routines.

The model consists of a 100 × 30 km slice of Westerly Granite (Hansen & Carter, 1983), which comprises

an imperfection at the center of the domain. This weak inclusion with a 2 km radius serves to initiate

localized deformations. The model configuration is thus perfectly symmetric. The model includes a verti-

cal temperature gradient (−15 ◦ C km−1), a constant density (2,700 kg m−3), and the acceleration of gravity

(g� = −10ms−2). The domain is subjected to kinematic boundary conditions,which cause a pure shear stress

state (Figure 1B).All boundaries are free to slip. Thematerial can behave in a ductilemanner in the lower, hot

part of the domain (displaying temperature-dependent power law creep), and in an elasto-viscoplastic man-

ner in the upper, cold part of the domain. The parameters are given in Table 1 and in the caption of Figure 1.

We note that the V-E-VP rheology requires an additional viscosity parameter, �vp. We have chosen this vis-

cosity based on the magnitude of the boundary strain rate
.
�BC, which was set to 10

−15 s−1. We have assumed

that, in the basic pure shear state of deformation, the additional stress, or overstress �̂, caused by the damper

parallel to the plastic slider, should be in the order of 1MPa. The resulting viscosity �vp = �̂∕
.
�BC = 1021 Pa·s.

Table 1
Rheological Parameters Used in the Simulations

A [Pa−n s−1] Q [J mol−1] n G [Pa] C [Pa] � �vp [Pa s]

Crust 3.1623 × 10−26 186.5 × 103 3.3 1010 5.0 × 107 arctan(0.6) 1021

Imperfection 1.0 × 10−20 0 1.0 1010 105 0.0 1021
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Figure 2. Simulations for various resolutions under extension (left-hand side) and compression (right-hand side). The
colors correspond to the magnitude of the deviatoric strain rate (

.
�II). Panels (a), (b), and (c) corresponds to increasing

grid resolutions. The surface temperature was set equal to 20 ◦ C, the temperature gradient was 15 ◦ C km−1, and the
background strain rate was 10−15 s−1.

3. Results

The model undergoes compression or extension during ≈1.3 My (101 time steps of 4 × 1011 s). During

this time, the stress field can fully build up. With ongoing tectonic straining, shear bands emerge in the

elasto-viscoplastic parts of the crust. They generally initiate from the top surface where the yield stress

is minimal (≈ C), propagate downward, and finally merge with deeper branches generated around the

imperfection. Shear bands reflect at the brittle-ductile transition and at the top surface, resulting in an

anastomosed shear band pattern (Figure 2). Detailed evolution is depicted in Figure S1.

We first emphasize that, different frommodels based on a visco-plastic (V-P) or visco-elastic-plastic (V-E-P)

rheology, the V-E-VPmodel is normally able to satisfy a tight tolerance for the momentum balance within a

reasonable number of iterations. Figure 3 shows that, when using the V-E-VP rheology, 10 Newton-Raphson

iterations or less within a time step are normally sufficient to converge toward an equilibrium state. More-

over, this number is almost independent of the numerical resolutions. This is in contrast with models using

a V-E-P rheology, which always requiremore than 10 iterations at each time step and often do not reach con-

vergence. While algorithms based on time step reduction (e.g., Popov & Sobolev, 2008) or line searches (e.g.,

Duretz, Souche, et al., 2018) may help, they do not ensure convergence. Moreover, with a V-E-P rheology
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Figure 3. Global nonlinear convergence of V-E-VP models depicted in Figure 2 (compression). V-E-P models are not
depicted as they always require more than 10 iterations and usually do not globally converge.

convergence problems worsen with grid refinement (e.g., Duretz, Souche, et al., 2018), while the conver-

gence characteristics (e.g., the number of iterations needed to obtain a convergence solution) are almost

independent of the discretisation for a V-E-VP rheology (Figure 3).

We next analyze the shear band pattern at the end of the simulations for different resolutions (Figure 2). The

first observation is that shear band angles are not affected by the use of a V-E-VP rheology. Most shear bands

initiate at angles between 55◦ and 60◦ in extension, and between 30◦ and 35◦ in compression. The overall

shear band pattern is remarkably stable upon increasing the spatial (Figure 2) or temporal resolution (Figure

S2).However, an increased spatial resolution reveals the occurrence of second-order, finer structures.Hence,

full convergence (in the sense that all secondary structures are resolved) cannot yet be ascertained at the

current level of discretization.

It is however clear that shear banding patterns converge with increasing resolution in V-E-VP models.

Figure 4 depicts horizontal profiles of the invariant of deviatoric strain rate sampled at depth of−10 km. For

both V-E-VP and V-E-P models, we have computed the correlation coefficient between the highest resolu-

tion (1,101 × 661 cells) and lower resolution models. For the V-E-VP model (Figure 4a), strain rate profiles

comprise in phase shear bands, with a correlation coefficient varying from 0.5 to 0.85 from low to high reso-

lution. In particular, we see the emergence of thick shear bands in the middle of the domains, whose widths

are independent from the grid spacing. In contrast, V-E-P models are characterized by out of phase shear

bands, with correlation coefficients ranging between −0.03 and 0.02 and no notable improvement upon

mesh refinement (Figure S3).

It is also important to point out that the deformation patterns are perfectly symmetric (Figure 4a), which is

a consequence of the fact that, when using the V-E-VP model, momentum balance can be satisfied within

a tight tolerance (5 × 10−10 for both relative and absolute momentum residuals in L2 norm). Again, this is

in contrast to the results for the V-E-P rheology, which fails to produce a strictly symmetric deformation

pattern (Figure 4b), even though the applied initial and boundary conditions are perfectly symmetric and

are therefore not reliable. We recognize that it is not impossible that symmetric solutions are obtained for

V-E-P rheologies. Indeed, imperfections are responsible for triggering symmetry-breaking solutions, and

even round-off errors can act as imperfections, depending on the particular algorithm and even implemen-

tation.Wewish to emphasize, however, that in such cases, the algorithm essentially fails to pick up themore

critical, symmetry-breaking solution.
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Figure 4. Colormaps of the second invariant of the plastic strain rate tensor (enlarged) and horizontal profiles of the
second invariant of the total strain rate for V-E-VP and V-E-P models. Profiles were probed at � = −10 km in models of
various grid resolutions (see legend). (a) V-E-VP models exhibit symmetric shear banding and correlating shear band
locations at different mesh resolutions. (b) V-E-P models show erratic shear band locations at different resolutions as
well as loss of symmetry.

The additional damper in the V-E-VP model causes an overstress, that is, a stress in addition to the plas-

tic slider. To assess the relevance of the V-E-VP model for modeling frictional lithospheric deformations,

we have compared our predicted stress states with laboratory data of rock friction (Figure 5a). For nor-

mal stresses in excess of 200 MPa, a reasonable agreement was found between experimentally obtained

and numerically calculated stresses. For normal stresses below 200 MPa a deviation was observed, since

our model only features a single yield envelope with a nonzero cohesion (Table 1). We have also verified

that the model satisfies fundamental relations, which characterize the frictional domain, and assumes a

rate-independent plastic rheology. We report profiles of shear stress as a function of depth for extension as

well as compression (Figure 5b). As expected for a frictional layer with a friction angle of 30◦, the shear

stress is proportional to one third of the lithostatic pressure in extension and to the lithostatic pressure under

compression. We also report profiles of the pressure with increasing depth in extension and compression

(Figure 5c). The pressure in the frictional layer is proportional to two thirds of the lithostatic pressure in

extension and two times the lithostatic pressure in compression. The V-E-VP model is thus in agreement

with analytical predictions (Petrini & Podladchikov, 2000), and the overstress inherent in the V-E-VP for-

mulation does not result in a significant deviation from laboratory data, while still satisfying fundamental

relations for frictional deformation.
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Figure 5. Verification and validation of the V-E-VP model. Panel (a) shows the comparison of stress states extracted
from the simulations (black and gray dots) with laboratory data of Byerlee (1978) and Rutter and Glover (2012). The
gray dashed line corresponds the rate-independent Drucker-Prager yield envelope. Panel (b) corresponds to vertical
profiles of the magnitude of the deviatoric stress �II. Green lines correspond to analytical predictions of the evolution of
the deviatoric stresses with depth using a rate-independent Drucker-Prager model. Panel (c) corresponds to the vertical
pressure profiles. Green lines are analytically predicted pressure-depth profiles of Petrini and Podladchikov (2000).

4. Summary and Discussion

The V-E-VP rheology is a potential cure for the lack of convergence and the pathological mesh dependence

of geodynamic models, which involve localized frictional deformations. These issues are particularly rele-

vant for rheological models, which feature strain softening and/or nonassociated plastic flow but lack an

internal length scale. Physically meaningful length scales may be introduced by accounting for more com-

plexmultiphysics processes such as thermo-mechanical (Duretz et al., 2015) or hydro-mechanical couplings

(Brantut et al., 2017). Other, purelymechanicallymotivated regularizationmechanisms have been proposed

mainly in the engineering literature, including nonlocal plasticity (Baźant & Jirasek, 2002), gradient plas-

ticity (de Borst & Mühlhaus, 1992), and the Cosserat continuum (de Borst, 1991; Mühlhaus & Vardoulakis,

1987). The viscoplastic approach is the simplest way of regularization, as it does not increase the cost of the

computations (i.e., not increasing the number of degrees of freedom), nor does it alter the structure of exist-

ing geodynamic codes. Moreover, the approach is also applicable to models that include plastic volumetric

deformations (Duretz et al., 2019; Jacquey & Cacace, 2020a) and can be extended to constitutive models

involving damage laws (Jacquey & Cacace, 2020b), grain-size evolution, or rate and state friction laws.

Another aspect that should be highlighted is the role of elasticity. By including elasticity, it is possible to

resolve progressive stress build up during simulations, the initiation and propagation of shear bands, and

elasto-(visco)plastic loading and unloading near shear bands. The inclusion of elasticity in the rheological

model is crucial for establishing robust numerical models that result in correct shear band patterns and in

a smooth convergence toward a momentum balance within a tight tolerance. Neglecting this stress buildup

enforces the construction of complex shear band networks within a single time step, which can lead to an

erratic non-linear process (Spiegelman et al., 2016).

Progressive loss of symmetry, in spite of the initial conditions, boundary conditions, and all other features

being symmetric, is often observed in numerical models of tectonic deformation (e.g., Buiter et al., 2006).

Such loss of symmetry was attributed to strain softening (Huismans & Beaumont, 2003) and subsequent

mode selection (Huismans et al., 2005). Indeed, the introduction of strain softening, or nonassociated plas-

ticity as in this paper, can lead to loss of uniqueness of the boundary value problem. For nonregularized

rheologies, like theV-P or V-E-Pmodels, the number of solutions can even be infinite and is in practice set by

the discretization. This is the underlying reason that the asymmetry tends to worsen upon grid refinement.

Moreover, imperfections are needed to trigger symmetry-breaking solutions, and since even round-off errors

can act as imperfections, an inability to obtain an equilibrium solution, as is frequently observed in codes

exploiting V-P or V-E-Pmodels, will contribute to the chance that asymmetric solutions are obtained, which

are not triggered by a physical imperfection. Therefore, care has to be takenwhen interpreting results ofmod-

els involving faulting since important features may result from numerical inaccuracies. The use of V-E-VP
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model, which delivers converged numerical solutions and reduces mesh sensitivity, will likely improve this

aspect.

More generally, we expect that the use of V-E-VP models will markedly reduce the variability of results that

so far prevails in themodeling of brittle tectonic processes (Buiter et al., 2006, 2016). Further work is needed

involving for instance other discretization methods such as finite elements, in order to evaluate the robust-

ness of V-E-VP models and to determine wether the V-E-VP approach is the most adequate regularization

method for the purpose of geodynamic modeling.

Here we have considered a linear viscous viscoplastic element, which may result in large overstress in

regions where the viscoplastic strain rate is large. The impact of a power law viscoplastic elements, resulting

in smaller overstress, will need to be investigated. Models would benefit from higher-order time integration

(e.g., Duretz, Räss, et al., 2018) and adaptative time integration, which should further increase their robust-

ness. Future work should also address the use of more sophisticated plasticity models, such as multisurface

plasticity or nonlinear envelopes. Inclusion of the latter features will be essential for accurately resolving

key processes (e.g., compaction/dilation bands and dyking) that will arise as the resolution power and the

physics (e.g., multiphase flow and magmatic processes) of geodynamic models are continuously enriched.

References
Adamuszek, M., Dabrowski, M., & Schmid, D. W. (2016). Folder: A numerical tool to simulate the development of structures in layered
media. Journal of Structural Geology, 84, 85–101. https://doi.org/10.1016/j.jsg.2016.01.001

Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. https://doi.org/10.1144/
transed.8.3.387

Anderson, E. M. (1951). The dynamics of faulting and dyke formation:With applications to Britain (2nd ed.). Edinburgh and London: Oliver
and Boyd.

Arthur, J. R. F., Dunstan, T., Al-Ani, Q. A. J. L., & Assadi, A. (1977). Plastic deformation and failure in granular media.Géotechnique, 27(1),
53–74.
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