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Abstract: This paper considers an application of a new

variant of a multi-objective ��exi bl ej ob-s ho pscheduli ng

problem, featuringmultisubset selection of manufactured

recipes, to a real-world chemical plant. The problem is

optimised using a multi-objective genetic algorithm with

customisedmutation and elitismoperators thatminimises

both the total production time and the produced commod-

ity surplus. The algorithm evaluation is performed with

both randomandhistoricmanufacturing orders. The latter

demonstrated that the proposed system can lead to more

than 10% makespan improvements in comparison with

human operators.

Keywords: multi-objective job-shop scheduling, process

manufacturing optimisation, multi-objective genetic algo-

rithms

Zusammenfassung: Dieser Artikel beschreibt die Anwen-

dung einer neuen Variante eines mehrdimensionalen Op-

timierungsproblems in der ��exi bl e nFerti gungspl anung

mit mehreren Teilmengen von Fertigungsrezepten in ei-

ner realen Fabrik zur Herstellung von Farben. Das Pro-

blem wird mithilfe eines mehrdimensionalen genetischen

Algorithmus mit angepassten Mutations- und Elitismus-

Operatoren optimiert. Dieser Algorithmus minimiert so-

wohl die Gesamtproduktionszeit als auch den produzier-

ten Warenüberschuss. Die Bewertung des Algorithmus

wird sowohl mit zufällig generierten als auch mit realen
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historischen Fertigungsaufträgen durchgeführt. Letztere

haben gezeigt, dass das vorgeschlagene System im Ver-

gleich zummenschlichen Bediener zu einer Verbesserung

der Produktionsdauer ummehr als 10% führen kann.

Schlagwörter: mehrdimensionale Fertigungsplanung,

Fertigungsoptimierung, mehrdimensionale genetische Al-

gorithmen

 Introduction

Manufacturing processes’ scheduling is often modelled

using Job-shop Scheduling Problem (JSP), an optimisa-

tion problem whose purpose is to determine allocation of

manufacturing jobs to the available resources at particu-

lar times to optimise certain key objectives, for example,

the total manufacturing time aka makespan [7]. Due to its

practical applications, the research related to JSP has been

conducted by numerous researchers [1] and assorted vari-

ants of this problemhave been introduced to describe real-

world scenarios. Some examples of them are Flexible Job-

shop Scheduling Problem (FJSP), where each job can be

processed on any machine, FJSP with process plan ��exi-

bility (FJSP-PPF) [12] or JSP with alternative process plans

[13]. Recently, amulti-objective Flexible Job-ShopSchedul-

ing Problem with Alternative Recipes (FJSPAR) has been

introduced in [4]. In FJSPAR, each bulk commodity can

be produced in various quantities using di��erentreci pes

with di��erent manuf act uri n gti me , ener g yconsu mpti on

etc. The recipes can have di��erentresourc ea ��nit i es, i .e.,

they can be executed on certain classes of resources only.

The objectives are to minimise the makespan and produce

the commodities in the amounts as close to the ordered

ones as possible, i. e., to minimise the discrepancies be-

tween the ordered and the manufactured quantities for

each commodity. FJSPAR not only schedules the jobs but

also selects the multisubset (i. e., a combination with rep-
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Figure 1: An example chemical plant architecture.

etitions) of the recipes to bemanufactured. Hence, FJSPAR

integrates both the process planning and scheduling.

The introduction of FJSPAR has been motivated with

a real-worldmanufacturing process for mixing/dispersion

of powdery, liquid and paste components, following a

stored recipe in a chemical plantwhosearchitecture is sim-

ilar to the one presented in Fig. 1. In this gure, each re-

source πk, k ∈ {1, . . . , 9} represents a production linewhose
main component is a mixer. The mixers vary for their size

and processing time and hence need various recipes. Four

types of white paints can be produced in the factory and

each mixer can be used to produce any commodity. The

amount of paint produced during one manufacturing pro-

cess andprocessing timevarydependingon themixer type

and paint type and there is a unique recipe for each com-

bination of mixer type and paint type. The storage tanks,

shown at the bottom of the gure, are connected with the

mixers via pipelines. They limit the amount of the paints

that can be produced as they have limited capacity. Hence,

the considered FJSPAR instance has the objectives related

tominimisation both the totalmanufacturing time and the

amount of produced paint as long as they satisfy the order.

This paper is complementary to the previous paper

of the authors [4]. That paper proposed a new variant of

a multi-objective ��exi bl ej ob-s ho pscheduli n gpr obl e m,

featuring multisubset selection of manufactured recipes,

a novel associated chromosome encoding and customi-

sation of the classic MOEA/D multi-objective genetic al-

gorithm with new genetic operators. This paper focuses

more on the application side of this research. For tech-

nical details regarding the algorithmic issues related to

the proposed technique, a reader is referred to the above-

mentioned paper.

 Related work

As manufacturing resource scheduling is an instance of

NP-hard problems [5], it is di� �cul tt ob esol ve dexactl y

in practice and hence various heuristics have been ap-

plied. Since such scheduling often requires optimisation

concerning more than one criterion, multi- or even many-

objective heuristics have been employed. Among them, ge-

netic algorithms (GAs) have been gained popularity since

a seminal paper by Ishibuchi and Murata [9]. In that

paper, non-dominated1 solutions have been sought for

makespan, total ��o wti mean dt ar di ness . Th equalit yof

each candidate solution has been assessed with its tness

value being a weighted sum of these three criteria. In that

paper, the weight values were chosen randomly upon se-

lection of the parent individuals. Consequently, a solu-

tion space has been created with each solution generated

according to a unique weight vector. Then, the solutions

have been improved during a local search process. That

approach has been applied to a classic JSP with limited

plant size and taskset cardinality and hence it is rather dif-

cult to apply that approach to a real-world factory. The

approach described in this paper applies to more realistic

scenarios and employs themore recent multi-objective ge-

netic algorithmMOAE/D [14], which benets from the idea

of generating various solutions from objective weighted

sums as introduced in [9].

Several real-world scheduling problems have been

deeply researched, typically being solved by customised

1 A solution s is said to be non-dominated if s has a better value than

any other found solutions for at least one objective.
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multi-objective GAs. For example, in [10], a real-world

manufacturing problem originating from a steel tube pro-

duction has been described by extending the classic FJSP

and solved using a multi-objective GA with two objec-

tives, namely reduction of the idle time on machines and

waiting time of orders. The authors of that paper stressed

that it was virtually impossible to apply the earlier re-

search works on JSP in practice as they were based on

overly simplied models and assumptions. In that pa-

per, the production routes depend on the orders and each

production stage could be processed on various homoge-

neous machines. The model proposed in that paper can

be used in numerous job production problems, but is in-

appropriate in the case of batch manufacturing. In par-

ticular, it does not consider recipe selection or minimi-

sation of the commodity surplus, which is addressed by

the model described in this paper. Readers can refer to

the survey presented in [11] to appreciate the complexity

of the batch manufacturing in general. The factory model

introduced in this paper is capable of describing the ma-

jority of the features from the general batch scheduling

classication presented in [11], including the “sequence-

depending setup”, inwhich sequences of twomanufactur-

ing jobs scheduled to be processed subsequently by the

same machine can require a time gap of a certain length

between them (corresponding to e. g., cleaning the ma-

chine in a physical plant).

An interesting real-world problem related to textile

batch dyeing scheduling has been described in [8]. Simi-

larly to the problem presented in this paper, both the tem-

poral features and the weight of the products are con-

sidered. In the textile dying industry, cloths of the same

colour can be batched together as long as their totalweight

does not surpass the capacity of the manufacturing re-

source. However, for the problem addressed in this pa-

per, the resources are capable of producing only an exact

weight of a given commodity, not lower or higher, and the

total amount of a manufactured commodity is only in��u-

enced with the selection of the recipes’ multisubset to be

executed. Instead of a batching heuristics, a method for

recipe multisubset selection that optimises a set of criteria

would be desirable.

GenandLinhave surveyed severalmulti-objectiveGAs

applied to manufacture scheduling problems in [6]. These

problems have been modelled as a classic JSP, FJSP, dis-

patching in a ��exi bl e manuf act uri ngsyst e m( F MS) an di n-

tegratedprocess planningand scheduling (IPPS). The real-

word scenario used in this paper is consistent with sev-

eral realistic assumptions in those problems, including al-

ternative resources with assorted e� �ci enc ya si nFJ S Por

storage facilitation as in FMS. The manufacturing plan-

ning and scheduling are performed together, similarly to

IPPS. Yet, none of those problems included a selection of

a multisubset of recipes for producing the same commod-

ity nor addressed the problem of minimising commodity

surplus. Both these features are essential to the real-world

scenario given in this paper. The surplusminimisation has

not beenmentioned in a survey of objective functions used

for multi-objective FJPs [2].

 Problem formulation

The considered extended version of traditional FJSP con-

sists of assigning a multisubset (i. e., a combination with

repetitions) of manufacturing recipes γj, j = 1, . . . , n to fac-
tory resources πi ∈ Π, i = 1, . . . ,m at particular times. Not

all resources are capable of executing each recipe; the sub-

set of resources compatible with recipe γj is denoted as Λj.

Execution of recipe γj on any compatible resources pro-

duces uj units of commodity δl, l = 1, . . . , r during ti,j units
of time. By executing a selected multisubset of recipes, θl
units of commodity δl ismanufactured. This amount needs

to be higher or equal to ol units, as specied in order O.

The surplus of commodity δl is the di��erenc ebet wee nits

produced and ordered amounts, σl = θl − ol. A particular

instance of recipe γj in the recipe multisubset is denoted

as γj,k, k = 1, . . . , μj, where μj = ⌈ol/uj⌉ is the minimal num-

ber of recipe instances that satises the ordered amount

of δl. Hence, the cardinality of the considered recipe mul-

tisubset is upper-bounded with η = ∑nj=1 μj. If two recipe
instances γj1 ,k1 and γj2 ,k2 manufacturing di��erent co mmodi-

ties are scheduled to be processed by the same resource

one after another, a certain time gap between them may

be required (corresponding e. g., to resource recongura-

tion or cleaning in real plants). Hence, the instance order-

ing can in��uenc et h e makespan. Thi sor deri n gi sdened

with priority pj,k ∈ ℕ0 of each recipe instance γj,k, where 0
denotes the highest priority. The scheduling is performed

according to the priority non-preemptive policy.

 Genetic algorithm customisation

The multiobjective evolutionary algorithm based on de-

composition (MOEA/D) proposed in [14] is an e� �ci ent

approach when more than three objectives need to be

optimised simultaneously, as in the considered FJSPAR

(one makespan and a number of commodity surpluses).
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Figure 2: Chromosome encoding for manufacturing processes with alternative recipes.

Figure 3: Two customised mutation operators.

MOEA/D decomposes a multiobjective optimisation prob-

lem into a set of di��eren tsi ngl e- obj ecti v eopti mi sati on

subproblems, each with di��erent obj ecti v e wei ghts. These

objective weights may be, for example, spread uniformly

in the weight space. As in any genetic algorithm, the so-

lutions are encoded in a form of so-called chromosomes

composed with a number of genes. In the proposed ap-

proach, each chromosome includes 2η elements (genes):

the odd elements store the resource indices that the corre-

sponding recipe instances have been allocated to (or 0 in
case a recipe instance has not been selected for manufac-

turing) whereas the even elements inform about the recipe

instance priorities. The proposed encoding is shown in

Fig. 2. In this gure, πj,k and pj,k indicate the resource and

priority assigned to recipe instance γj,k .

MOEA/D generates an initial population (a set of chro-

mosomes) in a random way, in accordance with the re-

source a� �niti e so ft h ef act or yunde rconsi der ati on. The

number of chromosomes in this population must be equal

to the number of single objective optimisation subprob-

lems decided earlier as each chromosome is assumed to

be a solution of a certain subproblem. The Euclidean dis-

tances between the weight vectors corresponding to all

pairs of chromosomes are computed and the closest neigh-

bours are identied for each chromosome. Then, the al-

gorithm is executed iteratively as long as a certain stop-

ping criterion, for example reaching a predened itera-

tion number, is satised. In each iteration, a new gener-

ation is formed from the current one in the followingman-

ner. Firstly, the objective values (tness) of each individ-

ual in the current population are computed using the al-

gebraic model described in [3]. From the current popu-

lation, two neighbouring chromosomes are selected ran-

domlywith theprobability proportional to their tness val-

ues and they form a pair of new chromosomes by exchang-

ing their genes in a crossover process (a standard single-

point crossover operator is applied). Then, the newly cre-

ated individuals are mutated with a certain probability.

Two mutation operators, shown in Fig. 3, can be used: the

rst one (Fig. 3 (left)) can change a recipe instance γj,k allo-
cated to resource πj,k into a recipe instance omitted in the

manufacturing process or vice-versa (in the latter case, πj,k
is chosen randomly from the resources compatible with

γj,k). The second mutation operator (Fig. 3 (right)) is ap-

plicable to recipe instances allocated to any resource. It

changes the manufacturing resource and the priority ran-

domly (π
�

j,k must be compatible with γj,k). Finally, a cus-

tomelitismoperator is applied. It selects the chromosomes

whose surpluses for each produced commodity are the

lowest and forms a new chromosome that contains the

genes corresponding to these minimal surpluses. This in-

dividual is then added to the population by replacing a

randomly chosen individual. This elitism operator is illus-

trated in Fig. 4. More details on the applied genetic algo-

rithm can be found in [4].

 Experimental results

The genetic approach brie��ydescri be di nt heprevi oussec-

tion has been applied to the factory presented in Section

1. One of the major concerns related to the considered fac-

tory is the temporal unavailability of certain resources due

to their malfunction or maintenance work. Hence, the rst
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Figure 4: Customised elitism operator; A,D,G/B,E,H/C,F,I – a group of genes encoding recipes which manufacture commodity δ1/δ2/δr .

Figure 5: In��uenc eoft h er esourc eunavail abilit yt ot h enu mber of successf ul opti mi sati o npr ocesse s(l eft ) an d makespa nof manuf act uri ng

orders for different number of available resources (right).

experiment aimed at measuring the in��uenc eofsuc hre-

source unavailability on the manufacturing process of the

same commodity order. In total, 1800 optimisation pro-

cesses have been executed, where the number of available

resources varied randomly from 3 to 10. In Figure 5 (left),

the percentage of successful optimisation processes is pre-

senteddependingon thenumber of unavailable resources.

The optimisation process fails when there is not a single

resource available that satises the a� �niti e sof atl eas t a

singlemanufacturing processes. From the gure, it follows

that in the cases of 9 or 10 available resources, all opti-

misation processes have been successful, which is under-

standable as each recipe canbe executedonat least two re-

sources. Consequently, even if one resource is unavailable,

all recipes can be still processed. The situation changes

when at least two resources are unavailable. For example,

6.1% and 22.8% of optimisation processes have been un-

schedulablewith two and three unavailable resources (out

of 10), respectively. For the extreme case of 3 available re-

sources, not a single optimisation process has been suc-

cessful.

Figure 5 (right) presents the average makespans of

manufacturing orders of various capacity. As it is visi-

ble in the gure, when only 3 resources are available, the

makespan is 1.45 times higher thanwhen all (10) resources

are available. Evenunavailability of a single resource is pe-

nalised by 21% in terms of the makespan. The makespan

grows signicantly when 4 or more resources are unavail-

able.

Next, the same genetic algorithm has been evaluated

using real historic production data provided by a project

business partner. Both the order volume and the project

plan and schedule dened by a human expert operator

have been extracted for a randomly selected day from the

factory history as well as the actual recipe execution time.

As a result, the usage time of themixers needed to produce

the ordered amount of commodities has been decreased

by about 13%, as shown in Fig. 6 (left). In Fig. 6 (right) it

is clearly visible that before the optimisation a number of

production lines were used more often than the remain-

ing ones, whereas after optimisation the production line

usage has been better balanced. This observation can be
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Figure 6: Comparison of usage time (left) and utilisation (right) per production line.

backed with the comparison of standard deviations of re-

sourceworking time for historical andoptimised schedule,

which are equal to 6.75h and 2.62h, respectively.

 Conclusion

In this paper, a real-world factoryplanningand scheduling

problemhas been describedwhose goal is not only tomin-

imise the manufacturing makespan but also to minimise

the production surplus via selecting recipesmultisubset to

be executed. This problem has been solved using a modi-

ed multi-objective genetic algorithm based on MOEA/D.

The experiments have demonstrated the applicability of

the proposed solution. In particular, the makespan of the

obtained schedule is more than 10% shorter than the real

historic schedules generated by human experts and the

standard deviation for production lines’ utilisation has de-

creased by more than 60%. The proposed approach ap-

plies to other plants that manufacture goods using alter-

native recipes while optimising one or more objectives.

Funding: The authors acknowledge the support of the EU

H2020 SAFIRE project (Ref. 723634).
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